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ABSTRACT

While deep neural networks have achieved impressive performance on a range
of NLP tasks, these data-hungry models heavily rely on labeled data. To make
the most of each example, previous work has introduced natural language (NL)
explanations to serve as supplements to mere labels. Such NL explanations can
provide sufficient domain knowledge for generating more labeled data over new
instances, while the annotation time only doubles. However, directly applying
the NL explanations for augmenting model learning encounters two challenges.
First, NL explanations are unstructured and inherently compositional, which asks
for modularized model to represent their semantics. Second, NL explanations of-
ten have large numbers of linguistic variants, resulting in low recall and limited
generalization ability when applied to unlabeled data. In this paper, we propose
a novel Neural Modular Execution Tree (NMET) framework for augmenting se-
quence classification with NL explanations. After transforming NL explanations
into executable logical forms with a semantic parser, NMET employs a neural
module network architecture to generalize different type of actions (specified by
the logical forms) for labeling data instances, and accumulates the results with soft
logic, which substantially increases the coverage of each NL explanation. Exper-
iments on two NLP tasks, relation extraction and sentiment analysis, demonstrate
its superiority over baseline methods by leveraging NL explanation. Its extension
to multi-hop question answering achieves performance gain with light annotation
effort. Also, NMET achieves much better performance compared to traditional
label-only supervised models in the same annotation time.

1 INTRODUCTION

Deep neural networks have achieved state-of-the-art performance on a wide range of natural lan-
guage processing tasks. However, they usually require massive labeled data, which restricts their
applications in scenarios where data annotation is expensive. The traditional way of providing su-
pervision is human-generated labels. For example, in sentiment analysis, given a sentence “Quality
ingredients preparation all around, and a very fair price for NYC”, an annotator should label it as
“Positive”. However, the label itself does not provide information about how the decision is made.
A more informative method is to allow annotators to explain their decisions in natural language so
that the annotation can generalize to other examples. In the above example, an explanation can be
“Positive, because the word price is directly preceded by fair”, which can generalize to instances
like “Delicious food with a fair price”. Natural language (NL) explanations have shown effec-
tiveness in providing additional supervision, especially in low-resource settings (Srivastava et al.,
2017; Hancock et al., 2018). Also, they can be easily collected from human annotators without
significantly increasing their annotation efforts.

However, exploiting NL explanations as supervision is challenging due to the complex nature of
human languages. First of all, textual data are not well-structured, and thus we have to parse expla-
nations into logical forms for machine to better utilize them. Also, linguistic variants are ubiquitous,
which makes it difficult to generalize an NL explanation for matching sentences that are semantically
equivalent but having different word usage. When we perform exact matching with the previous ex-
ample explanation, it can fail to annotate sentences with “reasonable price” or “good deal”.
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Figure 1: Overview of the NMET Framework. Natural language explanations are firstly parsed into
logical forms. Then we partition the raw corpus S into labeled dataset Sa and unlabeled dataset
Su = S − {xai }

Na
i=1. We use matching modules to provide supervision on Su. Finally, supervision

from both Sa and Su is fed into a classifier.

Attempts have been made to train classifiers with NL explanations. Srivastava et al. (2017) use NL
explanations as additional features of data. They map explanations to logical forms with a semantic
parser and use them to generate binary features for all instances. Hancock et al. (2018) employ a
rule-based semantic parser to get logical forms (i.e. “labeling function”) from NL explanations that
generate noisy labeled datasets which are used for training models. While both methods claim huge
performance improvements, they neglect the importance of linguistic variants, thus resulting in a
very low recall. Also, their methods of evaluating explanations on new instances are oversimplified
(e.g. comparison/logic operators), making their methods over-confident. In the above example,
a sentence like “Decent sushi at a fair enough price” will be rejected because of the “directly
preceded” requirement.

Therefore, we believe that the generalization ability of NL explanations is under-explored. We
emphasize that a good data annotation method should 1) be able to generalize annotations to seman-
tically similar instances (beyond stemming, part-of-speech, etc.) and 2) model the uncertainty in
annotations. Towards these goals, we propose Neural Modular Execution Tree (NMET)
framework for learning neural models with explanations, as illustrated in Figure 1. Given a raw
corpus and a set of NL explanations, we first parse the NL explanations to machine-actionable logic
forms by a combinatory categorial grammar (CCG) based semantic parser. Different from previ-
ous work, we “soften” the annotation process by generalizing the predicates using neural module
network and changing the labeling process from exact matching to fuzzy matching. We introduce
four types of matching modules, namely String Matching Module, Soft Counting Module, Logical
Calculation Module, and Deterministic Function Module, which serve as matching semantically
similar words, scoring different positions, accumulating matching scores from other modules, and
dealing with deterministic predicates, respectively. We calculate the matching scores and find for
each instance the most similar logical form. Thus, all instances in the raw corpus can be assigned a
label and used to train the neural model. We conduct extensive experiments on two representative
tasks, relation extraction and sentiment analysis. Experimental results demonstrate the superiority of
NMET over various baseline methods. Also, we adapted NMET for multi-hop question answering
task, in which it achieves performance improvement with only 21 explanations and 5 rules.

2 LEARNING TO AUGMENT SEQUENCE MODELS WITH NL EXPLANATIONS

We consider the task of training classifiers with natural language explanations for text classification
(e.g., relation extraction, sentiment analysis) in a low-resource setting. Specifically, given a raw
corpus S = {xi}Ni=1 ⊆ X and a predefined label set Y , our goal is to learn a classifier fc : X → Y .
We ask human annotators to view a subset S ′ of the corpus S and provide for each instance x ∈ S ′
an explanation e and a label y, which explains why the instance should receive that label. Note that
|S ′| � |S|, which requires our framework to learn with very limited human supervision.

Approach Overview. We develop a multi-stage learning framework to leverage NL explanations in
weakly-supervised setting. An overview of our framework is depicted in Fig. 1. Our NMET frame-
work consists of three stages, namely explanation parsing stage, dataset partition stage, and model
learning stage. Human explanations are first converted to machine-actionable logical forms by a
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semantic parser. Then those extracted logical forms are used to label the raw corpus by perform-
ing exact matching. After that we have a labeled dataset and an unlabeled dataset. For unlabeled
data, we propose Neural Module Execution Tree (NMET) to relax the constraints and generalize the
keywords in the logical forms. Therefore, they can be used to evaluate on unlabeled instances, and
assign them with pseudo labels accompanied by confidence scores. The task-specific classifier is
then jointly optimized with NMET over labeled data and pseudo-labeled data.

Explanation Parsing. To leverage the unstructured human explanations E = {ej}|S
′|

j=1, we turn them
into logical forms (i.e., labeling functions) (Ratner et al., 2016), which can be denoted as F = {fj :
X → {0, 1}}|S

′|
j=1, where 1 indicates the the logical form matches the input sequence and 0 otherwise.

To access the labels, we introduce a function h : F → Y that maps each logical form fj to the label
yj of its explanation ej . Examples are given in Fig. 1. We use Combinatory Categorial Grammar
(CCG) based semantic parsing (Zettlemoyer & Collins, 2012; Artzi et al., 2015), an approach that
couples syntax with semantics, to convert each NL explanation ej to a logical form fj .

Following Srivastava et al. (2017), we first compile a domain lexicon that maps each word to its
syntax and logical predicate. Frequently-used predicates are listed in the Appendix. For each ex-
planation, the parser is able to generate many possible logical forms based on CCG grammar. To
identify the correct one from these logical forms, we use a feature vector φ(f) ∈ Rd with each ele-
ment counting the number of applications of a particular CCG combinator (similar to Zettlemoyer &
Collins (2007)). Specifically, given an explanation ei, the semantic parser parameterized by θ ∈ Rd
outputs a probability distribution over all possible logical forms Zei . The probability of a feasible
logical form can be calculated as:

Pθ(f |ei) =
expθTφ(f)∑

f ′:f ′∈Zei
expθTφ(f ′)

.

To learn θ, we maximize the probability of yi given ei calculated by marginalizing over all logical
forms that match xi (similar to Liang et al. (2013)). Formally, the objective function is defined as:

Lparser =

|S′|∑
i=1

log
( ∑
f :f(xi)=1∧h(f)=yi

Pθ(f |ei)
)
.

When the optimal θ∗ is derived using gradient-based method, the parsing result for ei is defined as
fi = argmaxf Pθ∗(f |ei).

Dataset Partition. After we parse explanations {ei}|S
′|

i=1 into F = {fi}|S
′|

i=1 where each fi corre-
sponds to ei, we use F to find exact matches in S and pair them with the corresponding labels. We
denote the number of instances getting labeled by exact matching asNa. As a result, S is partitioned
into a labeled dataset Sa = {(xai , yai )}

Na
i=1, and an unlabeled dataset Su = S −{xai }

Na
i=1 = {xuj }

Nu
j=1

where Nu = |S| −Na.

Model Learning with Neural Module Execution Tree. So far we can already make use of exact-
matched Sa to train a classifier; however, informative instances in Su are left untouched. We propose
Neural Module Execution Tree (NMET), which relaxes constraints in each logic form fj and sub-
stantially improve the rule coverage in Su. Classifiers will benefit from these soft-matched and
pseudo-labeled instances. Trainable parameters in NMET are also jointly optimized with the classi-
fier. Details of NMET and joint training will be introduced in next section.

3 NEURAL MODULE EXECUTION TREE

Given a logical form f and a sentence x, Neural Module Execution Tree (NMET) will output a
matching score us ∈ [0, 1], which indicates how likely the sentence x satisfies the logical form
f and thus should be given the corresponding label h(f). Specifically, NMET comprises of four
modules to deal with four categories of predicates, namely String Matching Module, Soft Counting
Module, Deterministic Function Module, and Logical Calculation Module. Any complex logical
form can be disassembled into clauses containing these four categories of predicates. The four
modules are then used to evaluate each clause and then the whole logical form in a softened way.
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Figure 2: Neural Module Execution Tree (NMET) softly executes the logical form on the sentence.

Fig. 2 shows how NMET builds the execution tree from an NL explanation and how it evaluates
an unlabeled sentence. We show in the figure the corresponding module for each predicate in the
logical form. We introduce the four modules respectively as follows.

3.1 MODULES IN NMET

String Matching Module. Given a keyword query q derived from an explanation and an input
sequence x = [w1, w2, ..., wn], the string matching module fs(x,q) returns a sequence of scores
[s1, s2, ..., sn] indicating the similarity between each token wi and the query q. Previous work
implements this operation by exact keyword searching, while we augment the module with neural
networks to enable capturing semantically similar words. Inspired by Li et al. (2018), for token
wi, we first generate Nc contexts by sliding windows of various lengths. For example, if the max-
imum window size is 2, the contexts ci0, ci1, ci2 of token wi are [wi], [wi−1;wi] and [wi;wi+1]
respectively. Then we encode each context cij to a vector zcij

by feeding pre-trained word em-
beddings into a bi-directional LSTM encoder (Hochreiter & Schmidhuber, 1997) followed by an
attention layer (Bahdanau et al., 2014). For keyword query q, we directly encode it into vector zq
by bi-LSTM and attention. Finally, scores of sentence x and query q are calculated by aggregating
similarity scores from different sliding windows:

Mij(x,q) = cos(zcijD, zqD), fs(x,q) =M(x,q)v,

whereD is a trainable diagonal matrix, v ∈ RNc is the trainable weight of each sliding window.

Parameters in the string matching module need to be learned with data in the form of (sentence,
keyword, label). To build a training set for learning string matching, we randomly select spans of
consecutive words as keyword queries in the training data. Each query is paired with either the sen-
tence it comes from or a different sentence. The synthesized dataset is denoted as {xi,qi,ki}

Nsyn

i=1 ,
where kij will take the value of 1 if q is extracted from xij and 0 otherwise. The loss function is
defined as the binary cross entropy loss, as follows.

Lfind = −
1

Nsyn

Nsyn∑
i=1

1

|ki|
· (ki log fs(xi,qi) + (1− ki) log(1− fs(xi,qi))).

While pretraining with Lfind enables matching similar words, this unsupervised distributional
method is poor at learning their semantic meanings. For example, the word “good” will have very
high similarity to “bad” because they often coexist with the same set of context words. To solve this
problem, we borrow the idea of word retrofitting (Faruqui et al., 2014) and adopt a contrastive loss
(Neculoiu et al., 2016) to incorporate semantic knowledge in training. We use the keyword queries
in labeling functions as supervision. Intuitively, the semantic meaning of two queries should be
similar if they appear in the same class of labeling functions and dissimilar otherwise. More specif-
ically, for a query q, we denote queries in the same class of labeling functions as Q+ and queries in
different classes of labeling functions as Q−. The similarity loss is defined as:

Lsim = max
q1∈Q+

{(τ − cos(zqD, zq1
D))2+}+ max

q2∈Q−
{cos(zqD, zq2

D)2+}.

The overall objective function for string matching module is:

Lstring = Lfind + γ · Lsim, (1)

where γ is a hyper-parameter. We pretrain the string matching module for better initialization.
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Algorithm 1: Learning on Unlabeled Data with NMET

Input: Labeled data Sa = {(xai , yai )}Na
i=1, unlabeled data Su = {xuj }Nu

j=1, and logical forms F = {fk}|S
′|

k=1.
Output: A classifier fc : X → Y .
Pretrain String Matching Module in NMET w.r.t. Lstring using Eq. 1.
while not converge do

Sample a labeled batch Ba = {(xai , yai )}ni=1 from Sa, and an unlabeled batch Bu = {xuj }mj=1 from Su.
foreach xuj ∈ Bu do

Calculate a pseudo label yuj for xuj with confidence uj using NMET and F .
Normalize matching scores {uj}mj=1 to get {ωj}mj=1 based on Eq. 3.
Calculate La using Eq. 2, Lu using Eq. 4, L using Eq. 5.
Update fc and String Matching Module in NMET w.r.t. Ltotal.

Soft Counting Module. The soft counting module aims to relax the counting (distance) constraints
defined by NL explanations. For a counting constraint precede object by no more than three words,
the soft counting module outputs a matching score indicating to what extent an anchor word (TERM,
SUBJECT and OBJECT) satisfies the constraint. The score is set to 1 if the position of the anchor
word strictly satisfies the constraint, and will decrease if the constraint is broken. For simplicity,
we allow an additional range in which the score is set to µ ∈ (0, 1), which is a hyper-parameter
controlling the constraints.

Deterministic Function Module. The deterministic function module deals with the deterministic
predicates like “Between”, “Left” and “Right”. It outputs a mask sequence where the span satisfying
the constraint is marked as 1. Other positions are marked as 0.

Logical Calculation Module. The logical calculation module acts as a score aggregator. It can
aggregate scores given by: (1) a string matching module and a soft counting module/deterministic
function module (triggered by predicates such as “Is” and “Occur”) (2) two clauses that have been
evaluated with a score respectively (triggered by predicates such as “And” and “Or”).

In the first case, the logical calculation module will calculate the element-wise products of the score
sequence provided by the string matching module and the mask sequence provided by the soft count-
ing module/deterministic function module. It then uses max pooling to calculate the matching score
of the current clause. In the second case, the logical calculation module will aggregate the scores of
at least one clause based on the logic operation. The rules are defined as follows.

p1 ∧ p2 = max(p1 + p2 − 1, 0), p1 ∨ p2 = min(p1 + p2, 1), ¬p = 1− p,

where p is the score of the input clause.

3.2 AUGMENTING MODEL LEARNING WITH NMET

As described in Algo. 1, in each iteration, we sample two batches Ba and Bu from Sa and Su. We
conduct supervised learning on Ba. The labeled loss function is calculated as:

La = − 1

Na

∑
(xa

i ,y
a
i )∈Ba

log p(yai |xai ). (2)

To leverage Bu, which is also informative, for each instance xuj ∈ Bu, we can use our matching
modules to compute its matching score with every logical form. The most probable logical form
that matched with xuj is denoted as yuj

1, along with the matching score uj . To ensure the scale of
the unlabeled loss is comparable to labeled loss, we normalize the matching scores among pseudo-
labeled instances in Bu as:

ωj =
exp(θtuj)∑|Bu|
k=1 exp(θtuk)

, (3)

1None label (e.g. No Relation for relation extraction and neutral for sentiment analysis) usually lacks
explanations and logical forms. If the entropy of matching score distribution over labels is higher than a
threshold, a None label will be given.
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Dataset exps categs avg ops logic/% assertion/% position/% counting/% acc/%

TACRED 170 13 8.2 25.8 21.3 21.4 12.4 95.3
SemEval 203 9 4.2 32.7 15.9 26.3 5.5 84.2
Laptop 40 8 3.9 0.0 23.8 23.8 17.5 87.2
Restaurant 45 9 9.6 2.8 25.4 26.1 16.2 88.2

Table 1: Statistics for Human-curated Explanations and Evaluation of Semantic Parsing. We report the
number of NL explanations (exps), categories of predicates (categs) and operator compositions per explanation
(avg ops) respectively. We also report the proportions of different types of predicates, where logic denotes
logical operators (And, Or), assertion denotes assertion predicates (Occur, Contains), position denotes position
predicates (Right, Between) and counting denotes counting predicates (MoreThan, AtMost). We summarize the
accuracy (acc) of semantic parsing based on human evaluation.

where k is the index of the instance and hyperparameter θt (temperature) controls the shape of
normalized scores’ distribution. Based on that, the unlabeled loss is calculated as:

Lu = −
∑

(xu
j ∈Bu)

ωj log p(y
u
j |xuj ). (4)

Note that the string matching module is also trainable and plays a vital role in NMET. We jointly
learn it with the classifier by optimizing:

Ltotal = La + α · Lu + β · Lstring, (5)

where α and β are hyper-parameters.

4 EXPERIMENTS

Tasks and Datasets. We conduct experiments on two tasks: relation extraction and aspect-term-
level sentiment analysis. Relation extraction (RE) aims to identify the relation type between two
entities in a sentence. For example, given a sentence Steve Jobs founded Apple Inc, we want to
extract a triple (Steve Jobs, Apple Inc., Founder). For RE we choose two datasets, TACRED (Zhang
et al., 2017) and SemEval (Hendrickx et al., 2009) in our experiments. Aspect-term-level sentiment
analysis (SA) aims to decide the sentiment polarity with regard to the given aspect term. For ex-
ample, given a sentence Quality ingredients preparation all around, and a very fair price for NYC,
the sentiment polarity of the aspect term price is positive, the explanation can be The word price
is directly preceded by fair. For this task we use two customer reviews datasets, Restaurant and
Laptop, which are part of SemEval 2014 Task 4.

Explanation Collection. We use Amazon Mechanical Turk to collect labels and explanations for
a randomly sampled set of instances in each dataset. Turkers are prompted with a list of selected
predicates (see Appendix) and several examples of NL explanation. Examples of collected expla-
nations are listed in Appendix. Statistics of curated explanations and intrinsic evaluation results of
semantic parsing are summarized in Table 1. To ensure a low-resource setting (i.e., |S ′| � |S|), in
each experiment we only use a random subset of collected explanations.

Compared Methods. As mentioned in Sec. 2, logic forms partitioned unlabeled corpus S into
labeled set Sa and unlabeled set Su. Labeled set Sa can be directly utilized by supervised learn-
ing methods. (1) CBOW-GloVe uses bag-of-words (Mikolov et al., 2013) on GloVe embeddings
(Pennington et al., 2014) to represent an instance, or surface patterns in NL explanation. It then an-
notates the sentence with the label of it most similar surface pattern (as with cosine similarity). (2)
PCNN (Zeng et al., 2015) uses piece-wise max-pooling to aggregate CNN-generated features. (3)
LSTM+ATT (Bahdanau et al., 2014) adds an attention layer onto LSTM to encode an sequence. (4)
PA-LSTM (Zhang et al., 2017) combines LSTM with an entity-position aware attention to conduct
relation extraction. (5) ATAE-LSTM (Wang et al., 2016) combines the aspect term information
into both embedding layer and attention layer to help the model concentrate on different parts of a
sentence.

In semi-supervised baselines, unlabeled data Su are also introduced to training. For methods re-
quiring rules as input, we use surface pattern-based rules transferred from explanations. Compared
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semi-supervised methods include: (1) Pseudo-Labeling (Lee, 2013) first trains a classifier on la-
beled dataset, then generate pseudo labels for unlabeled data using the classifier by selecting the
label with maximum predicted probability. (2) Self-Training (Rosenberg et al., 2005) proposes
to expand the labeled data by selecting a batch of unlabeled data that has the highest confidence
and generate pseudo-labels for them. The method stop until the unlabeled data is used up. (3)
Mean-Teacher (Tarvainen & Valpola, 2017) averages model weights instead of label predictions
and assumes similar data points should have similar outputs. (4) DualRE (Lin et al., 2019) jointly
trains a relation prediction module and a retrieval module.

Learning from explanations is categorized as a third setting. Both methods generate explanation-
guided pseudo labels for a downstream classifier. (1) Data Programming (Hancock et al., 2018;
Ratner et al., 2016) aggregates results of strict labeling functions for each instance and use these
pseudo-labels to train a classifier. (2) NMET (proposed work) softly applies logic forms to get
annotations for unlabeled instances and train a downstream classifier with these pseudo-labeled
instances. The downstream classifier is BiLSTM+ATT for relation extraction and ATAE-LSTM for
sentiment analysis.

4.1 RESULTS OVERVIEW

Table 2 (a) lists F1 scores of all relation extraction models. Full results including precision and recall
can be found in Appendix A.4. We observe that our proposed NMET consistently outperform all
baseline models in low-resource setting. Also, we found that, (1) Directly applying logic forms to
unlabeled data results in poor performance. We notice that this method achieves high precision but
low recall, as expected. (2) Compared to its downstream classifier baseline (BiLSTM+ATT with Sl),
NMET achieves 4.2% F1 improvement in absolute value on TACRED, and 5.5% on SemEval. This
validates that the expansion of rule coverage by NMET is effective and is providing useful informa-
tion to classifier training. (3) Performance gap further widens when we take annotation efforts into
account. The annotation time for E and Sa are equivalent; but the performance of BiLSTM+ATT
significantly degrades with fewer instances in Sa. (4) Results of semi-supervised methods are un-
satisfactory. This may be explained with difference between underlying data distribution of Sa and
Su.

Table 2 (b) lists the performances of all sentiment analysis models. The observations are similar to
those of relation extraction, which strengthen our conclusions and validates the capability of NMET.

TACRED SemEval

LF (E) 23.33 33.86
CBOW-GloVe (R+ S) 34.6±0.4 48.8±1.1

PCNN (Sa) 34.8±0.9 41.8±1.2
PA-LSTM (Sa) 41.3±0.8 57.3±1.5

BiLSTM+ATT (Sa) 41.4±1.0 58.0±1.6
BiLSTM+ATT (Sl) 30.4±1.4 54.1±1.0

Self Training (Sa + Su) 41.7±1.5 55.2±0.8
Pseudo Labeling (Sa + Su) 41.5±1.2 53.5±1.2

Mean Teacher (Sa + Su) 40.8±0.9 56.0±1.1
Mean Teacher (Sl + Slu) 25.9±2.2 52.2±0.7

DualRE (Sa + Su) 32.6±0.7 61.7±0.9

Data Programming (E + S) 30.8±2.4 43.9±2.4
NMET (E + S) 45.6±0.4 63.5±1.0

(a) Relation Extraction

Restaurant Laptop

LF (E) 7.7 13.1
CBOW-GloVe (R+ S) 68.5±2.9 61.5±1.3

PCNN (Sa) 72.6±1.2 60.9±1.1
ATAE-LSTM (Sa) 71.1±0.4 56.2±3.6
ATAE-LSTM (Sl) 71.4±0.5 52.0±1.4

Self Training (Sa + Su) 71.2±0.5 57.6±2.1
Pseudo Labeling (Sa + Su) 70.9±0.4 58.0±1.9

Mean Teacher (Sa + Su) 72.0±1.5 62.1±2.3
Mean Teacher (Sl + Slu) 74.1±0.4 61.7±3.7

Data Programming (E + S) 71.2±0.0 61.5±0.1
NMET (E + S) 75.8±0.8 62.8±1.9

(b) Sentiment Analysis

Table 2: Experiment results on Relation Extraction and Sentiment Analysis. Average and standard devia-
tion of F1 scores (%) over multiple runs are reported (5 runs for RE and 10 runs for SA). Bracket behind each
method illustrates corresponding data used in the method. S denotes training data without labels, E denotes ex-
planations, R denotes surface pattern rules transformed from explanations; Sa denotes labeled data annotated
with explanations, Su denotes the remaining unlabeled data. Sl denotes labeled data annotated using same time
as creating explanations E , Slu denotes remaining unlabeled data corresponding to Sl.
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4.2 PERFORMANCE ANALYSIS

Effectiveness of softening logical rules. As shown in Table 3, we conduct ablation studies on TA-
CRED and Restaurant. We remove two modules that support soft logic (by only allowing them to
give 0/1 outputs) to see how much does rule softening help in our framework. Both soft counting
module and string matching module contribute to the performance of NMET. It can be easily con-
cluded that string matching module plays a vital role. Removing it leads to significant performance
drops, which demonstrates the effectiveness of generalizing when applying logical forms. Besides,
we examine the impact brought by Lsim, Lfind. Removing them severely hurts the performance,
indicating the importance of semantic learning when performing fuzzy matching.

TACRED SemEval Restaurant Laptop

Full NMET 45.6±0.4 63.5±1.0 75.8±0.8 62.8±1.9

No counting 44.6±0.9 63.2±0.7 75.6±0.8 62.4±1.9
No matching 41.8±1.1 54.6±1.2 71.2±0.4 57.0±2.7
No Lsim 42.5±1.0 56.2±2.9 70.7±0.8 59.4±0.7
No Lfind 43.2±1.3 60.2±0.9 70.0±3.5 58.1±2.8

Table 3: Ablation study on modules of NMET and losses for string
matching module. F1 score on the test set is reported. We remove
soft counting module (No counting) and string matching module (No
matching) by only allowing them to give 0/1 results.
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Figure 3: NMET’s performance w.r.t.
number of unlabeled instances.

Superiority of explanations in data efficiency. In the real world, a more realistic problem is that,
with limited human-power, should we just annotate more labels or spend time explaining existing
annotations. To answer this question, we carefully examine the data efficiency of explanations over
pure labels. For skilled annotators, the time for labeling one instance in TACRED plus giving an ex-
planation is as 2 times as the time for only labeling one instance. For Restaurant, the ratio is 2.3. We
then compare the performance between these two labeling strategies within equal annotation time,
e.g. 100 explanations v.s. 200 labeled data in TACRED. From Fig. 5 (a) and (b), we can see that our
NMET beats purely-supervised and semi-supervised baselines in most cases, even though they are
given more labels. We argue that giving explanations surely yields additional cost, but logical form
based matching has high accuracy and can generalize well with our NMET. Explanations prove to
be an very efficient form for data annotation.

Performance with different number of explanations. From Fig. 5 (c) and (d), one can clearly
observe that all approaches benefit from more labeled data. Our NMET outperforms all other base-
lines by a large margin, which indicates the effectiveness of leveraging knowledge embedded in ML
explanations.

Performance with different amount of unlabeled data. To investigate how our NMET’s perfor-
mance is affected by the amount of unlabeled data, we randomly sample 10%, 30%, 50% and 70%
of the original unlabeled dataset to do the experiments. As illustrated in Fig. 3, our NMET benefits
from larger amount of unlabeled data. We attribute it to high accuracy of logical forms converted
from explanations.

Case study on string matching module. String matching module plays a vital rule in NMET. The
matching quality greatly influences the accuracy of pseudo labeling. In Fig. 4, we can see that
keyword chief executive of is perfectly aligned with executive director of in the sentence, which
demonstrates the effectiveness of string matching module in capturing semantic similarity.

OBJ-PERSON   ,   executive director of the SUBJ-ORGANIZATION at Saint Anselm College in Manchester

Figure 4: Heatmap for keyword chief executive of and sentence OBJ-PERSON, executive director of the SUBJ-
ORGANIZATION at Saint Anselm College in Manchester. Results show that our string matching module can
successfully grasp relevant words.
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Figure 5: Study on Data Efficiency: (a) and (b), and Performance with different number of explanations:
(c) and (d). We choose supervised semi-supervised baselines for comparison.

4.3 ADDITIONAL EXPERIMENT ON MULTI-HOP REASONING

To further test the capability of NMET in downstream tasks, we apply it to WIKIHOP (Welbl et al.,
2018) ‘country’ task by fusing NMET-matched facts into baseline model NLPROLOG (Weber et al.,
2019). For a brief introduction, WIKIHOP is a multi-hop question answering (QA) dataset that re-
quires a model to select the correct entity2 in statement (entity1, predicate, entity2) given a candidate
pool and several support sentences. NLPROLOG considers entity-masked support sentence as rela-
tion, calculates relation-predicate similarity and entity-entity similarity with mapped SENT2VEC
embeddings (Pagliardini et al., 2018), and use these similarity scores for weak unification to solve
candidate statements with a Prolog solver.

Fig. 6 shows how the framework in Fig. 1 is adjusted to suit NLPROLOG. We manually choose
3 predicates (i.e., located in, capital of, next to) and annotate 21 support sentences with natural
language explanation. We get 103 strictly-matched facts (Sa) and 1407 NMET-matched facts (Su)
among the 128k unlabeled QA support sentences. Additionally, we manually write 5 rules about
these 3 predicates for the Prolog solver, e.g. located in(X,Z)← located in(X,Y) ∧ located in(Y,Z).

Results are listed in Table 4. From the result we observe that simply adding the 103 strictly-matched
facts is not making notable improvement. However, with the help of NMET, a larger number of
structured facts are recognized from support sentences, so that external knowledge from only 21
explanations and 5 rules improve the accuracy by 1 point. This observation validates NMET’s
capability in low resource setting and highlight its potential when applied to downstream tasks.

5 RELATED WORK

Leveraging natural language for training classifiers. Supervision in the form of natural language
has been explored by many works. Srivastava et al. (2017) first demonstrates the effectiveness of NL
explanations. They proposed a joint concept learning and semantic parsing method for classification
problems. However, the method is very limited in that it is not able to use unlabeled data. To
address this issue, Hancock et al. (2018) propose to parse the NL explanations into labeling functions
and then use data programming to handle the conflict and enhancement between different labeling
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spyrolog solver
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NMET-matched 
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MLPsent2vec

NLProlog

Figure 6: Adjusting NMET
Framework (Fig. 1) for NLPRO-
LOG.

|Sa| |Su| Accuracy

NLProlog (published code) 0 0 74.57
+ Sa 103 0 74.40
+ Su (confidence >0.3) 103 340 74.74
+ Su (confidence >0.2) 103 577 75.26
+ Su (confidence >0.1) 103 832 75.60

Table 4: Performance of NLPROLOG when extracted facts are
used as input. Average accuracy over 3 runs is reported. NL-
PROLOG empowered by 21 natural language explanations and 5
hand-written rules achieves 1% gain in accuracy.

functions. Camburu et al. (2018) extend Stanford Natural Language Inference dataset with NL
explanations and demonstrate its usefulness for various goals for training classifiers. Andreas et al.
(2016) explores decomposing NL questions into linguistic substructures for learning collections
of neural modules which can be assembled into deep networks. Hu et al. (2019) explores using
NL instructions as compositional representation of actions for hierarchical decision making. The
substructure of an instruction is summarized as a latent plan, which is then executed by another
model.

Weakly-supervised learning. Our work is relevant to weakly-supervised learning. Traditional sys-
tems use handcrafted rules (Hearst, 1992) or automatically learned rules (Agichtein & Gravano,
2000; Batista et al., 2015) to take a rule-based approach. Hu et al. (2019) incorporate human knowl-
edge into neural networks by using a teacher network to teach the classifier knowledge from rules
and train the classifier with labeled data. Li et al. (2018) parse regular expression to get action trees
as a classifier that are composed of neural modules, so that essentially training stage is just a pro-
cess of learning human knowledge. Meanwhile, if we regard those data that are exactly matched
by rules as labeled data and the remaining as unlabeled data, we can apply many semi-supervised
models such as self learning (Rosenberg et al., 2005), mean-teacher (Tarvainen & Valpola, 2017),
and semi-supervised VAE (Xu et al., 2017). However, These models turn out to be ineffective in
rule-labeled data or explanation-labeled data due to potentially large difference in label distribution.
The data sparsity is also partially solved by distant supervision (Mintz et al., 2009; Surdeanu et al.,
2012). They rely on knowledge bases (KBs) to annotate data. However, the methods introduce a
lot of noise, which severely hinders the performance. Liu et al. (2017) instead propose to conduct
relation extraction using annotations from heterogeneous information source. Again, predicting true
labels from noisy sources is challenging.

6 CONCLUSION

In this paper, we presented NMET, a framework that augments sequence classification by exploiting
NL explanations as supervision under a low resource setting. We tackled the challenges of model-
ing the compositionality of NL explanations and dealing with the linguistic variants. Four types of
modules were introduced to generalize different type of actions in logical forms, which substantially
increases the coverage of NL explanations. A joint training algorithm was proposed to utilize in-
formation from both labeled dataset and unlabeled dataset. We conducted extensive experiments on
several datasets and proved the effectiveness of our model. Future work includes extending NMET
to sequence labeling tasks, and building a cross-domain semantic parser for NL explanations.
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A APPENDIX

A.1 PREDICATES

Following Srivastava et al. (2017), we first compile a domain lexicon that maps each word to its
syntax and logical predicate. Table 5 lists some frequently used predicates in our parser, descriptions
about their function and modules they belong to.

Predicate Description Module

Because, Separator Basic conjunction words

None
ArgX, ArgY, Arg Subject, object or aspect term in each task
Int, Token, String Primitive data types
True, False Boolean operators

And, Or, Not, Is, Occur Logical operators that aggregate matching scores Logical Calculation Module
Left, Right, Between, Within Return True if one string is left/right/between/within

some range of the other string
Deterministic FunctionNumberOf Return the number of words in a given range

AtMost, AtLeast, Direct, Counting (distance) constraints Soft Counting Module
MoreThan, LessThan, Equals

Word, Contains, Link Return a matching score sequence for a sentence and a query String Matching Module

Table 5: Frequently used predicates

A.2 EXAMPLES FOR COLLECTED EXPLANATIONS.

TACRED

Although not a Playboy Playmate , she has appeared in nude pictorials with her Girls Next Door
costars and fellow Hefner girlfriends Holly Madison and OBJ-PERSON , then known as SUBJ-
PERSON.

(Label) per:alternate names

(Explanation) the term ‘‘then known as’’ occurs between
SUBJ-PERSON and OBJ-PERSON and there are no more than six words
between SUBJ-PERSON and OBJ-PERSON.

Officials in Mumbai said that the two suspects , David Coleman Headley , an American with links
of Pakistan , and SUBJ-PERSON , who was born in Pakistan but is a OBJ-NATIONALITY citizen
, both visited Mumbai and several other Indian cities in before the attacks , and may have visited
some of the sites that were attacked.

(Label) per:origin

(Explanation) the words ‘‘is a’’ appear right before
OBJ-NATIONALITY and the word ‘‘citizen’’ is right after
OBJ-NATIONALITY.

SemEval 2010 Task 8

The SUBJ-O is caused by the OBJ-O of UV radiation by the oxygen and ozone .

(Label) Cause-Effect(e2,e1)

(Explanation) The phrase ‘‘is caused by the’’ occurs between SUBJ
and OBJ and OBJ follows SUBJ.

SUBJ-O are parts of the OBJ-O OBJ-O disregarded by the compiler.

(Label) Component-Whole(e1,e2)
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(Explanation) The phrase ‘‘are parts of the’’ occurs between SUBJ
and OBJ and OBJ follows SUBJ

SemEval 2014 Task 4 - restaurant

I am relatively new to the area and tried Pick a bgel on 2nd and was disappointed with the service
and I thought the food was overated and on the pricey side. (Term: food)

(Label) negative

(Explanation) the words ’overated’ is within 2 words after term

The decor is vibrant and eye-pleasing with several semi-private boths on the right side of the dining
hall, which are great for a date. (Term: decor)

(Label) positive

(Explanation) the term is followed by ’vibrant’ and ’eye-pleasing’

SemEval 2014 Task 4 - laptop

It’s priced very reasonable and works very well right out of the box. (Term: works)

(Label) positive

(Explanation) the word ‘‘resonable’’ occurs before term by no more
than 2 words

The DVD drive randomly pops open when it is in my backpack as well, which is annoying. (Term:
DVD drive)

(Label) negative

(Explanation) The word ’annoying’ occurs after term

A.3 IMPLEMENTATION DETAILS

We use 300-dimensional word embeddings pre-trained by GloVe (Pennington et al., 2014). The
dropout rate for embeddings is 0.96 and the dropout rate for our sentence encoder is 0.5. The hidden
state size of the encoder is 300 and the hidden state size of the attention layer is 200. We choose
Adagrad as the optimizer and the learning rate for training classifiers is set to 0.5.

For TACRED, in the pretraining stage, we set the learning rate to 0.1. The total epochs for pretraining
is 10. The weight for Lsim is set to 0.5. The batch size for pretraining is set to 100. For training the
classifier, the batch size for labeled data and unlabeled data is 50 and 100 respectively, the weight α
for Lu is set to 0.7, the weight β for Lstring is set to 0.2, the weight γ for Lsim is set to 2.5.

For SemEval 2010 Task 8, in the pretraining stage, we set the learning rate to 0.1. The total epochs
for pretraining is 10. The weight for Lsim is set to 0.5. The batch size for pretraining is set to 10. For
training the classifier, the batch size for labeled data and unlabeled data is 50 and 100 respectively,
the weight α for Lu is set to 0.5, the weight β for Lstring is set to 0.1, the weight γ for Lsim is set
to 2.

For two datasets in SemEval 2014 Task 4, in the pretraining stage, we set the learning rate to 0.5.
The total epochs for pretraining is 20. The weight for Lsim is set to 5. The batch size for pretraining
is set to 20. For training the classifier, the batch size for labeled data and unlabeled data is 10 and
50 respectively, the weight α for Lu is set to 0.5, the weight β for Lstring is set to 0.1, the weight γ
for Lsim is set to 2. For ATAE-LSTM, we set hidden state of attention layer to be 300 dimension.
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A.4 FULL RESULTS

The full results for relation extraction and sentiment analysis are listed in Table 6 and Table 7 re-
spectively.

TACRED SemEval

Metric Precision Recall F1 Precision Recall F1

LF (E) 83.21 13.56 23.33 83.19 21.26 33.86
CBOW-GloVe (R+ S) 28.2±0.7 44.9±0.9 34.6±0.4 46.8±1.3 51.2±2.2 48.8±1.1

PCNN (Sa) 43.8±1.6 28.9±1.1 34.8±0.9 51.5±1.9 35.2±1.4 41.8±1.2
PA-LSTM (Sa) 44.4±2.9 38.7±2.2 41.3±0.8 59.9±2.4 54.9±2.2 57.3±1.5

BiLSTM+ATT (Sa) 43.8±2.0 39.4±2.6 41.4±1.0 60.0±2.1 56.2±1.3 58.0±1.6
BiLSTM+ATT (Sl) 42.8±2.6 23.8±2.4 30.4±1.4 54.7±1.0 53.6±1.2 54.1±1.0

Data Programming (E + S) 45.9±2.8 23.3±2.6 30.8±2.4 51.3±3.5 38.8±4.2 43.9±2.4

Self Training (Sa + Su) 45.9±2.3 38.4±2.7 41.7±1.5 57.3±2.1 53.3±0.9 55.2±0.8
Pseudo Labeling (Sa + Su) 44.5±1.5 38.9±1.6 41.5±1.2 53.7±2.6 53.4±2.2 53.5±1.2

Mean Teacher (Sa + Su) 39.2±1.7 42.6±1.8 40.8±0.9 60.8±1.9 51.9±1.2 56.0±1.1
Mean Teacher (Sl + Slu) 28.3±5.7 25.4±5.8 25.9±2.2 53.1±3.8 51.6±2.4 52.2±0.7

DualRE (Sa + Su) 38.8±4.7 28.6±2.9 32.6±0.7 64.5±0.7 59.2±2.0 61.7±0.9

NMET (E + S) 49.2±0.9 42.4±1.3 45.6±0.4 66.3±1.4 61.0±2.2 63.5±1.0

Table 6: Full results as supplement to Table 2(a)

Restaurant Laptop

Metric Precision Recall F1 Precision Recall F1

LF (E) 86.5 4.0 7.7 90.0 7.1 13.1
CBOW-GloVe (R+ S) 62.8±2.8 75.3±3.1 68.5±2.9 53.4±1.1 72.6±1.5 61.5±1.3

PCNN (Sa) 67.1±2.1 79.0±1.8 72.6±1.2 53.1±1.0 71.4±1.1 60.9±1.1
ATAE-LSTM (Sa) 65.1±0.4 78.4±0.6 71.1±0.4 49.0±3.1 66.0±4.4 56.2±3.6
ATAE-LSTM (Sl) 65.3±0.5 78.9±0.5 71.4±0.5 48.9±1.5 55.6±2.4 52.0±1.4

Data Programming (E + S) 65.0±0.0 78.8±0.0 71.2±0.0 53.4±0.1 72.5±0.1 61.5±0.1

Self Training (Sa + Su) 65.3±0.7 78.4±0.9 71.2±0.5 50.1±1.8 67.7±2.4 57.6±2.1
Pseudo Labeling (Sa + Su) 64.9±0.5 78.0±0.6 70.9±0.4 50.4±1.6 68.4±2.3 58.0±1.9

Mean Teacher (Sa + Su) 68.8±2.2 75.7±3.9 72.0±1.5 54.4±1.7 72.3±4.0 62.1±2.3
Mean Teacher (Sl + Slu) 68.3±0.8 81.0±0.4 74.1±0.4 55.0±4.1 70.3±3.3 61.7±3.7

NMET (E + S) 69.6±0.9 83.3±1.8 75.8±0.8 54.6±1.6 73.9±2.3 62.8±1.9

Table 7: Full results as supplement to Table 2(b)
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