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ABSTRACT

In recent years there has been a rapid increase in classification methods on graph
structured data. Both in graph kernels and graph neural networks, one of the
implicit assumptions of successful state-of-the-art models was that incorporating
graph isomorphism features into the architecture leads to better empirical perfor-
mance. However, as we discover in this work, commonly used data sets for graph
classification have repeating instances which cause the problem of isomorphism
bias, i.e. artificially increasing the accuracy of the models by memorizing target
information from the training set. This prevents fair competition of the algorithms
and raises a question of the validity of the obtained results. We analyze 54 data
sets, previously extensively used for graph-related tasks, on the existence of iso-
morphism bias, give a set of recommendations to machine learning practitioners
to properly set up their models, and open source new data sets for the future ex-
periments.

1 INTRODUCTION

Recently there has been an increasing interest in the development of machine learning models
that operate on graph structured data. Such models have found applications in chemoinformatics
(Ralaivola et al. (2005); Rupp & Schneider (2010); Ferré et al. (2017)) and bioinformatics (Borg-
wardt et al. (2005); Kundu et al. (2013)), neuroscience (Sharaev et al. (2018); Jie et al. (2016); Wang
et al. (2016)), computer vision (Stumm et al. (2016)) and system security (Li et al. (2016)), natu-
ral language processing (Glavaš & Šnajder (2013)), and others (Kriege et al. (2019); Nikolentzos
et al. (2019)). One of the popular tasks that encompasses these applications is graph classification
problem for which many graph kernels and graph neural networks have been developed.

One of the implicit assumptions that many practitioners adhere to is that models that can distin-
guish isomorphic instances from non-isomorphic ones possess higher expressiveness in classifica-
tion problem and hence much efforts have been devoted to incorporate efficient graph isomorphism
methods into the classification models. As the problem of computing complete graph invariant is
GI-hard (Gärtner et al. (2003)), for which no known polynomial-time algorithm exists, other heuris-
tics have been proposed as a proxy for deciding whether two graphs are isomorphic. Indeed, from
the early days topological descriptors such Wiener index (Wiener (1947a;b)) attempted to find a
single number that uniquely identifies a graph. Later, graph kernels that model pairwise similarities
between graphs utilized theoretical developments in graph isomorphism literature. For example,
graphlet kernel (Shervashidze et al. (2009)) is based on the Kelly conjecture (see also Kelly (1957)),
anonymous walk kernel (Ivanov & Burnaev (2018)) derives insights from the reconstruction proper-
ties of anonymous experiments (see also Micali & Allen Zhu (2016)), and WL kernel (Shervashidze
et al. (2011a)) is based on an efficient graph isomorphism algorithm. For sufficiently large k, k-
dimensional WL algorithm includes all combinatorial properties of a graph (Cai et al. (1992a)), so
one may hope its power is enough for the data set at hand. Since only for k = Ω(n) WL algorithm
is guaranteed to distinguish all graphs (for which the running time becomes exponential; see also
Fürer (2017)), in the general case WL algorithm can be used only as a strong baseline for graph
isomorphism. In similar fashion, graph neural networks exploit graph isomorphism algorithms and
have been shown to be as powerful as k-dimensional WL algorithm (see for example Maron et al.
(2019); Xu et al. (2018); Morris et al. (2019)).
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Experimental evaluation reveals that models based on the theoretical constructions with high com-
binatorial power such as WL algorithm performs better than the models without them such as Vertex
histogram kernel (Vishwanathan et al. (2010)) on a commonly used data sets. This could add addi-
tional bias to results of comparison of classification algorithms since the models could simply apply
a graph isomorphism method (or an efficient approximation) to determine a target label at the infer-
ence time. However, purely judging on the accuracy of the algorithms in such cases would imply
an unfair comparison between the methods as it does not measure correctly generalization ability of
the models on the new test instances. As we discover, indeed many of the data sets used in graph
classification have isomorphic instances so much that in some of them the fraction of the unique
non-repeating graphs is as low as 20% of the total size. This challenges previous experimental re-
sults and requires understanding of how influential isomorphic instances on the final performance of
the models. Our contributions are:

• We analyze the quality of 54 graph data sets which are used ubiquitously in graph classifica-
tion comparison. Our findings suggest that in the most of the data sets there are isomorphic
graphs and their proportion varies from as much as 100% to 0%. Surprisingly, we also
found that there are isomorphic instances that have different target labels suggesting they
are not suitable for learning a classifier at all.

• We investigate the causes of isomorphic graphs and show that node and edge labels are
important to identify isomorphic graphs. Other causes include numerical attributes of nodes
and edges as well as the sizes of the data set.

• We evaluate a classification model’s performance on isomorphic instances and show that
even strong models do not achieve optimal accuracy even if the instances have been seen at
the training time. Hence we show a model-agnostic way to artificially increase performance
on several widely used data sets.

• We open-source new cleaned data sets that contain only non-isomorphic instances with no
noisy target labels. We give a set of recommendations regarding applying new models that
work with graph structured data.

2 RELATED WORK

Measuring quality of a data sets. A similar issue of duplicates instances in commonly used data
sets was recently discovered in computer vision domain. Recht et al. (2019); Barz & Denzler (2019);
Birodkar et al. (2019) discover that image data sets CIFAR and ImageNet contain at least 10% of the
duplicate images in the test test invalidating previous performance and questioning generalization
abilities of previous successful architectures. In particular, evaluating the models in new test sets
shows a drop of accuracy by as much as 15% (Recht et al., 2019), which is explained by models’
incapability to generalize to unseen slightly ”harder” instances than in the original test sets. In graph
domain, a fresh look into understanding of expressiveness of graph kernels and the quality of data
sets has been considered in Kriege et al. (2019), where an extensive comparison of existing graph
kernels is done and a few insights about models’ behavior are suggested. In contrast, we conduct a
broader study of isomorphism metrics, revealing all isomorphism pairs in proposed 54 data sets, and
propose new cleaned data. Additionally we also consider graph neural network performance and
argue that current data sets present isomorphism bias which can artificially boost evaluation metrics
in a model-agnostic way.

Explaining performance of graph models. Graph kernels (Kriege et al. (2019)) and graph neural
networks (Wu et al. (2019)) are two competing paradigms for designing graph representations and
solving graph classification and have significantly advanced empirical results due to more efficient
algorithms, incorporating graph invariance into the models, and end-to-end training. Several papers
have tried to justify performance of different families of methods by studying different statistical
properties. For example, in Ying et al. (2019) by maximizing mutual information between explana-
tion variables and predicted label distribution, the model is trained to return a small subgraph and the
graph-specific attributes that are the most influential on the decision made by a GNN, which allows
inspection of single- and multi-level predictions in an agnostic manner for GNNs. In another work
(Scarselli et al. (2018)), the VC dimension of GNNs models has been shown to grow as O(p4N2),
where p is the number of network parameters and N is the number of nodes in a graph, which is
comparable to RNN models. Furthermore, stability and generalization properties of convolutional
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GNNs have been shown to depend on the largest eigenvalue of the graph filter and therefore are
attained for properly normalized graph convolutions such as symmetric normalized graph Laplacian
(Verma & Zhang (2019)). Finally, expressivity of graph kernels has been studied from statistical
learning theory (Oneto et al. (2017)) and property testing (Kriege et al. (2018b)), showing that graph
kernels can capture certain graph properties such as planarity, girth, and chromatic number (Johans-
son et al. (2014)). Our approach is complementary to all of the above as we analyze if the data sets
used in experiments have any effect on the final performance.

3 PRELIMINARIES

In this work we analyze 54 graph data sets from Kersting et al. (2016) that are commonly used in
graph classification task. Examples of popular graph data sets are presented in Table 1 and statistics
of all 54 data sets can be found in Table 5, see Section A in the appendix. All data sets represent
a collection of graphs and accompanying categorical label for each graph in the data sets. Some
data sets also include node and/or edge labels that graph classification methods can use to improve
the scoring. Most of the data sets come either from biological domain or from social network
domain. Biological data sets such as MUTAG, ENZYMES, PROTEINS are graphs that represent
small or large molecules, where edges of the graphs are chemical bonds or spatial proximity between
different atoms. Graph labels in these cases encode different properties like toxicity. In social
data sets such as IMDB-BINARY, REDDIT-MULTI-5K, COLLAB the nodes represent people and
edges are relationships in movies, discussion threads, or citation network respectively. Labels in
these cases denote the type of interaction like the genre of the movie/thread or a research subfield.
For completeness we also include synthetic data sets SYNTHETIC (Morris et al. (2016)) that have
continuous attributes and computer vision data sets MSRC (Neumann et al. (2016)), where images
are encoded as graphs. The origin of all data sets can be found in the Table 5.

Table 1: Example of graph data sets. N is the number of graphs,C is the number of different classes.
Avg. Nodes and Avg. Edges is the average number of nodes and edges. N.L. and E.L indicate if the
graphs in a data set contain node or edge labels.

data set Type N C Avg. Nodes Avg. Edges N.L. E.L.
MUTAG Molecular 188 2 17.93 19.79 + +
ENZYMES Molecular 600 6 32.63 62.14 + -
PROTEINS Molecular 1113 2 39.06 72.82 + -
IMDB-BINARY Social 1000 2 19.77 96.53 - -
REDDIT-MULTI-5K Social 4999 5 508.52 594.87 - -
COLLAB Social 5000 3 74.49 2457.78 - -
SYNTHETIC Synthetic 300 2 100 196 - -
Synthie Synthetic 400 4 95 172.93 - -
MSRC 21C Vision 209 20 40.28 96.6 + -
MSRC 9 Vision 221 8 40.58 97.94 + -

Graph isomorphism. Isomorphism between two graphs G1 = (V1, E1) and G2 = (V2, E2) is a
bijective function φ : V1 7→ V2 such that any edge (u, v) ∈ E1 if and only if (φ(u), φ(v)) ∈ E2.
Graph isomorphism problem asks if such function exists for given two graphs G1 and G2. We
denote isomorphic graphs asG1

∼= G2. The problem has efficient algorithms in P for certain classes
of graphs such as planar or bounded-degree graphs (Hopcroft & Wong (1974); Luks (1980)), but
in the general case admits only quasi-polynomial algorithm (Babai (2015)). In practice many GI
solvers are based on individualization-refinement paradigm (Mckay & Piperno (2014)), which for
each graph iteratively updates a permutation of the nodes such that the resulted permutations of two
graphs are identical if an only if they are isomorphic. Importantly, while finding such canonical
permutation of a graph is at least as hard as solving GI problem, state-of-the-art solvers tackle
majority of pairs of graphs efficiently, only taking exponential time on the specific hard instances of
graphs that possess highly symmetrical structures (Cai et al. (1992b)).
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4 IDENTIFYING ISOMORPHISM IN DATA SETS

To distinguish between different isomorphic graphs inside a data set we use the notion of graph
orbits:
Definition 4.1 (Graph orbit). Let D = {Gi, yi}Ni=1 be a data set of graphs and target labels. For a
graph Gi let a set oi = {Gk} be a set of all isomorphic graphs in D to Gi, including Gi. We call oi
the orbit of graph Gi in D. The cardinality of the orbit is called orbit size. An orbit with size one is
called trivial.

In a data set with no isomorphic graphs, the number of orbits equals to the number of graphs in a data
set, N . Hence, the more orbits in a data set, the ”cleaner” it is. Note however that the distribution of
orbit sizes in two different data sets can vary even if they have the same number of orbits. Therefore,
we look at additional metrics that describe the data set.

• I , aggregated number of graphs that belong to an orbit of size greater than one, i.e. those
graphs that isomorphic counterparts in a data set;
• I,%, proportion of isomorphic graphs to the total data set size, i.e. I

N ;
• IP,%, proportion of isomorphic pairs to the total number of graph pairs in a data set

(N(N−1)
2 ).

If we consider target labels of graphs in a data set D = {Gi, yi}Ni=1 we can also measure agreement
between the labels of two isomorphic data set. If G1

∼= G2 and y1 6= y2, then we call graphs
mismatched. Note that if there is more than one target label in an orbit o, then all graphs in this orbit
are mismatched. To obtain isomorphic graphs, we run nauty algorithm (Mckay & Piperno, 2014) on
all possible pairs of graphs in a data set. We substantially reduce the number of calls between the
graphs by verifying that a pair has the same number of nodes and edges before the call.

The metrics are presented in Table 2 for top-10 data sets and in Table 6 (see the appendix) for all data
sets. The graphs in Table 2 are sorted by the proportion of isomorphic graphs I%. The results for the
first Top-10 data sets are somewhat surprising: almost all graphs in the selected data sets have other
isomorphic graphs. If we look at all data sets in Table 6, we see that the proportion of isomorphic
graphs in the data sets varies from 100% to 0%. However, more than 80% of the analyzed data sets
have at least 10% of the graphs in a non-trivial orbit.

Table 2: Isomorphic metrics for Top-10 data sets based on the proportion of isomorphic graphs I%.
IP% is the proportion of isomorphic pairs of graphs, Mismatched % is the proportion of mismatched
labels.

data set Size, N Num. orbits Iso. graphs, I I% IP% Mismatched %

SYNTHETIC 300 2 300 100 100 100
Cuneiform 267 8 267 100 20.46 100
Letter-low 2250 32 2245 99.78 8.72 96.22
DHFR MD 393 25 392 99.75 6.87 94.91
COIL-RAG 3900 20 3890 99.74 25.22 99.31
COX2 MD 303 13 301 99.34 11.83 98.68
ER MD 446 31 442 99.1 5.57 82.74
Fingerprint 2800 69 2774 99.07 16.86 89.29
BZR MD 306 22 303 99.02 7.16 95.75
Letter-med 2250 39 2226 98.93 8.05 92.93

Another surprising observation is that the proportion of mismatched graphs is significant, ranging
from 100% to 0%. This clearly indicates that such graphs are not suitable for graph classification
and require additional information to distinguish the models. We analyze the reasons for this in the
next section.

Also, the distribution of orbit sizes can vary significantly across the data sets. In Figure 1 we plot a
distribution of orbit sizes for several examples of data sets (and distributions for other data sets can
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be found in Appendix C). For example, for IMDB-BINARY data set the number of orbits of small
sizes, e.g. two or three, goes to 100, which indicate prevalence of pairs of isomorphic graphs that are
non-isomorphic to the rest. However, for Letter-med data set there are many orbits of sizes more than
100, while small orbits are not that common. In this case, the graphs in this data set are equivalent
to a lot of other graphs, which may have a substantial effect on the corresponding metrics. While
the orbit distribution changes from one data set to another, it is clear that in many situations there
are isomorphic graphs that can affect training procedure by effectively increasing the weights for the
corresponding graphs, change performance on the test by validating on the already seen instances,
and by confusing the model by utilizing different target labels for topologically-equivalent graphs.
We analyze the reasons for it further.
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Figure 1: Examples of distributions of orbit sizes without considering labels.

5 EXPLAINING ISOMORPHISM

Meta-information about graphs. In addition to the topology of a graph, many data sets also in-
clude meta information about nodes and/or edges. Out of 54 analyzed data sets there are 40 that
additionally include node features and 25 that include edge features. For example, in Synthetic
data set all graphs are topologically identical but the nodes are endowed with normally distributed
scalar attributes and in DHFR MD edges are attributed with distances and labeled according to a
chemical bond type. Alternatively, some graphs can have parallel edges which is equivalent to have
a corresponding weight on the edges. Thus some data sets include node/edge categorical features
(labels) and numerical features (attributes), which leads to better distinction between the graphs and
therefore their corresponding labels.

To see this, we rerun our previous analysis but now include the node labels, if any, when comput-
ing isomorphism between graphs. Consider a tuple (G, l), where G is a graph and l : V (G) 7→
{1, 2, . . . , k} is a k-labeling of G. In this case of node label-preserving graph isomorphism from
graph (G1, l1) to graph (G2, l2) we seek an isomorphism function φ : V (G1) 7→ V (G2) such that
l1(v) = l2(φ(v)).

Tables 3 and 7 (see the appendix) show the number of isomorphic graphs after considering node
labels. While for the first six data sets the proportion of isomorphic graphs has not changed much,
it is clearly the case for the remaining data sets. In particular, almost 90% of the analyzed data sets
include less than 20% of isomorphic graphs. Also, the number of mismatched graphs significantly
decreases after considering node labels. For example, for MUTAG data set the proportion of iso-
morphic graphs went down from 42.02% to 19.15% and the proportion of mismatched graphs from
6.91% to 0%.

Likewise, the orbit size distribution also changes significantly after considering node labels. Figure 2
shows a changed distribution of orbits with and without considering node labels. For majority of data
sets large orbits vanish and the number of small orbits is substantially decreased in label-preserving
graph isomorphism setting. This indicates one of the reasons for presence of many isomorphic
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Table 3: Isomorphic metrics with node labels for Top-10 data sets based on the proportion of iso-
morphic graphs I%. IP% is the proportion of isomorphic pairs of graphs, Mismatched % is the
proportion of mismatched labels.

data set Size, N Num. orbits Iso. graphs, I I% IP% Mismatched %

SYNTHETIC 300 2 300 100 100 100
Cuneiform 267 8 267 100 20.46 100
DHFR MD 393 25 392 99.75 6.87 94.91
COX2 MD 303 13 301 99.34 11.83 98.68
ER MD 446 31 442 99.1 5.57 82.74
BZR MD 306 22 303 99.02 7.16 95.75
MUTAG 188 17 36 19.15 0.14 0
PTC FM 349 22 54 15.47 0.08 10.89
PTC MM 336 22 50 14.88 0.07 7.74
DHFR 756 39 98 12.96 0.04 3.97

graphs in the data sets, which implies that including node/edge labels/attributes can be important for
graph classification models.
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Figure 2: Examples of distributions of orbit sizes with node labels.

Sizes of the data sets. Another reason for having isomorphism in a data set is the sizes of graphs,
which could be too small on average to lead to a diversity in a data set. In general, the number of
non-isomorphic graphs with n vertices and m edges can be computed using Polya enumeration the-
ory and grows very fast. For example, for a graph with 15 nodes and 15 edges, there are 2,632,420
non-isomorphic graphs. Nevertheless, specifics of the origin of the data set may affect possible con-
figurations that graphs have (e.g. structure of chemical compounds in COX2 MD or ego-networks
for actors in IMDB-BINARY) and thus smaller graphs may tend to be close to isomorphic structures.
On the other hand, all five data sets with the average number of nodes greater than 100 have very
low or zero proportion of isomorphic graphs. Hence, the average size of the graphs directly impacts
the possible structure of the data set and thus data sets with larger graphs tend to be more diverse.
We next analyze the consequences of the isomorphic graphs on classification methods.

6 INFLUENCE OF ISOMORPHISM BIAS

To understand the impact of isomorphic graphs in the data set on the final metric we consider sepa-
rately the results on two subparts of the data set. In particular, let Ytrain and Ytest be train and test
splits of a data set. LetHi ∈ Ytest be a graph such that there exists an isomorphic graphGi ∈ Ytrain
in the train data set. Let {Yiso} be a set of all such graphs Hi for which there exists an isomorphic
graph Gi in Ytrain. Note that the graphs in {Yiso} are not necessarily isomorphic. We denote by
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Ynew the test graphs that do not have isomorphic copies in the train data set, i.e. Ynew = Ytest\Yiso.
If we want to test generalization of classification models, we need to test it on new instances of the
data sets and therefore at least consider Ynew instead of Ytest. One question regarding the perfor-
mance of the models on this new test set Ynew is whether the performance on it will be lower than on
the original test set Ytest. As we show below answer to this question solely depends on the accuracy
of the model on isomorphic instances Yiso.

Consider a graph classification model that is evaluated on normalized accuracy over a data set Y :

acc(Y ) =

∑
G∈Y

acc(Gi)

|Y |
, (1)

where acc(G) equals to one if the model predicts the label of Gi correctly, and zero otherwise. If
|Y | = 0, then we consider acc(Y ) = 0. We can see that the accuracy on the test data set can be
written as the sum of two terms:

acc(Ytest) =

∑
G∈Ytest

acc(G)

|Ytest|
=

∑
G∈Ynew

acc(G) +
∑

G∈Yiso

acc(G)

|Ytest|
=

=
|Ynew|
|Ytest|

acc(Ynew) +
|Yiso|
|Ytest|

acc(Yiso).

(2)

Equation 2 decomposes accuracy on the original data set as the weighted sum of two accuracies on
the set of the new test instances Ynew and a set of the instances Yiso already appeared in the train
set and therefore available to the model. We call the term acc(Yiso) as isomorphism bias, which
corresponds to the accuracy of the model on the isomorphic test instances. As we will see next, the
accuracy of the model on the new set Ynew will be less if only if the model performs better on the
isomorphic set Yiso.1

Property 6.1. Let Ytest = Ynew∪Yiso, Ynew∩Yiso = ∅ and Yiso 6= ∅, where Yiso ⊂ Ytrain. Then
for any classification model accuracy on the new test instances Ynew is smaller than on the test set
Ytest if and only if it is smaller than accuracy on the isomorphic test instances Yiso, i.e.:

acc(Ytest) > acc(Ynew) ⇐⇒ acc(Yiso) > acc(Ynew) (3)

The equation 3 gives a definite answer with the possible performance of the model on a new test set.
If the model performs well on isomorphic instances Yiso, then it will falsely increase performance
on Ytest in comparison to Ynew. Conversely, if the model performs poorly on the instances that
appeared in the training set, then removing them from the test set and evaluating the model purely
on Ynew will demonstrate higher accuracy. There are two reasons for the model to misclassify
isomorphic instances Yiso: (i) the instances contain target labels that are different than those that
it has seen, as we show in Table 2 the percentage of mismatched labels can be high in some data
sets; or (ii) the model is not expressive enough to map the structure of the graphs to the target label
correctly.

Crucially, while Ynew tests generalization capabilities of the models, on Ynew the models can ex-
plicitly or implicitly memorize the right labels from the training. We describe a model-agnostic way
to guarantee increase of classification performance if |Yiso| 6= 0.

Let G ∼= Ĝ such that G ∈ Yiso and Ĝ ∈ Ytrain. Note that there can be multiple isomorphic graphs
{Ĝi} ⊂ Ytrain. If for any G ∈ Yiso all target labels of the orbit of G are the same we call the set
Yiso as homogeneous. Consider a classification modelM that maps each graph G to its label l(G).
We define a peering model M̂ such that for each G ∈ Yiso it outputs the target label l(Ĝ). Then the
accuracy of the model M̂ is at least as the accuracy of the original modelM.

1We provide the proof of the Property 6.1 and the Theorem 6.1 in the Appendix E and F.
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Table 4: Mean classification accuracy for test sets Ytest and Yiso (in brackets) in 10-fold cross-
validation. Top-1 result in bold.

MUTAG IMDB-B IMDB-M COX2 AIDS PROTEINS
NN 0.829 (0.840) 0.737 (0.733) 0.501 (0.488) 0.82 (0.872) 0.996 (0.998) 0.737 (0.834)
NN-PH 0.867 (1.000) 0.756 (1.000) 0.522 (1.000) 0.838 (1.000) 0.996 (1.000) 0.742 (1.000)
NN-P 0.856 (0.847) 0.737 (0.731) 0.499 (0.486) 0.795 (0.83) 0.996 (0.999) 0.729 (0.709)
WL 0.862 (0.867) 0.734 (0.990) 0.502 (0.953) 0.800 (0.974) 0.993 (0.999) 0.747 (0.950)
WL-PH 0.907 (1.000) 0.736 (1.000) 0.504 (1.000) 0.810 (1.000) 0.994 (1.000) 0.749 (1.000)
WL-P 0.870 (0.838) 0.724 (0.715) 0.495 (0.487) 0.794 (0.844) 0.994 (0.999) 0.740 (0.742)
V 0.836 (0.902) 0.707 (0.820) 0.503 (0.732) 0.781 (0.966) 0.994 (0.997) 0.726 (0.946)
V-PH 0.859 (1.000) 0.750 (1.000) 0.517 (1.000) 0.794 (1.000) 0.996 (1.000) 0.729 (1.000)
V-P 0.827 (0.844) 0.724 (0.728) 0.496 (0.481) 0.768 (0.852) 0.996 (0.999) 0.719 (0.741)

Theorem 6.1. Let Ytest = Ynew∪Yiso, Ynew∩Yiso = ∅. If Yiso is homogeneous, then the accuracy
on Ytest of a classification modelM is at most as the accuracy of its peering model M̂, i.e.:

accM(Ytest) ≤ accM̂(Ytest).

The Theorem 6.1 establishes a way to increase performance only for homogeneous Yiso. If there are
noisy labels in the training set and hence the set is not homogeneous, the model cannot guarantee
the right target label for these instances. Nonetheless, one can select a heuristic such as majority
vote among the training isomorphic instances to select a proper label at the testing time.

In experiments, we compare neural network model (NN) (Xu et al., 2018) with graph kernels,
Weisfeiler-Lehman (WL) (Shervashidze et al., 2011b) and vertex histogram (V) (Sugiyama & Borg-
wardt, 2015). For each model we consider two modifications: one for peering model on homoge-
neous Yiso (e.g. NN-PH) and one for peering model on all Yiso (e.g. NN-P). We show accuracy on
Ytest and on Yiso (in brackets) in Table 4. Experimentation details can be found in Appendix G.

From Table 4 we can conclude that peering model on homogeneous data is always the top performer.
This is aligned with the result of the Theorem 6.1, which guarantees that acc(Yiso) = 1, but it is an
interesting observation if we compare it to the peering model on all isomorphic instances Yiso (-P
models). Moreover, the latter model often loses even to the original model, where no information
from the train set is explicitly taken into the test set. This can be explained by the noisy target
labels in the orbits of isomorphic graphs, as can be seen both from the statistics for these datasets
(Table 6) and accuracy measured just on isomorphic instances Yiso. These results show that due to
the presence of isomorphism bias performance of any classification model can be overestimated by
as much as 5% of accuracy on these datasets and hence future comparison of classification models
should be estimated on Ynew instead.

6.1 GENERAL RECOMMENDATIONS

In order to avoid measuring performance over the wrong test sets, we provide a set of recommenda-
tions that will guarantee measuring the right metrics for the models.

• We open-source new, ”clean” data sets that do not include isomorphic instances that are in
Table 8. To tackle this problem in the future, we propose to use clean versions of the data
set for which isomorphism bias vanishes. For each data set we consider the found graph
orbits and keep only one graph from each orbit if and only if the graphs in the orbit have
the same label. If the orbit contains more than one label, a classification model can do little
to predict a correct label at the inference time and hence we remove such orbit completely.
In this case, for a new data set Yiso = ∅ and hence it prevents the models to implicitly
memorize the labels from the training set.

• Incorporating node and edge features into the models may be necessary to distinguish the
graphs. As we have seen, just using node labels can reduce the number of isomorphic
graphs significantly and many data sets provide additional information to distinguish the
models at full scope.
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• Verification of the models on bigger graphs in general is more challenging due to the sheer
number of non-isomorphic graphs. For example, data sets related to REDDIT or DD in-
clude a number of big graphs for classification.

7 CONCLUSION

In this work we study isomorphism bias of the classification models in graph structured data that
originates from substantial amount of isomorphic graphs in the data sets. We analyzed 54 graph
data sets and provide the reasons for it as well as a set of rules to avoid unfair comparison of the
models. We showed that in the current data sets any model can memorize the correct answers from
the training set and we open-source new clean data sets where such problems does not appear.
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Luca Oneto, Nicolò Navarin, Michele Donini, Alessandro Sperduti, Fabio Aiolli, and Davide An-
guita. Measuring the expressivity of graph kernels through statistical learning theory. Neurocom-
puting, 268:4–16, 2017.

Francesco Orsini, Paolo Frasconi, and Luc De Raedt. Graph invariant kernels. In Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

Shirui Pan. A repository of benchmark graph datasets for graph classification, 2018. URL https:
//github.com/shiruipan/graph_datasets.

Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi. Graph kernels for chemical
informatics. Neural networks, 18(8):1093–1110, 2005.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? arXiv preprint arXiv:1902.10811, 2019.

Kaspar Riesen and Horst Bunke. Iam graph database repository for graph based pattern recognition
and machine learning. In Joint IAPR International Workshops on Statistical Techniques in Pat-
tern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp. 287–297.
Springer, 2008.

Matthias Rupp and Gisbert Schneider. Graph kernels for molecular similarity. Molecular Informat-
ics, 29(4):266–273, 2010.

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension
of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

Maksim Sharaev, Alexey Artemov, Ekaterina Kondrateva, Sergei Ivanov, Svetlana Sushchinskaya,
Alexander Bernstein, Andrzej Cichocki, and Evgeny Burnaev. Learning connectivity patterns via
graph kernels for fmri-based depression diagnostics. In 2018 IEEE International Conference on
Data Mining Workshops (ICDMW), pp. 308–314. IEEE, 2018.

Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M. Borgwardt.
Efficient graphlet kernels for large graph comparison. In Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics, AISTATS 2009, Clearwater Beach, Florida,
USA, April 16-18, 2009, pp. 488–495, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep):2539–
2561, 2011a.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12:2539–
2561, 2011b.

Elena Stumm, Christopher Mei, Simon Lacroix, Juan Nieto, Marco Hutter, and Roland Siegwart.
Robust visual place recognition with graph kernels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4535–4544, 2016.

Mahito Sugiyama and Karsten Borgwardt. Halting in random walk kernels. In Advances in neural
information processing systems, pp. 1639–1647, 2015.

Jeffrey J Sutherland, Lee A O’brien, and Donald F Weaver. Spline-fitting with a genetic algorithm:
A method for developing classification structure- activity relationships. Journal of chemical in-
formation and computer sciences, 43(6):1906–1915, 2003.

Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural net-
works. arXiv preprint arXiv:1905.01004, 2019.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt. Graph
kernels. J. Mach. Learn. Res., 11:1201–1242, August 2010. ISSN 1532-4435.

11

https://github.com/shiruipan/graph_datasets
https://github.com/shiruipan/graph_datasets


Under review as a conference paper at ICLR 2020

Jianjia Wang, Richard C Wilson, and Edwin R Hancock. fmri activation network analysis using
bose-einstein entropy. In Joint IAPR International Workshops on Statistical Techniques in Pat-
tern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp. 218–228.
Springer, 2016.

Harry Wiener. Correlation of heats of isomerization, and differences in heats of vaporization of
isomers, among the paraffin hydrocarbons. Journal of the American Chemical Society, 69(11):
2636–2638, 1947a.

Harry Wiener. Influence of interatomic forces on paraffin properties. The Journal of Chemical
Physics, 15(10):766–766, 1947b.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, 2015.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnn explainer: A
tool for post-hoc explanation of graph neural networks. arXiv preprint arXiv:1903.03894, 2019.

12



Under review as a conference paper at ICLR 2020

A STATISTICS FOR ORIGINAL DATA SETS

Table 5: All original graph data sets. N is the number of graphs,C is the number of different classes.
Avg. Nodes and Avg. Edges is the average number of nodes and edges. N.L. and E.L indicate if the
graphs in a data set contain node or edge labels.

data set Type N C Avg. Nodes Avg. Edges N.L. E.L. Source
FIRSTMM DB Molecular 41 11 1377.27 3074.1 + - Neumann et al. (2016)
OHSU Molecular 79 2 82.01 199.66 + - Pan (2018)
KKI Molecular 83 2 26.96 48.42 + - Pan (2018)
Peking 1 Molecular 85 2 39.31 77.35 + - Pan (2018)
MUTAG Molecular 188 2 17.93 19.79 + + Kriege & Mutzel (2012)
MSRC 21C Vision 209 20 40.28 96.6 + - Neumann et al. (2016)
MSRC 9 Vision 221 8 40.58 97.94 + - Neumann et al. (2016)
Cuneiform Molecular 267 30 21.27 44.8 + + Kriege et al. (2018a)
SYNTHETIC Synthetic 300 2 100 196 - - Feragen et al. (2013)
COX2 MD Molecular 303 2 26.28 335.12 + + Kriege & Mutzel (2012)
BZR MD Molecular 306 2 21.3 225.06 + + Kriege & Mutzel (2012)
PTC MM Molecular 336 2 13.97 14.32 + + Kriege & Mutzel (2012)
PTC MR Molecular 344 2 14.29 14.69 + + Kriege & Mutzel (2012)
PTC FM Molecular 349 2 14.11 14.48 + + Kriege & Mutzel (2012)
PTC FR Molecular 351 2 14.56 15 + + Kriege & Mutzel (2012)
DHFR MD Molecular 393 2 23.87 283.01 + + Kriege & Mutzel (2012)
Synthie Synthetic 400 4 95 172.93 - - Morris et al. (2016)
BZR Molecular 405 2 35.75 38.36 + - Sutherland et al. (2003)
ER MD Molecular 446 2 21.33 234.85 + + Kriege & Mutzel (2012)
COX2 Molecular 467 2 41.22 43.45 + - Sutherland et al. (2003)
DHFR Molecular 467 2 42.43 44.54 + - Sutherland et al. (2003)
MSRC 21 Vision 563 20 77.52 198.32 + - Neumann et al. (2016)
ENZYMES Molecular 600 6 32.63 62.14 + - Borgwardt et al. (2005)
IMDB-BINARY Social 1000 2 19.77 96.53 - - Yanardag & Vishwanathan (2015)
PROTEINS Molecular 1113 2 39.06 72.82 + - Borgwardt et al. (2005)
DD Molecular 1178 2 284.32 715.66 + - Shervashidze et al. (2011a)
IMDB-MULTI Social 1500 3 13 65.94 - - Yanardag & Vishwanathan (2015)
AIDS Molecular 2000 2 15.69 16.2 + + Riesen & Bunke (2008)
REDDIT-BINARY Social 2000 2 429.63 497.75 - - Yanardag & Vishwanathan (2015)
Letter-high Molecular 2250 15 4.67 4.5 - - Riesen & Bunke (2008)
Letter-low Molecular 2250 15 4.68 3.13 - - Riesen & Bunke (2008)
Letter-med Molecular 2250 15 4.67 4.5 - - Riesen & Bunke (2008)
Fingerprint Molecular 2800 4 5.42 4.42 - - Riesen & Bunke (2008)
COIL-DEL Molecular 3900 100 21.54 54.24 - + Riesen & Bunke (2008)
COIL-RAG Molecular 3900 100 3.01 3.02 - - Riesen & Bunke (2008)
NCI1 Molecular 4110 2 29.87 32.3 + - Shervashidze et al. (2011a)
NCI109 Molecular 4127 2 29.68 32.13 + - Shervashidze et al. (2011a)
FRANKENSTEIN Molecular 4337 2 16.9 17.88 - - Orsini et al. (2015)
Mutagenicity Molecular 4337 2 30.32 30.77 + + Riesen & Bunke (2008)
REDDIT-MULTI-5K Social 4999 5 508.52 594.87 - - Yanardag & Vishwanathan (2015)
COLLAB Social 5000 3 74.49 2457.78 - - Yanardag & Vishwanathan (2015)
Tox21 ARE Molecular 7167 2 16.28 16.52 + + Challenge (2014)
Tox21 aromatase Molecular 7226 2 17.5 17.79 + + Challenge (2014)
Tox21 MMP Molecular 7320 2 17.49 17.83 + + Challenge (2014)
Tox21 ER Molecular 7697 2 17.58 17.94 + + Challenge (2014)
Tox21 HSE Molecular 8150 2 16.72 17.04 + + Challenge (2014)
Tox21 AHR Molecular 8169 2 18.09 18.5 + + Challenge (2014)
Tox21 PPAR-gamma Molecular 8184 2 17.23 17.55 + + Challenge (2014)
Tox21 AR-LBD Molecular 8599 2 17.77 18.16 + + Challenge (2014)
Tox21 p53 Molecular 8634 2 17.79 18.19 + + Challenge (2014)
Tox21 ER LBD Molecular 8753 2 18.06 18.47 + + Challenge (2014)
Tox21 ATAD5 Molecular 9091 2 17.89 18.3 + + Challenge (2014)
Tox21 AR Molecular 9362 2 18.39 18.84 + + Challenge (2014)
REDDIT-MULTI-12K Social 11929 11 391.41 456.89 - - Yanardag & Vishwanathan (2015)
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B ISOMORPHISM METRICS FOR ALL DATA SETS

Table 6: Isomorphic metrics for all data sets. Sorting is based on the proportion of isomorphic
graphs I%. Num. orbits is the number of non-trivial orbits. IP% is the proportion of isomorphic
pairs of graphs, Mismatched % is the proportion of mismatched labels.

data set Size, N Num. orbits Iso. graphs, I I% IP% Mismatched %

SYNTHETIC 300 2 300 100 100 100
Cuneiform 267 8 267 100 20.46 100
Letter-low 2250 32 2245 99.78 8.72 96.22
DHFR MD 393 25 392 99.75 6.87 94.91
COIL-RAG 3900 20 3890 99.74 25.22 99.31
COX2 MD 303 13 301 99.34 11.83 98.68
ER MD 446 31 442 99.1 5.57 82.74
Fingerprint 2800 69 2774 99.07 16.86 89.29
BZR MD 306 22 303 99.02 7.16 95.75
Letter-med 2250 39 2226 98.93 8.05 92.93
Letter-high 2250 94 2200 97.78 3.67 95.91
IMDB-MULTI 1500 100 1212 80.8 6.39 74.67
Tox21 ATAD5 9091 1461 6167 67.84 0.09 9.15
Tox21 PPAR-gamma 8184 1265 5513 67.36 0.1 7.77
Tox21 AR 9362 1519 6295 67.24 0.08 8
Tox21 p53 8634 1345 5800 67.18 0.09 11.28
Tox21 AR-LBD 8599 1354 5766 67.05 0.09 6.88
Tox21 MMP 7320 1138 4875 66.6 0.1 18.76
Tox21 HSE 8150 1218 5425 66.56 0.1 18.02
Tox21 ER LBD 8753 1375 5791 66.16 0.09 12.41
Tox21 ER 7697 1203 5078 65.97 0.09 27.32
Tox21 AHR 8169 1299 5377 65.82 0.09 15.61
Tox21 aromatase 7226 1084 4727 65.42 0.1 5.07
Tox21 ARE 7167 1047 4682 65.33 0.11 26.45
AIDS 2000 371 1259 62.95 0.13 0.35
COX2 467 76 283 60.6 0.6 20.56
IMDB-BINARY 1000 117 579 57.9 0.67 31.8
FRANKENSTEIN 4337 574 2230 51.42 0.09 30.87
MUTAG 188 31 79 42.02 0.49 6.91
BZR 405 43 165 40.74 0.6 8.89
PTC MM 336 42 132 39.29 0.46 23.21
PTC MR 344 40 125 36.34 0.41 25
PTC FM 349 39 124 35.53 0.39 23.5
DHFR 756 89 250 33.07 0.14 9.13
PTC FR 351 36 116 33.05 0.37 20.51
Mutagenicity 4337 397 1274 29.38 0.03 13.1
COLLAB 5000 158 1077 21.54 0.11 6.68
COIL-DEL 3900 155 796 20.41 0.06 18.56
PROTEINS 1113 35 151 13.57 0.1 9.07
NCI1 4110 225 523 12.73 0.01 1.7
NCI109 4127 222 519 12.58 0.01 1.7
ENZYMES 600 6 10 1.67 0 0
REDDIT-BINARY 2000 3 4 0.2 0 0
REDDIT-MULTI-12K 11929 8 17 0.14 0 0.04
FIRSTMM DB 41 1 0 0 0 0
OHSU 79 1 0 0 0 0
KKI 83 1 0 0 0 0
Peking 1 85 1 0 0 0 0
MSRC 21C 209 1 0 0 0 0
MSRC 9 221 1 0 0 0 0
Synthie 400 1 0 0 0 0
MSRC 21 563 1 0 0 0 0
DD 1178 1 0 0 0 0
REDDIT-MULTI-5K 4999 1 0 0 0 0
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C ORBIT SIZE DISTRIBUTION FOR ALL DATA SETS

In the plots 3, 4, 5 the sizes of orbits are presented for each data set. Empty plots correspond to data
sets with no isomorphic graphs. Plots with just wo-labels correspond to cases when there are no
node labels available for the graphs in a data set.

0

0

Nu
m

be
r o

f o
rb

its

FIRSTMM_DB
wo-labels
node-labels

0

0

OHSU
wo-labels
node-labels

0

0

KKI
wo-labels
node-labels

0

0

Nu
m

be
r o

f o
rb

its

Peking_1
wo-labels
node-labels

2 4 60

5

10

15

20
MUTAG

wo-labels
node-labels

0

0

MSRC_21C
wo-labels
node-labels

0

0

Nu
m

be
r o

f o
rb

its

MSRC_9
wo-labels
node-labels

0 20 40 60 800.0

0.5

1.0

1.5

2.0
Cuneiform

wo-labels
node-labels

299.50 299.75 300.00 300.25 300.500.00

0.25

0.50

0.75

1.00
SYNTHETIC

wo-labels
node-labels

10 20 30 400

1

2

3

4

Nu
m

be
r o

f o
rb

its

COX2_MD
wo-labels
node-labels

10 20 30 400

2

4

6
BZR_MD

wo-labels
node-labels

2 4 6 8 100

10

20

PTC_MM
wo-labels
node-labels

2 4 6 8 100

10

20

Nu
m

be
r o

f o
rb

its

PTC_MR
wo-labels
node-labels

2 4 6 8 100

10

20

PTC_FM
wo-labels
node-labels

2 4 6 8 100

5

10

15

PTC_FR
wo-labels
node-labels

10 20 30 40
Orbit size

0

2

4

6

Nu
m

be
r o

f o
rb

its

DHFR_MD
wo-labels
node-labels

0
Orbit size

0

Synthie
no-labels

5 10 15
Orbit size

0

10

20

30 BZR
wo-labels
node-labels

Figure 3: Distribution of orbits sizes. wo-labels correspond to isomorphism without considering the
labels. node-labels correspond to isomorphism that considers node labels. Part-1.
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D ISOMORPHISM METRICS FOR DATA SETS WITH NODE LABELS

Table 7: Isomorphic metrics for data sets with node labels. Sorting is based on the proportion of
isomorphic graphs I%. Num. orbits is the number of non-trivial orbits. IP% is the proportion of
isomorphic pairs of graphs, Mismatched % is the proportion of mismatched labels. Table does not
include data sets with no node labels.

data set Size, N Num. orbits Iso. graphs, I I% IP% Mismatched %

SYNTHETIC 300 2 300 100 100 100
Cuneiform 267 8 267 100 20.46 100
DHFR MD 393 25 392 99.75 6.87 94.91
COX2 MD 303 13 301 99.34 11.83 98.68
ER MD 446 31 442 99.1 5.57 82.74
BZR MD 306 22 303 99.02 7.16 95.75
MUTAG 188 17 36 19.15 0.14 0
PTC FM 349 22 54 15.47 0.08 10.89
PTC MM 336 22 50 14.88 0.07 7.74
DHFR 756 39 98 12.96 0.04 3.97
PTC FR 351 20 43 12.25 0.05 6.27
PTC MR 344 19 41 11.92 0.05 6.4
Tox21 ARE 7167 228 820 11.44 0.01 3.91
Tox21 HSE 8150 250 919 11.28 0.01 2.25
Tox21 aromatase 7226 223 805 11.14 0.01 0.77
Tox21 p53 8634 258 946 10.96 0.01 1.83
Tox21 ER 7697 231 840 10.91 0.01 2.4
COX2 467 25 50 10.71 0.03 1.07
Tox21 PPAR-gamma 8184 227 869 10.62 0.01 0.76
Tox21 MMP 7320 204 770 10.52 0.01 2.19
Tox21 ER LBD 8753 255 913 10.43 0.01 1.28
Tox21 AR 9362 265 965 10.31 0.01 0.68
Tox21 ATAD5 9091 255 924 10.16 0.01 1.04
Tox21 AR-LBD 8599 238 871 10.13 0.01 0.7
BZR 405 16 40 9.88 0.06 0.99
Tox21 AHR 8169 224 795 9.73 0.01 2.07
PROTEINS 1113 21 74 6.65 0.03 2.61
AIDS 2000 22 54 2.7 0 0
Mutagenicity 4337 31 75 1.73 0 0.92
NCI1 4110 9 17 0.41 0 0.05
ENZYMES 600 2 2 0.33 0 0
NCI109 4127 7 12 0.29 0 0.05
FIRSTMM DB 41 1 0 0 0 0
OHSU 79 1 0 0 0 0
KKI 83 1 0 0 0 0
Peking 1 85 1 0 0 0 0
MSRC 21C 209 1 0 0 0 0
MSRC 9 221 1 0 0 0 0
MSRC 21 563 1 0 0 0 0
DD 1178 1 0 0 0 0
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E PROOF OF PROPERTY 6.1

Proof. From the equation 2 we have:

acc(Ytest) =
|Ynew|
|Ytest|

acc(Ynew) +
|Yiso|
|Ytest|

acc(Yiso) > acc(Yiso)⇒

|Ynew|
|Ytest|

acc(Ynew) > (1− |Yiso|
|Ytest|

)acc(Yiso)⇒

acc(Yiso) > acc(Ynew)

F PROOF OF THEOREM 6.1

Proof. From the definition of the peering model we have:

accM(Ynew) = accM̂(Ynew)

accM(Yiso) ≤ accM̂(Yiso) = 1

Substituting these into the equation 2 we have:

accM(Ytest) ≤ accM̂(Ytest).

G EXPERIMENTATION DETAILS

NN model is from Xu et al. (2018) and evaluate it on the data sets from PyTorch-Geometric (Fey &
Lenssen, 2019). For each data set we perform 10-fold cross-validation such that each fold is evalu-
ated on 10% of hold-out instances Ytest. For each fold we train the model for 350 epochs selecting
the final model with the best performance on the validation set (20% from hold-out trained split)
across all epochs. Additionally we found that for small data set performance during the first epochs
can be unstable on the validation set and thus we select our model only after the first 50 epochs. The
final model is evaluated on the test instances and corresponds to NN in the experiments. Peering
models NN-PH and NN-P are obtained from NN by replicating the target labels for homogeneous
Yiso and non-homogeneous Yiso respectively. Weisfeiler-Lehman and Vertex histogram kernels are
taken from the code2 of Sugiyama & Borgwardt (2015). We selected the height of subtree h = 5 for
WL kernel. We train an SVM model selecting C parameter from the range [0.001, 0.01, 0.1, 1, 10].

2https://github.com/BorgwardtLab/graph-kernels
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H NEW DATA SETS

Table 8: Statistics for new clean data sets. Min. Class and Max. Class are minimum and maximum
number of graphs in a class.

data set Size Retention % Avg. Nodes Avg. Edges Classes Min. Class Max. Class
SYNTHETIC 1 0.33 100 392 1 1 1
Cuneiform 1 0.37 36 180 1 1 1
Letter-low 13 0.58 7 10.62 5 2 3
DHFR MD 5 1.27 24.4 670 2 1 4
COX2 MD 4 1.32 28.5 827 2 1 3
Letter-med 30 1.33 6.67 11.07 9 1 10
Fingerprint 52 1.86 14.37 26.35 7 1 40
BZR MD 7 2.29 15.57 302 2 1 6
Letter-high 61 2.71 7.03 14.46 7 1 33
ER MD 15 3.36 18 442.53 2 1 14
IMDB-MULTI 322 21.47 22.34 249.86 3 85 144
Tox21 ARE 3302 46.07 21.14 43.72 2 602 2700
Tox21 ER 3560 46.25 22.45 46.57 2 419 3141
Tox21 MMP 3405 46.52 22.61 46.86 2 618 2787
Tox21 HSE 3814 46.8 21.48 44.57 2 207 3607
Tox21 PPAR-gamma 3877 47.37 22.12 45.82 2 120 3757
Tox21 ATAD5 4312 47.43 22.72 47.21 2 168 4144
Tox21 AR-LBD 4134 48.08 22.62 46.95 2 150 3984
Tox21 AR 4506 48.13 23.14 48.1 2 189 4317
Tox21 AHR 3935 48.17 23.09 47.96 2 490 3445
Tox21 ER LBD 4224 48.26 22.9 47.6 2 193 4031
Tox21 aromatase 3524 48.77 22.46 46.44 2 234 3290
IMDB-BINARY 493 49.3 24.08 221.96 2 232 261
COX2 237 50.75 42.14 88.85 2 68 169
AIDS 1110 55.5 18.32 38.2 2 310 800
FRANKENSTEIN 2448 56.44 20.85 44.7 2 1020 1428
PTC MM 227 67.56 16.98 35.36 2 77 150
BZR 277 68.4 36.23 77.59 2 72 205
PTC MR 236 68.6 17.17 35.82 2 96 140
PTC FM 243 69.63 16.91 35.19 2 85 158
PTC FR 254 72.36 17.06 35.6 2 86 168
MUTAG 137 72.87 18.81 41.59 2 43 94
DHFR 578 76.46 43.37 91.07 2 205 373
Mutagenicity 3335 76.9 33.64 68.31 2 1484 1851
Tox21 p53 6886 79.75 18.9 38.75 2 422 6464
COIL-DEL 3133 80.33 25.05 128.53 98 1 39
COLLAB 4064 81.28 76.94 4667.28 3 770 2289
PROTEINS 975 87.6 43.41 162.07 2 343 632
NCI1 3785 92.09 29.95 64.74 2 1781 2004
NCI109 3801 92.1 29.78 64.45 2 1801 2000
ENZYMES 595 99.17 32.66 124.34 6 98 100
REDDIT-BINARY 1998 99.9 430.05 996.48 2 998 1000
REDDIT-MULTI-12K 11917 99.9 391.79 914.68 11 513 2586
FIRSTMM DB 41 100 1377.27 6147.51 11 2 6
OHSU 79 100 82.01 399.32 2 35 44
KKI 83 100 26.96 96.84 2 37 46
Peking 1 85 100 39.31 154.71 2 36 49
MSRC 21C 209 100 40.28 193.21 17 1 29
MSRC 9 221 100 40.58 195.87 8 19 30
Synthie 400 100 95 345.86 4 90 110
MSRC 21 563 100 77.52 396.65 20 10 34
DD 1178 100 284.32 1431.32 2 487 691
REDDIT-MULTI-5K 4999 100 508.52 1189.75 5 999 1000
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