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ABSTRACT

Text generation is a critical and difficult natural language processing task. Maxi-
mum likelihood estimate (MLE) based models have been arguably suffered from
exposure bias in the inference stage and thus varieties of language generative ad-
versarial networks (GANs) bypassing this problem have emerged. However, re-
cent study has demonstrated that MLE models can constantly outperform GANs
models over quality-diversity space under several metrics. In this paper, we pro-
pose a quality-diversity controllable language GAN. We illustrate an intimate con-
nection between forward/reverse KL divergences and our principled approach,
and demonstrate that our proposed model can achieve quality-diversity control by
adjusting a hyper-parameter. Through extensive experiments, we show that the
proposed model outperforms MLE models and other GANs variants on synthetic
data and is more competitive on real-world tasks such as COCO Image Captions
and EMNLP2017 WMT News datasets.

1 INTRODUCTION

Text generation is one of the most challenging and widely used natural language processing task and
it serve as a critical module on numerous practical applications. In recent years, neural autoregres-
sive models have shown superiority on various natural language generation (NLG) tasks (Zhang &
Lapata, 2014; Gal & Ghahramani, 2016; Du et al., 2017; Fiorini & Lu, 2018). The most common
method of training these models is the maximum likelihood estimation (MLE) which maximize the
log predictive likelihood of each true token in the training sequence given the previous observed to-
kens. However, MLE models have been arguably suffered from exposure bias (Bengio et al., 2015;
Ranzato et al., 2016) which means a discrepancy between training and inference stages due to the
fact that at inference time, the model predicts next token based on the sequence generated by itself
which may not occur in training set. In order to overcome this problem, scheduled sampling (Ben-
gio et al., 2015) and professor forcing (Lamb et al., 2016) are proposed, but scheduled sampling
is proven to be fundamentally inconsistent (Huszár, 2015) and professor forcing use an adversarial
method similar to GANs (Goodfellow et al., 2014).

Varieties of generative adversarial networks (GANs) (Goodfellow et al., 2014) models for text gen-
eration have emerged as alternatives to MLE models with the hope of not suffering from exposure
bias. However, due to the discrete nature, GANs have difficulty in text generation since the gradients
from discriminator can not be passed to generator explicitly and thus most these GANs based mod-
els (Yu et al., 2017; Guo et al., 2018; Lin et al., 2017; Fedus et al., 2018; Xu et al., 2018) treat text
generation as a sequential decision making process (Bachman & Precup, 2015) and utilize policy
gradient (Williams, 1992) to overcome this difficulty. Despite the impressive achievements, they
inevitably have a problem of high variance due to the use of reinforcement learning (RL) strategies.

Caccia et al. (2018) have made several surprising observations and argued that, through simple
temperature sweeping at inference stage, MLE models can constantly outperform these RL-based
GANs models by a large margin over quality-diversity space under several metrics. They attribute
this to the fact that the negative impact coming with RL is severer than so-called exposure bias
caused by MLE. A RL-free approach to train GANs for text generation without resorting to an
explicit neural network as the discriminator, named No Neural Network as the Discriminator GAN
(N3DGAN), is proposed by (Li et al., 2019) and shows state-of-the-art results on both synthetic and
real datasets under quality-only metrics.
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We propose a quality-diversity controllable GAN through a principle approach which is a gener-
alization of N3DGAN (Li et al., 2019). This generalization has intimate connections with direct
optimization of both forward and inverse KullbackLeibler (KL) divergences with respect to em-
pirical distribution and model distribution. As shown in (Huszár, 2015), minimizing forward KL
divergence often leads to models that overgeneralize, and sometimes produce samples that are very
unlikely under true distribution and thus it is good at diversity. Minimizing the reverse KL diver-
gence instead will try to avoid any behaviour that is unlikely under true distribution at the cost of
ignoring modes of true distribution completely, thus it is good at quality. Through this principled ap-
proach, we demonstrate that our proposed model can control the quality-diversity trade-off, that is,
the degree to which the model depends on forward and reverse KL divergences respectively through
a single hyper-parameter.

The key contributions of our work are three-folds: (1) We propose a simple but effective GANs
model for text generation which can control the quality-diversity trade-off through a single hyper-
parameter at training stage. (2) Different from most existing GANs variants, our proposed model, as
a generalization of N3DGAN, does not need to rely on MLE pre-training and is RL-free. (3) Through
extensive experiments, we show that our proposed model outperform MLE based model and other
GANs variants over quality-diversity space in the synthetic-data tasks and are more competitive to
MLE model than other GANs variants in the real-world tasks.

2 RELATED WORK

Huszár (2015) analyzes the difference between optimizing forward and reverse KL divergences,
and suggests to use a generalized Jensen-Shannon divergence to replace MLE, but he doesn’t real-
ize its relation to the mini-max game’s value function as well as tractability of directly optimizing
the generalized Jensen-Shannon divergence on training data, and moreover he doesn’t conduct any
experiments.

Caccia et al. (2018) try to navigate the quality-diversity space through temperature sweep, beam
search and generator rejection sampling (Ott et al., 2018) methods, unfortunately all these methods
can only navigate the quality-diversity space at inference stage.

Li et al. (2019) propose N3DGAN which is RL-free and doesn’t need additional maximum likeli-
hood pre-training, but they only report results on quality metrics but not on diversity.

Lu et al. (2019) propose a cooperative training (CoT) approach for text generation which dont have
to rely on RL and MLE for pre-training, instead they optimize an approximate Jensen-Shannon
divergence. It is done by introducing a mediator and dropping the term in the gradient of generator
which behaves like RL. In the synthetic-data experiments, they perform similarly but slightly worse
than MLE model (Caccia et al., 2018).

de Masson d’Autume et al. (2019) combine existing techniques such as large batch size, dense
rewards and discriminator regularization to train language GANs from scratch without the need for
MLE pre-training. But they still have to use RL which is essentially the same as most language
GANs (Yu et al., 2017; Guo et al., 2018; Lin et al., 2017; Fedus et al., 2018; Xu et al., 2018),
and they don’t conduct any experiment on synthetic data which has oracle metrics to validate its
effectiveness.

3 A QUALITY-DIVERSITY CONTROLLABLE GAN

In the well-known adversarial modeling framework Goodfellow et al. (2014), there are two play-
ers, one is called generator represented by a differentiable function G and another one is called
discriminator represented by a differentiable function D. They approximate the data distribution
pdata through an alternative mini-max game between these two components. The discriminator D
is trained to discriminate the samples drawn from the generator distribution pG from the real data,
while the generator is trained to fool the discriminator so that it cannot distinguish between the sam-
ples from pG and pdata. Goodfellow et al. (2014) proved that if the generatorG has enough capacity
to cover data distribution pdata, then optimizing the mini-max game is equivalent to directly opti-
mizing the Jensen-Shannon divergence. Unfortunately Goodfellow et al. (2014) didn’t distinguish
the real data as either population (true but unknown) distribution or empirical distribution.
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Li et al. (2019) notice the distinction and they explicitly use the empirical distribution in their ap-
proach. They argue that when an alternative mini-max optimization procedure is performed for the
value function, a closed form solution for the discriminator exists in the maximization step, thus
an explicit neural network model for the discriminator is not needed. Moreover optimizing the
mini-max game is equivalent to directly optimizing the Jensen-Shannon divergence (JSD) between
the generator’s distribution and the empirical distribution over the training data, where the corre-
sponding KL divergence related to the generator’s distribution and the empirical distribution over
the training data is reduced to the sum over the training data. This means that sampling from the
generator over the entire space as well as the policy-gradient algorithm to compute the gradient of
the generator can be eliminated. Optimizing the JSD becomes computationally tractable to train the
generator for text generation.

We now propose a quality-diversity controllable GAN which is a generalization of N3DGAN (Li
et al., 2019) and illustrate its connections to the forward KL divergence and the reverse KL diver-
gence as stated below.

Since the samples in the training data are limited, we use π ∈ [0, 1] to denote the ratio of labeled
samples discriminator receives from the generator and the training data, and let the discriminator D
and the generator G play the following two-player minimax game with a generalized distinguisha-
bility game value function Vπ(G,D):

min
G

max
D

Vπ(G,D) = π · Ex∼p̃data(x)[logD(x)] + (1− π) · Ex∼pG(x)[log(1−D(x))] (1)

where p̃data(x) denotes the empirical distribution over training set C = {x1, · · · , xN} with N sam-
ples, and

p̃data(x) =

{
1
N if x ∈ C
0 otherwise

Proposition 1. When optimizing the value function Vπ(G,D), for any given generator G, the
optimal discriminator D∗G(x) is

D∗G(x) =

{
πp̃data(x)

πp̃data(x)+(1−π)pG(x) if x ∈ C
0 otherwise

and the value function at the optimal discriminator D∗G(x) becomes

Vπ(G,D
∗
G(x))

∝ JSDπ(p̃data(x) ‖ pG(x))

∝ π
∑
x∈C

p̃data log
p̃data(x)

πp̃data(x) + (1− π)pG(x)
+ (1− π)

∑
x∈C

pG(x) log
pG(x)

πp̃data(x) + (1− π)pG(x)

+ (1− π) log(1− π)
∑
x∈C

pG(x) (2)

where JSDπ is the generalized Jensen-Shannon divergence (Huszár, 2015) between two distribu-
tions p̃data and pG, and is not symmetric.

Proof: Given any generator G(x), the training criterion for the discriminator D(x) is to maximize
the value function Vπ(G,D) in (1) and could be re-written as.

Vπ(G,D) =π
∑
x∈C

p̃data logD(x) + (1− π)
∑
x∈C

pG(x) log(1−D(x))

+ (1− π)
∫
x/∈C

pG(x) log(1−D(x))dx

(3)

Taking derivative with respect to D(x), we have

∂Vπ(G,D)

∂D(x)
=

{
π p̃data(x)
D(x) − (1− π) pG(x)

(1−D(x)) if x ∈ C
−(1− π) pG(x)

(1−D(x)) otherwise
(4)
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Thus, the optimal solution for D(x) is

D∗G(x) =

{
πp̂data(x)

πp̂data(x)+(1−π)pG(x) if x ∈ C
0 otherwise

(5)

Plug (5) into (3), we have

V (G,D∗G(x))

=π
∑
x∈C

p̃data log
p̃data(x)

πp̃data(x) + (1− π)pG(x)
+ (1− π)

∑
x∈C

pG(x) log
pG(x)

πp̃data(x) + (1− π)pG(x)

+ (1− π) log(1− π)
∑
x∈C

pG(x) + π log π
∑
x∈C

p̃data(x) (6)

The generalized JSD can be written as

JSDπ(p̃data(x) ‖ pG(x))
=πDKL(p̃data(x) ‖ πp̃data(x) + (1− π)pG(x)) + (1− π)DKL(pG(x) ‖ πp̃data(x) + (1− π)pG(x))

=π
∑
x∈C

p̃data log
p̃data(x)

πp̃data(x) + (1− π)pG(x)
+ (1− π)

∑
x∈C

pG(x) log
pG(x)

πp̃data(x) + (1− π)pG(x)

+ (1− π) log(1− π)
∑
x∈C

pG(x)− (1− π) log(1− π) (7)

Because the last terms on the right side of Equation (6) and Equation (7) both are constant, thus
equation (2) is established.

Proposition 1 shows that optimizing the mini-max game of equation (1) is equivalent to optimizing
equation (2) which is over the training data, thus it is tractable and the model parameter θ can be
updated directly using stochastic gradient descent (SGD) or its variants.

Proposition 2. When π is converging to 0, optimizing Vπ(G,D)
π is equivalent to optimizing the

forward KL divergence DKL(p̃data(x) ‖ pG(x)), i.e. optimizing maximum log-likelihood; and
when π is converging to 1, optimizing Vπ(G,D)

1−π is equivalent to optimizing the reverse KL divergence
DKL(pG(x) ‖ p̃data(x)).

Proof: Consider the Taylor expansion KL[Q||Q+ a] ≈ aTHa and proposition 1, the limitation of
Vπ(G,D)

π can be written as

lim
π→0

Vπ(G,D)

π
= lim
π→0

JSDπ(p̃data(x) ‖ PG(x))
π

= lim
π→0

DKL(p̃data(x) ‖ πp̃data(x) + (1− π)PG(x))

+ lim
π→0

1− π
π

DKL(PG(x) ‖ πp̃data(x) + (1− π)PG(x))

=KL(p̃data(x) ‖ PG(x))

(8)

thus when π is converging to 0, optimizing Vπ(G,D)
π is equivalent to optimize the forward KL diver-

gence DKL(p̃data(x) ‖ pG(x))
On the other hand, we can also explain this proposition from the perspective of the gradient. Taking
derivative with respect to the parameters θ of generator, we have

∂Vπ(G,D)

∂θ
= (1− π)PG(x) log

(1− π)PG(x)
πp̃data(x) + (1− π)PG(x)

∂ logPG(x)

∂θ
(9)

Since the term
log

(1−π)PG(x)

πp̃data(x)+(1−π)PG(x)

π converges to − p̃data(x)
pG(x) in the limit of π → 0, thus we can get

lim
π→0

∂ Vπ(G,D)
π

∂θ
= PG(x)(−

p̃data(x)

PG(x)
)
∂ logPG(x)

∂θ
= −p̃data(x)

∂ logPG(x)

∂θ
(10)
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where term ∂ logPG(x)
∂θ is the gradient of log-likelihood.

The same can be proved that in the limit of π → 1, Vπ(G,D)
1−π is equivalent to reverse KL divergence

DKL(pG(x) ‖ p̃data(x)).

This proposition shows an intimate connection of optimizing the objective Vπ(G,D) to those of the
forward and reserve KL divergences. Thus we can control the quality-diversity trade-off for text
generation through a single hyper-parameter π.

4 EXPERIMENTAL STUDY

4.1 DATASETS

The experiments consist of two parts: synthetic-data experiments and real-world experiments. We
use two datasets, COCO Image Captions dataset and EMNLP2017 WMT News dataset in our real-
world experiments since they have become common benchmarks for text generation (Guo et al.,
2018; Caccia et al., 2018; Montahaei et al., 2019).

4.1.1 SYNTHETIC DATASET

In synthetic-data experiments, in order to test the validity of our proposed model we conduct a
simulated test similar to Yu et al. (2017). Following them, we use a random initialized LSTM as the
oracle model to generate the real data distribution Poracle(xt|x1, · · · , xt−1) to stimulate the real-
world structured sequences. We use the oracle model to generate 10,000 sequences of length 20 and
40 respectively as our training set and another two 5,000 sequences are generated as our validation
set and test set. Both of them have a vocab size of 5,000.

4.1.2 COCO IMAGE CAPTIONS DATASET

For COCO Image Captions dataset (Chen et al., 2015), we use the same pre-processing method as
(Guo et al., 2018), but we randomly select 5,000 samples from training set as our validation set. The
resulted dataset consist of a training set with 75,000 samples, a validation set with 5,000 samples
and a test set with 5,000 samples. The vocab size is 4,838 and the maximum length of captions is
32.

4.1.3 EMNLP2017 WMT NEWS DATASET

EMNLP2017 WMT News (Bojar et al., 2017) is a collection of news texts for the machine trans-
lations task, among a version of this dataset for English Corpus containing more than 600,000 sen-
tences, we drop the sentences having more than 3 words with less than 400 frequency and keep only
the sentences that have between 20 and 40 words. We replace these most infrequent words with
token < unk >. Next, we randomly sample 200,000 sentences as the training set, 10,000 sentences
as the validation set and 10,000 as the test set. The resulted vocab size is 3,980.

4.2 EVALUATION METRICS

It is still difficult to accurately evaluate the effects of text generation models using existing metrics
since the effects consist of several aspect such as consistency, diversity and fluency. Thus, in order
to be consistent, we choose evaluation metrics according to previous work (Semeniuta et al., 2018;
Caccia et al., 2018; de Masson d’Autume et al., 2019; Montahaei et al., 2019). We use negative log
likelihood for synthetic-data experiments and use n-gram based metrics and Fréchet Distance (FD)
for real-data experiments.

4.2.1 NEGATIVE LOG LIKELIHOOD

In the work of (Yu et al., 2017), the authors recommend to use the oracle negative log likelihood
(NLLoracle) which is an oracle quality metric for synthetic-data experiments. However, only use
this metric will be misleading since it is blind to diversity. Thus, similar to Caccia et al. (2018),
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we additionally use a metric NLLtest to represent diversity that is calculated by taking as input the
sentences generated by oracle model to the language model we’re interested in.

4.2.2 N-GRAM BASED METRICS

We use the local metrics BLEU-5 (Papineni et al., 2002) and Self BLEU-5 (Zhu et al., 2018) to cap-
ture quality and diversity respectively. While BLEU based metrics is considered to have limitations
that only capture local consistency and fail to capture semantic variations (Semeniuta et al., 2018;
Caccia et al., 2018; de Masson d’Autume et al., 2019), they are still one of the most widely used and
simple metrics for text generation tasks.

4.2.3 FRÉCHET BERT DISTANCE

Fréchet Inception Distance (FID) is originally proposed to computes the distance between two Gaus-
sian distributions of the features of real images and generated images extracted by Inception network
(Heusel et al., 2017). We follow Montahaei et al. (2019) to utilize BERT (Devlin et al., 2019), a pow-
erful unsupervised pre-training model for text, to replace the Inception network to capture quality
and diversity of generated sentences. This metric is named as Fréchet BERT Distance (FBD).

We do not use MS-Jaccard and Language Model Score (LMS) because MS-Jaccard is also an n-
gram based metric like BLEU and it is highly correlated with FBD (Montahaei et al., 2019), and
LMS relies on training new models and have an inherent bias favoring MLE language models, since
they are trained using the same criteria (de Masson d’Autume et al., 2019).

4.3 IMPLEMENTATION DETAILS

We choose our hyper-parameters according to the result on validation set and report all metrics on
test set. Our models are implemented with Tensorflow (Abadi et al., 2016) using an NVIDIA V100
GPU. The hidden size, embedding size and batch size we used are 32, 32 and 64 respectively which
are kept the same as Texygen framework (Zhu et al., 2018) for fair comparison. We terminate the
training of all models based on NLLoracle in synthetic-data experiments and based on their BLEU-5
scores on validation set in real-data experiments.

(a) Synthetic data with length 20 (b) Synthetic data with length 40

Figure 1: Temperature sweep curves for the synthetic-data experiments of sentence length 20 (left)
and 40 (right) over NLLtest vs. NLLoracle space (lower is better for both metrics)

4.4 EXPERIMENTAL RESULTS

In this section, we report the experimental results on synthetic-data experiments and real-world
experiments. We compare our proposed models with three baseline models: MLE, SeqGAN (Yu
et al., 2017), LeakGAN (Guo et al., 2018) in all the experiments. Similar to Caccia et al. (2018),
we conduct sweep of temperatures in inference stage to evaluate the trained models over quality-
diversity space. We fixed the hyper-parameter π and sweep the temperatures so that we can get
different temperature curves for our proposed models trained with different π.
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(a) Synthetic data with length 20 (b) Synthetic data with length 40

Figure 2: Frontier curves of our models and three baseline models. Left is better and down is
better. The models trained via our proposed adversarial objective perform better compared with
MLE model and other GANs variants.

(a) COCO Image Captions dataset (b) EMNLP2017 WMT News dataset

Figure 3: Negative BLEU-5 plotted against Self BLEU-5 for COCO Image Captions (left) and
EMNLP2017 WMT News (right) test set. Lower is better for both metrics.

4.4.1 SYNTHETIC EXPERIMENTS

In the synthetic-data experiments, we use NLLoracle and NLLtest as our quality and diversity met-
rics respectively. Both of them are the lower the better. Lowering the temperature make the model
tend to produce high quality but similar sentences, while raising the temperature makes the model
tend to generate diverse but relatively random sentences. We compute all metrics at different tem-
peratures for each model to draw sweep curves in quality-diversity space.

Figure 1 depicts the temperature sweep curves of sequence length 20 and 40 respectively over
NLLtestvs.NLLoracle space. From this figure, we can observe that when π → 0, the curve of our
proposed model basically overlaps with the curve of the MLE model which shows the correctness
of proposition 2. Besides, we can also observe that our models outperform other GANs variants by
a large margin and perform much better than MLE on quality metric at the cost of relatively small
losses on diversity metric. It is worth noting that our models do not need additional maximum like-
lihood pre-training and reinforcement learning and thus it is more faster in training than traditional
GANs variants. As can be seen from Figure 2, the frontier curve obtained from a family of temper-
ature sweep curves of our models outperforms the curves of MLE, SeqGAN and LeakGAN in most
cases.
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Models Temperature
0.7 0.8 0.9 1.0 1.1 1.2

MLE 4.247 4.125 4.064 4.067 4.141 4.346
SEQGAN 4.783 4.778 4.811 4.957 5.171 5.425
LEAKGAN 5.585 5.580 5.692 5.197 5.441 5.702
OURS π → 0 4.231 4.128 4.076 4.088 4.162 4.325
OURS π = 0.1 4.398 4.267 4.113 4.065 4.031 4.129
OURS π = 0.5 4.443 4.234 4.122 4.053 4.024 4.147
TRAINING SET - - - 3.581 - -

Table 1: FBD scores on COCO Image Captions test set at different temperatures.

Models Temperature
0.7 0.8 0.9 1.0 1.1 1.2

MLE 6.263 5.524 5.067 4.816 5.204 5.726
SEQGAN 7.423 6.674 6.321 5.932 6.268 6.814
LEAKGAN 7.632 6.962 6.510 6.176 6.560 7.138
OURS π → 0 6.260 5.513 5.082 4.803 5.153 5.733
OURS π = 0.1 6.784 6.127 5.663 5.341 5.754 6.244
OURS π = 0.5 6.660 6.004 5.542 5.241 5.640 6.155
TRAINING SET - - - 3.317 - -

Table 2: FBD scores on EMNLP2017 WMT News test set at different temperatures.

4.4.2 REAL-DATA EXPERIMENTS

Figure 3 reports negative BLEU-5 versus Self BLEU-5 metrics on COCO Image Captions and
EMNLP2017 WMT News test sets for the models trained via our proposed objective, MLE model
and other GANs variants. Table 1 and 2 show the FBD scores on these two test sets respectively for
the models and training set.

For COCO Image Captions task, when hyper-parameter π = 0.1 and π = 0.5, our models out-
perform other GANs variants under quality-diversity space and outperform MLE model in terms of
quality metric which may be because compared with maximum likelihood, our models can prop-
erly optimize both forward KL divergence DKL(p̃data(x) ‖ pG(x)) and reverse KL divergence
DKL(pG(x) ‖ p̃data(x)) and compared with other GANs variants, we do not rely on reinforce-
ment learning. When hyper-parameter π → 0, the performance of our model is almost identical to
the MLE model which is consistent with proposition 2 and better than other GANs variants .

For EMNLP2017 WMT News task, as shown in Figure 3(b) and Table 2, our models show much
more competitive results to MLE than other GANs variants. Compared with the COCO task, the
difference between the FBD scores of the models on the News task and training set is slightly large
which may be because EMNLP2017 WMT News is a relatively more difficult task.

5 CONCLUSION

This research proposes a quality-diversity controllable GAN which is a generalization of N3DGAN
and it can achieve quality-diversity control through a single hyper-parameter π. When π converges
to 0, it is equivalent to directly optimizing forward KL divergence; and when π converges to 1,
it is equivalent to directly optimizing reverse KL divergence. Through experiments in synthetic-
data and real-data scenarios, we verify the convergence and the controllability, and we show that
our proposed model outperforms MLE model and other GANs variants over quality-diversity space
in the synthetic-data experiments, and in the real-data experiments, it is more competitive to MLE
model than other GANs variants under several metrics. As can be seen from the experimental results,
depending on the task and purpose, such as to get higher quality text or more diverse text, we should
choose different hyper-parameter π to get better results on what we are interested in.
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