Under review as a conference paper at ICLR 2020

LEARNING TO CONTROL LATENT REPRESENTATIONS
FOR FEW-SHOT LEARNING OF NAMED ENTITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Humans excel in continuously learning with small data without forgetting how to
solve old problems. However, neural networks require large datasets to compute
latent representations across different tasks while minimizing a loss function. For
example, a natural language understanding (NLU) system will often deal with
emerging entities during its deployment as interactions with users in realistic
scenarios will generate new and infrequent names, events, and locations. Here, we
address this scenario by introducing a RL trainable controller that disentangles the
representation learning of a neural encoder from its memory management role.

Our proposed solution is straightforward and simple: we train a controller to
execute an optimal sequence of read and write operations on an external memory
with the goal of leveraging diverse activations from the past and provide accurate
predictions. Our approach is named Learning to Control (LTC) and allows few-shot
learning with two degrees of memory plasticity. We experimentally show that our
system obtains accurate results for few-shot learning of entity recognition in the
Stanford Task-Oriented Dialogue dataset.

1 MOTIVATION

Today, supervised models have problems incorporating new tasks over time while protecting previ-
ously acquired knowledge. This is because these algorithms require that all data is given prior to
training. This becomes a problem in the presence of more general scenarios in which new classes
emerge during training or data exhibit long-tailed distributions. Hence, classes with large sup-
port dominate the learning of gradient-based representations causing the catastrophic forgetting of
under-represented classes, [Kirkpatrick et al.| (2016)).

Unlike deep neural networks, humans and other mammals exel in learn incrementally with small data.
Biological evidence suggests that the process of acquiring new skills occurs in different brain areas
with at least two degrees of plasticity, Wixted et al.| (2018)): 1) A slow memory that is dense and
requires extensive practive. 2) A fast memory that is sparse and stores volatile information. Inspired
by these observations, we introduce a trainable controller, Learning to Control (LTC), that learns to
interact with both a slow memory (consisting of neural encoders) and a fast memory (consisting of an
associative array storing key-value pairs). We experimentally show the advantage of using LTC for a
few-shot learning setup. Figure[I]depicts the network architecture of our model.

We present the following contributions:

e We propose a novel architecture that uses a trainale controller to manipulate latent represen-
tations in an external memory (Section 3)).

e We introduce the use of a reward signal that is proportional to the average reduction of
entropy when attending the memory entries. This enables us to propose a reinforcement
learning approach that learns a policy based on interactions with the external memory.

e We show the generality of our solution for the few-shot learning of entities in the Stanford
Task-Oriented Dialogue dataset.

Under review as a conference paper at ICLR 2020

2 DENSE AND SPARSE MEMORIES

The proposed architecture considers the use of two types of memories that behave differently during
backpropagation. First, we define a memory as follows.

Definition 2.1. (Memory) Given a neural model f(x, y, #) that maps an observation z to the learning
task y and is parameterized by 6. Then, the memory of f(z,y,) is a collection of co-activations
responding similarly to the reocurring patterns associated to the learning task y.

A Neural Network uses most of its memory to remember patterns in the dataset. However, our
approach distinguishes between dense and sparse memories.

Definition 2.2. (Dense Memory) A dense memory is a type of memory, in which all its learnable
parameters 6 have the possibility of being updated during training.

We want to preserve latent representations of the input between training steps but a dense memory
will likely overwrite them based on frequent global updates. We then need a sparse memory with
addressable memory entries and sparse updates.

Definition 2.3. (Sparse Memory) Given a model f(x,y,0), let a(z,y) be a memory operation
which returns k updating parameters to incorporate the pair (x, y). Then, a sparse memory is a type
of memory that satisfies the sparse updating constraint:

0 < la(z,y)] < 0]
where |6] is the total number of trainable parameters.

We use the sparse memory introduced in Kaiser et al.|(2017) which consists of two arrays of size
mem_size for storing keys (K') and values (V). Each key has a dimensionality of key_dim and
each value is a scalar representing a class label. In our experiments, we fixed the number of updating
parameters, i.e. keys, to be very small (£ = 10) in comparison to mem_s1ize in order to satisfy the
sparse updating constraint, k < mem_size. The final form of the sparse memory is as follows.

M = (Kmem_sizexkey_dima Vtrnem_size)

The state of a sparse memory changes based on the following memory operations.

Definition 2.4. (Memory Operations) Let s be a input embedding that we want to incorporate into
M, y be a class label, and ¢ be the memory index of the most similar key to s based on the Cosine
similarity.

1. If V[i] # v, the write(i, s,y) operation registers a new class with M[i] = (s, y).

2. If V]i] = y, the update(i, s,y) operation modifies the stored key-based representation K [7]
with M[i] = (| K] +]|,).

3 LEARNING TO CONTROL

The goal of Learning To Control (LTC) is to learn a strategy to manage the entries of a sparse memory.
We characterize this decision process with a memory policy 7y which represents the probability
of running an memory operation given the current state of the memory. Rathern than following a
heuristics (e.g., overwritting in the oldest memory entry as in [Kaiser et al.|(2017)), learning such
policy has the advantage of optimizing the allocation of infrequent classes considering the limited
number of memory entries in M. Indeed, 7y transitions M to a new configuration in which its keys
are more adapted to store and maintain informative latent vectors. To clarify the connection between
the components, let us consider the forward and backward computations involved in LTC.

3.1 FORWARD COMPUTATION

As illustrated in Figure[T] information flows through the hidden layers of the neural encoder, feeds the
controller, and reaches the external memory M. The encoder is a Long-Short Term Memory (LSTM)

Under review as a conference paper at ICLR 2020

Policy Keys Values
Uy K V
a(i, s,
Observation (b5
x r(s, a)
Neural External
Encoder Controller Memory

Figure 1: Architecture of our approach based on a neural encoder that generates input representations
and a trainable controller that learns to store and maintain them in an external memory formed by
key-value pairs. The memory is modified via operations a, each of which returns a reward signal 7.

neural network that transforms the raw input x into the last hidden state of the following recurrence
h; = LSTM (z, h;_1), where s = h; is the state of the environment prior to any memory operation
and corresponds to the last hidden state of the LSTM encoder.

Which memory entries should the controller update to incorporate the learning task (s,y)? Our
approach is to induce the probablity distribution 7y (4|s) over the memory entries given the state s
and sample from there the most likely memory index i,

mo(ils) = Softmax(s - K;)
in, ~ argmax;(mo(i]s)).

Then, the controller executes the memory operation a(i,, s,y) at position i,, considering the
Definition [2.4] During inference, § = V[i,] returns the predicted class of the raw input .

3.2 BACKWARD COMPUTATION

The forward step performs an operation a(i,,,s,y) in the sparse memory and modifies its keys
to integrate latent representations. The backward step estimates the objective function J(#) and
computes its gradients with respect to the trainable parameters of the encoder and controller modules.

In the case of the controller, we want to compute the gradient vector Vy.J(6) that updates the
stochastic policy 7y in a direction that maximizes J(6) during few-shot learning. For our purposes,
each memory operation a returns a reward r that measures the efficacy of this operation to reduce
uncertainty about which of the keys in K will lead the transition between memory states. This means
going from a state in which no operation took place in memory (/;_1) to an updated state (K3).
More formaly, our reward function r;(s, a) corresponds to the reduction of entropy H when softly
attending over the memory entries before and after executing the operation a.

th =S Kt
atty, = Softmaz(hg,)

We use the dot-product attention score [Luong, Pham, and Manning (2015) to compute the logits
hk, over the memory keys and use Softmax to generate the probability distribution att, . [Zhu et
al.[(2005) demonstrates that models that show high entropy in their output distributions often fail to
discriminate classes because of exhibiting uniform-like distributions and a high degree of uncertainty.
Thus, we use the following entropy-based reward signal to encourage the use of few memory entries
to modify the sparse memory M.

re = — (H(attx,) — Hlattx,_,))

Based on memory operations, we can approximate the objective function from a batch of sampled
episodes of length T" as the expected value of the cumulative sum of rewards under the policy 7y,

Z (s, a)])
t=1

‘](9) = Eﬂe

Under review as a conference paper at ICLR 2020

Model 5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot
Memory Augmented NN 63.1% 66.7% 57.2% 61.3%
Matching Networks 67.3% 71.4% 62.2% 68.3%
Learning to Control 71.5% 77.1% 65.3% 75.8%

Table 1: Average accuracy for few-shot learning in the STDO dataset.

The REINFORCE algorithm |Williams| (1992) allow us to directly take the gradients of the objective
function J(#) as described in Equation|l|and used them to perform backpropagation.

N /T
VoJ (0 Z (ZV@logm) it |st) (Zrt/ Sy, Gy,) (1)

t'=t

4 EXPERIMENTS

We evaluate our proposed method on the Stanford Task-Oriented Dialogue Dataset (STDO) Eric et al.
(2017) which consists of 3,031 dialogues in the domain of an in-car assistant that provides automatic
responses to the requests of a driver considering weather, point-of-interest, and scheduled domains.

4.1 BASELINES

We compare Learning to Control (LTC) with the following baselines: 1) Matching Networks
(MN), |Vinyals et al.| (2016): This algorithm provides one-shot learning capabilities by jointly
mapping a small labeled support set and an unlabeled example to its most likely label, and 2)
Memory Augmented Neural Networks (MANN), Santoro et al.[(2016): This algorithm is designed
to provide one-shot learning based on a Neural Turing Machine and a curriculum training regime.

4.2 FEW-SHOT LEARNING FOR ENTITY RECOGNITION

We study the problem of sequence labeling to find the best label sequence (named entities) for a given
input sentence considering an LSTM encoder augmented with an external memory to store hidden
representations for each recurrent unit. We use the Stanford Named Entity Recognizer (NERﬂ to
augment the STDO dataset with 7 classes (Location, Person, Organization, Money, Percent, Date,
Time) and an non-entity class. This results in 15, 928 observations, 8 classes, and an average sequence
length of 44 words.

We change the format of the STOD dataset to simulate a scenario in which classes obtain incremental
support during training. This is done by forming episodes of labeled examples that show a uniform
distribution over k classes (e.g., 5-way), so we can track the number of times a particular class was
presented to the model during training (e.g., 1-shot learning). This format was proposed by [Santoro
et al.| (2016) to study few-shot learning. The goal of this experiment is to learn with small data, so
we study the learning behavior of LTC with an external memory of 1, 000 entries and in relation
to two models designed to provide few-shot learning capabilities: Memory Augmented Neural
Networks, |Santoro et al.[|(2016) and Matching Networks, [Vinyals et al.|(2016).

Table 1 shows that LTC provides an average improvement of +5.2 in the STOD dataset with respect
to the MN neural model, which is consistently the second most accurate option for both 5-way and
20-way classification and when the number of classes ranges from small (5-way) to large (20-way).
Similarly, LTC also shows an average improvement of +10.35% with respect to the MANN model.
For the scenario of learning with infrequent classes, LTC outperforms MN when only 1 training
observation is presented (1-shot) and 5 and 20 classes are available during training by +4.2% and
+3.1%, respectively. The performance advantage in the results can be explained by the extra memory
capacity of LTC and represent an opportunity to explore later what is the minimum memory size to
continuously learn with small data, an even more challenging problem to study in the future.

'https://nlp.stanford.edu/software/CRF-NER. html

https://nlp.stanford.edu/software/CRF-NER.html

Under review as a conference paper at ICLR 2020

5 RELATED WORK

The idea of training a controller that interacts with a memory to incrementally allocate distributional
representations builds upon a wide range of research in machine learning and memory augmented
algorithms.

Kraska et al.|(2018) introduced the concept of learned indices structures as a learning architecture
that predicts the position or existence of records. Their main goal is to prevent too many collisions
from being mapped to the same position inside the hash index. This is because collisions often
cause memory overhead when traversing a linked list or require the allocation of additional memory
for storing more records. They approach this problem as supervised learning of the cumulative
distribution function of hash keys, which leads to minimizing the number of collisions. In contrast,
we propose the use of an associative array as an indexed structure that supports generalization, so
the collision of multiple observations to a similar hash key if adequate for predicting the class of
similar input data. While the idea of learning hash functions as neural networks is not new, existing
work mainly focused on learning a better hash-function to map observations into low-dimensional
embeddings for similarity search assuming a fixed data distribution Qian et al.| (2014). To our
knowledge, it has not been explored yet if it is possible to learn a hash index according to a data
distribution in which few training observations are presented per class during training.

Deep Neural Networks are models that solve classification problems with non-linearly separable
classes. These are shown to be good for problems such as object detection |Krizhevsky, Sutskever.
and Hinton| (2017}, language translation Johnson et al.|(2016) and image generation (Goodfellow
et al.| (2014). Recently, recurrent neural networks (RNN) have been studied to manage the states
between time steps using an attention mechanism that addresses similar content Bahdanau, Cho, and
Bengio| (2014). Some similar approaches have also studied the problem of few-shot learning |Santoro
et al.|(2016))Koch, Zemel, and Salakhutdinov|(2015]|Vinyals et al.[(2016)), a representative example
is Matching Networks [Vinyals et al.| (2016)), which uses an attention mechanism to augment neural
networks for set-to-set learning.

A relevant research topic to this work is the idea of memory augmented networks that extend its
capabilities by coupling an external memory. For example, [Kaiser et al.|(2017) also proposes a
key-value memory, but with no controller mechanism for adequate training of few-shot learning
tasks. Also, Neural Turing Machines (NTM) |Graves, Wayne, and Danihelkal (2014) are differentiable
architectures allowing efficient training with gradient descend and showing important properties for
associative recall for learning different sequential patterns. Although they have important properties
for one-shot learning given their sequential memory management, the supervised nature of its training
still shows issues related to catastrophic forgetting.

6 CONCLUSIONS

Learning new tasks without forgetting the previously ones references the plasticity of our own brain to
retain previously acquired knowledge. In this work, we show a learning system that stores information
about named entities with two levels of representation: dense and sparse. While a dense memory
captures features that are shared across tasks, sparse memory incorporates embedding vectors and
prevents them from being overwritten by global updates during backpropagation. To do this, we rely
on the sparse structure of associative arrays to locally update a small set of memory entries and on the
use of a trainable controller that manages the transition of the sparse memory to a state of low entropy
that also addresses the learning task. This enables a model to incrementally learn in the presence
of a few observations per class. We experimentally show that our system obtains accurate results
for few-shot learning of entities in the Stanford Task-Oriented Dialogue dataset in comparison with
state-of-the-art few shot learning algorithms (Memory Augmented Neural Networks and Matching
Networks).

REFERENCES

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural machine translation by jointly learning to align
and translate. CoRR abs/1409.0473.

Under review as a conference paper at ICLR 2020

Eric, M.; Krishnan, L.; Charette, F.; and Manning, C. D. 2017. Key-value retrieval networks for
task-oriented dialogue. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and
Dialogue, 37-49. Saarbriicken, Germany: Association for Computational Linguistics.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.;
and Bengio, Y. 2014. Generative adversarial nets. In Advances in Neural Information Processing
Systems 27. 2672-2680.

Graves, A.; Wayne, G.; and Danihelka, I. 2014. Neural turing machines. CoRR abs/1410.5401.

Johnson, M.; Schuster, M.; Le, Q. V.; Krikun, M.; Wu, Y.; Chen, Z.; Thorat, N.; Viégas, F;
Wattenberg, M.; Corrado, G.; Hughes, M.; and Dean, J. 2016. Google’s multilingual neural
machine translation system: Enabling zero-shot translation. Technical report, Google.

Kaiser, L.; Nachum, O.; Roy, A.; and Bengio, S. 2017. Learning to remember rare events.

Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N. C.; Veness, J.; Desjardins, G.; Rusu, A. A.; Milan, K.;
Quan, J.; Ramalho, T.; Grabska-Barwinska, A.; Hassabis, D.; Clopath, C.; Kumaran, D.; and
Hadsell, R. 2016. Overcoming catastrophic forgetting in neural networks. CoRR.

Koch, G.; Zemel, R.; and Salakhutdinov, R. 2015. Siamese neural networks for one-shot image
recognition. PhD Thesis.

Kraska, T.; Beutel, A.; Chi, E. H.; Dean, J.; and Polyzotis, N. 2018. The case for learned index
structures.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2017. Imagenet classification with deep convolutional
neural networks. Commun. ACM 60(6).

Luong, T.; Pham, H.; and Manning, C. D. 2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, 1412—-1421. Lisbon, Portugal: Association for Computational Linguistics.

Qian, Q.; Hu, J.; Jin, R.; Pei, J.; and Zhu, S. 2014. Distance metric learning using dropout: A
structured regularization approach. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, 323-332.

Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; and Lillicrap, T. 2016. Meta-learning with
memory-augmented neural networks. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48, ICML’16, 1842—1850.

Vinyals, O.; Blundell, C.; Lillicrap, T.; kavukcuoglu, k.; and Wierstra, D. 2016. Matching networks
for one shot learning. In Advances in Neural Information Processing Systems.

Williams, R. J. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Mach. Learn. 8(3-4).

Wixted, J. T.; Goldinger, S. D.; Squire, L. R.; Kuhn, J. R.; Papesh, M. H.; Smith, K. A.; Treiman,
D. M.; and Steinmetz, P. N. 2018. Coding of episodic memory in the human hippocampus.
Proceedings of the National Academy of Sciences.

Zhu, S.; Ji, X.; Xu, W.; and Gong, Y. 2005. Multi-labelled classification using maximum entropy
method. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval.

	Motivation
	Dense and Sparse Memories
	Learning to Control
	Forward Computation
	Backward Computation

	Experiments
	Baselines
	Few-Shot Learning for Entity Recognition

	Related Work
	Conclusions

