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ABSTRACT

Despite the fact that generative models are extremely successful in practice, the
theory underlying this phenomenon is only starting to catch up with practice. In
this work we address the question of the universality of generative models: is it
true that neural networks can approximate any data manifold arbitrarily well? We
provide a positive answer to this question and show that under mild assumptions
on the activation function one can always find a feedforward neural network that
maps the latent space onto a set located within the specified Hausdorff distance
from the desired data manifold. We also prove similar theorems for the case of
multiclass generative models and cycle generative models, trained to map samples
from one manifold to another and vice versa.

1 INTRODUCTION

Generative models such as Generative Adversarial Networks (GANs) are widely used for tasks such as
image synthesis, semi-supervised learning, and domain adaptation (Brock et al., 2018; Radford et al.,
2015; Zhang et al., 2017; Isola et al., 2017). Such generative models are trained to perform a mapping
from a latent space of a small dimension to some specified data manifold, typically represented by
a dataset of natural images. Despite their success and excellent performance, the theory behind
such models is not yet well understood. A recent survey of open questions about generative models
(Odena, 2019) among others presents the following question: what sorts of distributions can GANs
model? In particular, what does it even mean for a GAN to model a distribution?

To answer these questions we adopt the following geometric approach, very amenable to precise
mathematical analysis. Under the assumption of the Manifold Hypothesis (Goodfellow et al., 2016),
data comes from a certain data manifold. Then the goal of a generator network is to reproduce this
data manifold as closely as possible by mapping the latent space into the ambient space of the data
manifold. This intuitive understanding can be written more concretely as follows. Suppose that we
are given the latent space M., feedforward neural network fy as a generator, and some target data
manifold M. In order for the manifold M to be generated by fy we require that the image of M,
under fy is sufficiently close to M, more specifically that the Hausdorff distance between fy( M)
and M is less than the given parameter €. Hausdorff distance is a well-defined metric on the space of
all compact subsets of Euclidean space and hence is equal to zero if and only if fo(M,.) = M —
the case of precise replication of the data manifold. Thus, the question at hand can be formulated as
follows: is it possible to approximate in the sense of the Hausdorff distance an arbitrary compact
(connected) manifold using standard feedforward neural networks? By combining techniques from
Riemannian geometry with well-known properties of neural networks we provide a positive answer
to this question. We also show that the condition of being smooth is not necessary and the results are
also valid for just topological manifolds.

We further extend the discussed geometric approach for the theoretical analysis of many practical
situations, for instance, to the case of data manifolds, which consist of multiple disjoint manifolds and
correspond to multiclass datasets, and cycle generative models (Zhu et al., 2017; Isola et al., 2017),
which for two manifolds learn an approximately invertible mapping from one manifold to another.
For the latter case we prove a somewhat surprising result that for any given pair of data manifolds of
the same dimension, one can always train a pair of neural networks which are approximately inverses
of one another, and map the first manifold almost onto the second one, and vice versa. In this work,
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we ignore specifics of the training algorithm (for instance, what loss function is used) and merely
focus on understanding the generative capabilities of neural networks.

2 RELATED WORK

A large body of papers is devoted to analyzing the universality of neural networks. Classical works
on universality (Cybenko, 1989; Hornik, 1991; Haykin, 1994; Hassoun et al., 1995) prove that
neural networks with one hidden layer are universal approximators and can approximate arbitrary
continuous functions on compact sets. Similar results also stand for deep wide networks with ReLU
nonlinearities (Lu et al., 2017), convolutional neural networks (Cohen & Shashua, 2016) and recurrent
neural networks (Khrulkov et al., 2019).

GANs were mostly studied from point of view of convergence properties (Feizi et al., 2017; Balduzzi
et al., 2018; Lucic et al., 2018). Several works focus on the relationship between geometric properties
of datasets and the behavior of GANs. To analyze what characteristics of datasets lead to better
convergence, synthetic datasets were studied in (Lucic et al., 2018). A case of disconnected data
manifold (similar in spirit to our analysis in Section 5) was analyzed in (Khayatkhoei et al., 2018). A
metric for analyzing the quality of GANs based on comparing geometric properties of the original
and generated datasets was proposed in (Khrulkov & Oseledets, 2018).

3 NOTATION AND ASSUMPTIONS

We will denote the d-cube [—1,1]% by I;. We will often use an approximation of a continuous
function by a neural network, in that case, the “network version” of the function will be indicated by
a subscript 0 or ¢ indicating a collection of trainable parameters, e.g., fo or g,.

In this work, we deal with data manifolds. We assume that all these manifolds are smooth, orientable,
compact and connected unless stated explicitly. We also assume that all the manifolds are embedded
into a Euclidean space R"”, and inherit the Riemannian metric tensor g. By smooth we will mean
infinitely differentiable manifolds (functions), i.e, of class C'*°; all the results, however, will stay true
if we consider class C" for some finite 7. As a norm of a function f defined on some compact set D
we will use the C-norm: || f||p = max,ep |f(z)], and for vectors we use the 2-norm.

We will often make use of a natural geometric measure x on a manifold, which can be constructed by
integrating the volume form associated with the Riemannian metric tensor over the corresponding set.

4 BACKGROUND

Let us first present some background material necessary for understanding the proofs. We will freely
use the term manifold in the precise mathematical sense. Due to limited space, we do not provide the
definition and refer the reader to thorough introductions such as (Lee, 2013; Sakai, 1996).

First important construction in the proof is the exponential map.

4.1 EXPONENTIAL MAP

Let M be a Riemannian manifold endowed with a metric tensor g. Recall that geodesics are locally
length minimizing curves, defined as a solution of a certain second-order differential equation. An
important property of geodesics is that the length of the velocity vector is preserved along the curve,
i.e., for a geodesic v(t) we have

d . .
SRl =o. 1)

The exponential map is defined in the following manner. Let ¢ € M and v € T}, M, and suppose that
there exists a geodesic 7 : [0, 1] — M with

10) =g, (0) =v.
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Then the point (1) € M is denoted by exp,(v) and called the exponential of the tangent vector
v. The geodesic y can then be written as (t) = exp, (vt). While apriori the exponential map is
defined only if ||v| is small enough, for certain class of manifolds it is globally defined. Namely, if
a manifold is geodesically complete, then equ(v) is defined for all ¢ and v € T, M. Our proof is
based on the following classical result.

Theorem 4.1 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold. Then the following
statements are equivalent.

e The closed and bounded subsets of M are compact;
* M is a complete metric space;
o M is geodesically complete.

Furthermore, any of the above implies that any points p and q in M can be connected by a minimal
(length—minimizing) geodesic.

In particular, this implies that any compact connected manifold M is geodesically complete.

4.2 HAUSDORFF DISTANCE

The Hausdorff distance between two sets X, Y C R"™ is defined as follows.

dg(X,Y)=inf{e¢ > 0; X C[Y].and Y C [X].}, 2
where
[X]e == U {z e R"d(z,x) < e} (3)
reX

It is well-known that the set of all compact subsets of R"” endowed with the Hausdorff distance
becomes a complete metric space (Henrikson, 1999).

4.3 UNIVERSAL APPROXIMATION PROPERTY OF NEURAL NETWORKS

In this paper we heavily rely on the ability of neural networks to approximate functions. In particular,
we use the following classical results on neural networks (Cybenko, 1989; Hornik, 1991).

Theorem 4.2 (Universal Approximation Theorem). Let ¢ : R — R be a nonconstant, bounded and
continuous function. Then for any continuous function f : I,, — R and € > 0 there exists a fully
connected neural network fy with the activation function ¢ and one hidden layer, such that

max|f(z) = fo(z)| <e.

Similarly, our analysis is also valid for deep networks with Rectified Linear Unit (ReLU) nonlinearities
by means of the following result (Arora et al., 2018, Theorem 2.2).

Theorem 4.3 (Arora et al. (2018)). Every piecewise linear function R™ — R can be represented by
a ReLU DNN with at most |logy(n + 1) | + 1 depth.

Since piecewise linear functions are dense in the space of continuous function, we obtain a simple
corollary.

Corollary 4.1. For any continuous function f : I, — R and € > 0 there exists a fully connected
neural network fg with ReLU nonlinearity, such that

max|f(z) — fo(z)] <e.

For conciseness, we will call nonlinearities satisfying Theorem 4.2 or Theorem 4.3 simply universal
nonlinearities, explicitly specifying other required properties when necessary.

Similarly, our results can also be extended to the case of non-compact latent space R%. In Appendix B
we provide relevant theorems and show how results of next sections generalize.
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5 GEOMETRIC UNIVERSALITY THEOREM

In this section we prove that for an arbitrary manifold it is possible to construct a neural network,
mapping the cube I; approximately onto this manifold. Our analysis is based on the following lemma.
In fact, this is a particular case of a much stronger theorem valid even for fopological manifolds
(without smooth structure), for which we provide a discussion and reference further in the text. We,
however, believe that this particular case is instructive and provides an intuition on how the generative
mappings may look like.

Lemma 5.1. Let M C R" be a compact connected d-dimensional manifold. Then there exists a
smooth map

f g — Rn,
such that f(Ig) = M.

Proof. We will construct this map explicitly. Choose an arbitrary point ¢ € M, and consider
exp, : TyeM — M.

Since M is compact and connected, it is geodesically complete and the Hopf-Rinow theorem applies.
Thus, this map is defined on T, M = R% and surjective.

We now need to show that we can choose a compact subset of T, M such that the restriction of exp,, to
this subset is also surjective. To do this observe that since M is compact it has finite diameter, namely
Vp, q : d(p,q) < Ry for some finite constant Ry. Here d is the Riemannian distance, defined as the
arc length of a minimizing geodesic. From Eq. (1) it instantly follows that for the (Euclidean) ball
Br, = {v € TyM : ||v|| < Ro} we have exp,(Bg,) = M. Indeed, since any point on M is within
distance Ry from ¢, there exists a minimal geodesic connecting these points with length bounded
by Ry. But for any vector v € T; M from Eq. (1) we obtain that the length of the corresponding
geodesic connecting q and exp, (v) is exactly ||v[|, which proves the claim. Statement of the lemma
then follows after selecting an arbitrary cube containing Bp, and appropriate rescaling. O

Recall from Section 4.3 that universal nonlin-
earities include ReL.U and nonconstant bounded
continuos functions.

Theorem 5.1 (Geometric Universality of Gener-

My
ative Models). Let M be a compact connected

d-dimensional manifold. For every universal Py k

nonlinearity o there exists a fully connected neu- If = follra <=

ral network fo(2) : Iy — R™ with the activation I f(z) M
function o such that dg (M, My) < €. Here

Mo = fo(la).

Figure 1: Visualization of the construction in the

Proof. Choose an arbitrary f as in Lemma 5.1. proof of Theorem 5.1. The latent space I is
) ) mapped onto the manifold M via the function f.

By universality of o we can find such a neural - Thjs mapping is then approximated via neural net-
network that || f — fy||;, < e. Statement of the  y,ork fo, which in turn maps I3 onto the compact

theorem then follows from the definition of the ¢ A4 0. If f5 is sufficiently close to f then so are
Hausdorff distance. Indeed, by surjectivity of  Aq and My,

f we find that every point 79 = f(29) € M
is within distance ¢ from the point fy(z9) €
My, and thus M C [My]. as in Eq. (3), and
conversely My C [M].. See Fig. 1 for illustration of the proof. O

Previously we have noted that our Lemma 5.1 is a particular case of a much stronger result (Brown,
1962). Namely, it can be stated as follows.

Lemma 5.2 (Brown’s mapping theorem). Let M be a compact connected d-dimensional topological
manifold (with or without boundary). Then there exists a continuous map

f Iy — Rn,
such that f(Iz) = M.
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Based on this lemma Theorem 5.1 can be generalized to include the more general case of topological
data manifolds (as well as of manifolds with boundary).

Corollary 5.1 (Strong Geometric Universality). Theorem 5.1 holds true for M being an arbitrary
compact connected topological manifold with or without boundary.

This class of manifolds is extremely general, and it seems plausible that manifolds of natural images
satisfy these conditions, which may partially explain the success of generative models. Indeed,
spaces of natural images of shape H x W x C are closed subsets of Iy ¢, and thus are compact.
We hypothesize that the property of being connected holds for manifolds representing single—class
datasets. We will now address the case of multiclass manifolds.

Multiclass case The previous theorem considers only the case of a single data manifold. However,
commonly in practice, single datasets contain samples from multiple data manifolds (e.g, MNIST
digits, ImageNet classes). Since we can assume that these manifolds do not intersect, it is impossible
to map a connected latent space surjectively onto this disconnected joint data manifold. To counteract
this effect we can allow small pieces of latent space to map into thin “tunnels” connecting those
manifolds. This can be made precise by the following statement.

Theorem 5.2 (Geometric Universality for Multiclass Manifolds). Let M = US_, M, be a “multiclass”
data manifold, with each M ; being a compact connected d-dimensional topological manifold (with
or withour boundary). Then for every € > 0 and § > 0 and every universal nonlinearity o there
exists a fully connected neural network fg(z) : I; — R™ with the activation function o such that the
following properties hold.

* There exists a collection {D;}5_, of disjoint compact subsets of 14 such that

Vi dH(fg(Di),Mi) <E. €]
* p(lg \Ui— D;) < 6.

We refer the reader to Appendix A for the proof.

6 INVARIANCE PROPERTY OF DEEP EXPANDING NETWORKS

Our previous results state that it is possible to approximate any given manifold M up to some
accuracy. However, neural networks used in the proof are shallow (they have one hidden layer) and
are not practical. In this section, we study how the set My looks like for more practical networks
consisting of a series of fully connected and convolutional layers. We will show a somewhat surprising
result that under certain mild conditions such networks cannot significantly transform the latent space,
more precisely the generated set My will be diffeomorphic to the open unit cube (—1,1)%. In fact,
our results will be more general and will demonstrate that this property holds for arbitrary latent
spaces, that is if z is sampled from some manifold M, then My will be diffeomorphic to M.

6.1 REMINDER ON EMBEDDINGS

Recall the following definition.

Definition 6.1 (Smooth embedding). Let M and N be smooth manifolds and f : M — N be a
smooth map. Then f is called an embedding is the following conditions hold.

* Derivative of f is everywhere injective;
* f is an injective, continuous and open map (i.e, maps opens sets to open sets).

The main property of a smooth embedding is the following (Lee, 2013).
Proposition 6.1. The domain of an embedding is diffeomorphic to its image.
We will show that certain neural networks commonly used for generative models are in fact smooth

embeddings, and thus their image is diffeomorphic to the domain (latent space). We analyze the two
most commonly used layers in such models: fully connected and convolutional layers (both standard
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and transposed). For the sake of simplicity we assume that convolutions are circularly padded, i.e.,
the input presents a two-dimensional torus; in this case, when the offset calls for a pixel that is off the
left end of the image, the layer “wraps around” to take it from the opposite end. We consider arbitrary
stride, in order to allow for a layer to increase the spatial size of a feature tensor, as commonly done.

Let us fix the nonlinearity o(z) to be an arbitrary smooth monotonous function without saddle points
(0'(z) # 0). Then the following two lemmas hold. Let us first assume that the latent space is the
Euclidean space R? (or equivalently, an open unit cube (—1,1)%).

Lemma 6.1. Ler f(z) = o(Az +b) with A € R™*™ be a fully connected layer. If n > m then
f(2) is a smooth embedding for all A except for a set of measure zero. We will call such a layer an
expanding fully connected layer.

Proof. Indeed, such a map is injective. It is open as a composition of a linear map (which is trivially
open), and of o (z) which is open since it is a continuous monotonous function. Then for all matrices
A of full rank (which form a set of full measure in the space of matrices of size n x m) the derivative
is injective by a simple application of the chain rule and the fact that o/ (z) # 0. O

Let us now deal with the convolutional layers.

Lemma 6.2. Let z be a 3rd—order tensor tensor representing a feature tensor of size m X m with
k channels. Suppose that f(z) = o(Conv(z) + b) is a standard convolutional or transposed
convolutional layer with an arbitrary stride. Suppose that Conv is parameterized via a kernel
parameter C € R>FXsXs sych that f(z) is a feature tensor of size n x n with | channels. If
n2l > m2k then f(2) is a smooth embedding for all C except for a set of measure zero. We will call
such a layer an expanding convolutional layer.

Proof. The only non-trivial part of the proof is showing injectivity of this layer for all C' but measure
zero. Note that if n2] > m?k then the matrix representing the linear map performing the Conv
operation is vertical, hence it is sufficient to show that generically it is of full rank. In the case of the
transposed convolution, we can transpose this matrix and analyze the corresponding convolutional
layer.

Stride one Let us start with the most important case of stride being one, in which case m = n.
. . . -~ 2 27, .
Denote the matrix of the linear map underlying Conv by C' € R™ ™% that is vec(Conv(x)) =

Cvec(z), where vec denotes the vectorization operator. We need to show that for all C' but measure
zero this matrix is of full rank.

To prove the lemma we use the following simple argument coming from algebraic geometry. The
condition of matrix C not being a full rank is algebraic (i.e., is gi/\\/en by polynomial equations) in the
space of parameters C. Indeed, the operation of constructing C' based on C' is linear with respect
to C, and the condition of not being a full rank in the space of all matrices is specified by a set
of polynomial equations (namely, determinants of all maximal square submatrices should be zero).
Thus, we have shown that set Cginguiar = {C € RIXkxsxs | (' is not of full rank} is algebraic;
and by the well-known property of algebraic sets there are two options: either M(Csmguzar) =0
or Csingular = RI*kxsxs (with i being the standard Lebesgue measure). To show that the latter
does not hold, we provide a concrete example of a weight C' not in Cj;pguiqr-- Namely, consider the
following C.

. _ [0y p=aq=1,
Cli,j,p,q] = {0’ otherwise. ”

Here d;; denotes the Kronecker delta symbol:

l,i=y
52" — ) ) '»
J {O, i j.
We observe that the corresponding matrix C is of particularly simple structure:
C[Zaj] = 6ij7

which trivially is of full rank.
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Arbitrary stride The same argument as before applies. Notice that selection of a bigger stride
corresponds to selecting specific rows from the matrix C' obtained for stride one. By using the
same weight tensor C as in the case of stride one, we find that the obtained matrix C' contains

min(m?k, n?1) distinct rows of the identity matrix, followed by possible zero rows and thus also has
full rank.

O

After these preliminary results, we are ready to extend them to the case of arbitrary latent space.
Namely, suppose that z is sampled from an arbitrary manifold M, C R%. We use the following
simple lemma and refer the reader to Appendix A for the proof.

Lemma 6.3. Let f : M — N be an arbitrary smooth embedding. Let S C M be a smooth
embedded submanifold. Then f|s is also a smooth embedding.

By combining Lemmas 6.1 to 6.3 and Proposition 6.1 we obtain the following result.

Theorem 6.1. Let fy(2) be an arbitrary neural network consisting of expanding fully connected
layers and expanding convolutions, and z € M, C R% Denote Mg = fo(M.). Then for all
parameters 0 but measure zero the following properties hold:

* My is a smooth embedded manifold;

® Mg:-’./\/lz.

Proof. Theorem follows from Lemmas 6.1 to 6.3 and Proposition 6.1 and the fact that a composition
of embeddings is also an embedding. O

For many datasets used in practice, it seems very unlikely that the data comes from manifolds
with very simple topological properties, as even basic visual patterns may possess quite non-trivial
topological structure (Ghrist, 2008). Thus on the first sight, it seems that Theorem 6.1 suggests
that using only expanding architectures, it is impossible to approximate an arbitrary data manifold
with latent space being R? (or an open unit cube). Such models are, however, extremely successful
in practice. While we do not provide a precise theorem for this case, based on the discussion in
Section 7, we hypothesize that it may possible to approximate an arbitrary compact data manifold
using expanding networks up to a subset of arbitrary small measure, and thus limitations imposed by
Theorem 6.1 are negligible in practice.

7 CYCLE GENERATIVE MODELS

Another popular class of models used for instance for the unsupervised image to image translation
(Zhu et al., 2017; Isola et al., 2017) learn a mapping along with its inverse from one data manifold to
another. We specify this task as follows. Given two data manifolds M and N of the same dimension,
the goal is two train two neural networks fg(x) and g, (y) such that fg(x) is a diffeomorphism of M
and A with g being inverse of f.

First of all, let us notice that we do not expect for such f and g to exist for two general manifolds
since two manifolds of different topological properties cannot be diffeomorphic. However, based on
Theorem 6.1 we expect that the desired properties may hold approximately. Let us start with lemmas
ensuring existence of functions f and g which map M approximately to N” and N approximately to
M correspondingly. In this section, we again consider only the case of smooth data manifolds.

First of all, we recall the following result (Sakai, 1996), proved in a very similar manner to Lemma 5.1.

Lemma 7.1. Every compact connected d-dimensional manifold M contains an open dense set
diffeomorphic to R:. Moreover, complement of this set has measure zero in M.

We use this result to obtain the following lemma (see Appendix A for the proof).

Lemma 7.2. Let M and N be two manifolds of the same dimension. For every § > 0 there exist
compact subsets M5 C M and N5 C N such that (M \ Ms) < § and (N \ Ns) < § and M
is diffeomorphic to Nj.
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We are now ready to provide our main result on cycle generative models. As before, recall from
Section 4.3 that universal nonlinearities include nonconstant bounded continuous functions as well as
ReLU.

Theorem 7.1 (Geometric Universality for Cycle Models). Fix any two compact connected manifolds
M and N of the same dimension and a universal nonlinearity o. Then for every 6 > 0 and € > 0
there exist compact subsets Ms C M and N5 C N and a pair of feedforward neural networks
fo(x), go(y) with the activation function o (z) satisfying the following conditions:

o M\ Ms) < dand p(N \ Ns) <6;
o di(fo(Ms),N5) < € and dp(gs(Ns), Ms) < &;

* |lgp o fo —id||m; < Ceand ||fg o g4 — id||n; < Ce with constant C depending only on
manifolds M and N

Proof. Let us start by selecting subsets M and N and a diffeomorphism f : Ms — N along
with its inverse g as specified by Lemma 7.2. For simplicity let us also assume that M C I,, and
N C I,,. By means of the Whitney extension theorem (Whitney, 1934) we can smoothly extend f
and g to the entire cube I,,, and by universality of o we construct two feedforward neural networks

fo(z) and g4 (y) such that
Ilfo — f

1, <&, (6)
and

lgs — gllz, <e, (7
with all the functions defined on the unit cube I,,. This proves first two points in the theorem. To
show the last property we find that Vo € M the following estimate holds.

96 © fo@) =2l = llg6 © fo@) = g falz) +9 o folw) —al
< llgo o fol@) ~ g fo(a)l| + llg  fola) ~ ]
<etllgo fola) — g0 f(@)] &
< &+ max | Dyl olw) /()]

<1 D
<( +HA1§;<II gll)e,

where he have used the fact that g o f(x) = z for x € M and properties (6) and (7). The second
part of the claim is proved similarly. O

Neural networks fg and g, constructed in the proof perform translation from data sampled from M
to data coming from approximately N, and existence of such networks for arbitrary manifolds may
partially explain huge empirical success of cyclic models. Even though the theorem is valid for an
arbitrary pair of manifolds, we hypothesize that for datasets containing visually similar images such a
map may be much easier to model, than for two arbitrary manifolds without such a connection.

Latent space R? Results we provided in previous sections are valid for the compact latent space 1.
However, we can generalize them to include the other popular case of latent space being the entire
space R? (even though for a smaller set of activation functions). See Appendix B for the discussion
of this case.

8 CONCLUSION AND FUTURE WORK

In this work we have attempted to partially explain huge empirical success of generative models.
Our results show only existence of neural networks approximating arbitrary manifolds, and do not
specify how one can estimate the size of a network required for any given manifold. We hypothesize,
however, that there might exist a connection between certain geometrical properties of a manifold
(curvature, various topological properties), and the width/depth of a neural network required. One
interesting direction of research left for a future work is analyzing this relation for datasets popular in
computer vision, such as MNIST or CelebA, or toy datasets sampled from simple small dimensional
manifolds (tori, circles), where one can easily vary the topological properties.



Under review as a conference paper at ICLR 2020

REFERENCES

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. In International Conference on Learning Representations,
2018.

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Grae-
pel. The mechanics of n-player differentiable games. In Proceedings of the 35th International
Conference on Machine Learning, volume 80, pp. 354-363. PMLR, 2018.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Morton Brown. A mapping theorem for untriangulated manifolds. Topology of, 3:92-94, 1962.

Nadav Cohen and Amnon Shashua. Convolutional rectifier networks as generalized tensor decompo-
sitions. In International Conference on Machine Learning, pp. 955-963, 2016.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303-314, 1989.

Soheil Feizi, Farzan Farnia, Tony Ginart, and David Tse. Understanding gans: the 1qg setting. arXiv
preprint arXiv:1710.10793, 2017.

Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American Mathematical
Society, 45(1):61-75, 2008.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
Mohamad H Hassoun et al. Fundamentals of artificial neural networks. MIT press, 1995.
Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

Jeff Henrikson. Completeness and total boundedness of the hausdorff metric. MIT Undergraduate
Journal of Mathematics, 1:69-80, 1999.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):
251-257, 1991.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125-1134, 2017.

Yoshifusa Ito. Approximation of continuous functions on rd by linear combinations of shifted
rotations of a sigmoid function with and without scaling. Neural Networks, 5(1):105-115, 1992.

Mahyar Khayatkhoei, Maneesh K Singh, and Ahmed Elgammal. Disconnected manifold learning
for generative adversarial networks. In Advances in Neural Information Processing Systems, pp.
7343-7353, 2018.

Valentin Khrulkov and Ivan Oseledets. Geometry score: A method for comparing generative
adversarial networks. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 2621-2629. PMLR, 2018.

Valentin Khrulkov, Oleksii Hrinchuk, and Ivan Oseledets. Generalized tensor models for recurrent
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rl1gNniOgtm.

John M Lee. Smooth manifolds. Springer, 2013.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. In Advances in Neural Information Processing Systems,
pp. 6231-6239, 2017.


https://openreview.net/forum?id=r1gNni0qtm
https://openreview.net/forum?id=r1gNni0qtm

Under review as a conference paper at ICLR 2020

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are gans created
equal? a large-scale study. In Advances in neural information processing systems, pp. 700-709,
2018.

Augustus Odena. Open questions about generative adversarial networks. Distill, 2019. doi: 10.
23915/distill.00018. https://distill.pub/2019/gan-open-problems.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Takashi Sakai. Riemannian geometry, volume 149. American Mathematical Soc., 1996.

Hassler Whitney. Analytic extensions of differentiable functions defined in closed sets. Transactions
of the American Mathematical Society, 36(1):63-89, 1934.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris N
Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial
networks. In Proceedings of the IEEE International Conference on Computer Vision, pp. 5907—
5915, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223-2232, 2017.

10



Under review as a conference paper at ICLR 2020

A PROOFS

Theorem 5.2 (Geometric Universality for Multiclass Manifolds). Let M = US_, M, be a “multiclass”
data manifold, with each M; being a compact connected d-dimensional topological manifold (with
or withour boundary). Then for every € > 0 and § > 0 and every universal nonlinearity o there
exists a fully connected neural network fo(z) : I; — R™ with the activation function o such that the
following properties hold.

* There exists a collection {D,;}5_, of disjoint compact subsets of 1, such that

Vi dH(fg(DZ),MZ) < €. €]
o u(la \ L1 D;) <6

Proof. Similar to the proof of Theorem 5.1 we will apply the universal approximation theorem
to a certain function constructed with the help of Lemma 5.2. To construct such function let us
select sets D; in the following way. We divide the interval [—1, 1] uniformly into ¢ intervals, namely
[0, 21], [21,22], - - ., [Tc—1, 2] With length of each interval being % and rg = 1,7, = 1. We

propose to use the following D;, satisfying conditions of the corollary. Denote h = 2(%—1)’

['rivxi-l-l - h] X [715 1]d717 v = 07
Di =S [zi+hzi—h x[-1,1]710<i<c—1, ©)
[ + h,wiq] X [-1,1]77 i =c— 1.

Intuition is very simple: we chop down the cube D on the first axis into smaller boxes, and re-
move some space between them. On each of the chunks D; we can now apply Lemma 5.2 for
the corresponding manifold M, obtaining a collection of maps {f;}5_,. To construct a global
continuous map f we can now simply linearly interpolate each of the maps f; from the right boundary
[zi41 — h] x [=1,1]¢71 of one box to the left boundary [z; 41 + h] x [—1,1]¢71 of the neighboring
one. By applying the universal approximation theorem to this function f, we finalize the proof. [

Lemma 6.3. Let f : M — N be an arbitrary smooth embedding. Let S C M be a smooth
embedded submanifold. Then f|s is also a smooth embedding.

Proof. The proof follows from the definition. Indeed, for every point x € & C M we have
T,S C T, M and restriction of the derivative of f onto this subspace is also injective. Note that f|s
is also injective and open map. O

Lemma 7.2. Let M and N be two manifolds of the same dimension. For every § > 0 there exist
compact subsets M5 C M and N5 C N such that p(M\ Ms) < 6 and (N \ Ns) < § and M
is diffeomorphic to Nj.

Proof. For each of the manifolds M and A\ select the open dense set of full measure as in Lemma 7.1.
Each of these subsets is diffeomorphic to an open unit ball in R via maps h ¢ and h. In order to con-
struct M and N it sufficient to take preimages under h 4 and h s correspondingly of a sufficiently
large closed ball B, (as with 7 — 1 we have yi(h, (B,)) = p(M) and p(h* (B,)) — p(N)). O

B LATENT SPACE R¢

In this section we discuss how the results in the main text can be generatlized to the case of the latent
variable z sampled from R< rather than I;. The only principal difference is that we now have to deal
with approximating functions defined on the noncompact space, which is less trivial. We make use of
the following result (Ito (1992)), where we for simplicity provide concrete formulas for the activation
functions for which the results hold.

Theorem B.1. Let o belong to one of the three families:

* Gaussian distribution family: o(t) = (2m)~"/* [*__e™**/du

t
—o00
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1

* Sigmoid function: o(t) = ==

* Inverse tangent: o(t) = arctan(t)
Then for any function f € C(R?) and every & > 0 there exists a neural network fo with activation o
such that
If = follre <e.

Here R? denotes the one point compactification of R?, so this class, for instance, includes functions
with compact support. Note that the same result holds for ReLU networks due to Theorem 4.3. Let
us denote the class of activations considered in Theorem B.1 along with ReLU by weak universal
functions. By composing the function constructed in Lemma 5.2 with any surjection from R? to I
with compact support, we obtain the following result.

Corollary B.1. Let M be a compact connected topological manifold with or without boundary. For
every weak universal nonlinearity o there exists a fully connected neural network fo(z) : R? — R"
with activation o such that dg (M, My) < e. Here Mg = fo(R?).
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