
Under review as a conference paper at ICLR 2020

SENSIBLE ADVERSARIAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The trade-off between robustness and standard accuracy has been consistently re-
ported in the machine learning literature. Although the problem has been widely
studied to understand and explain this trade-off, no studies have shown the possi-
bility of a no trade-off solution. In this paper, motivated by the fact that the high
dimensional distribution is poorly represented by limited data samples, we intro-
duce sensible adversarial learning and demonstrate the synergistic effect between
pursuits of natural accuracy and robustness. Specifically, we define a sensible ad-
versary which is useful for learning a defense model and keeping a high natural
accuracy simultaneously. We theoretically establish that the Bayes rule is the most
robust multi-class classifier with the 0-1 loss under sensible adversarial learning.
We propose a novel and efficient algorithm that trains a robust model with sensible
adversarial examples, without a significant drop in natural accuracy. Our model
on CIFAR10 yields state-of-the-art results against various attacks with perturba-
tions restricted to `∞ with ε = 8/255, e.g., the robust accuracy 65.17% against
PGD attacks as well as the natural accuracy 91.51%.

1 INTRODUCTION

With many impressive successes of deep learning, there are a multitude of applications of deep
neural networks (DNNs) that permeate in our everyday life. As DNNs are applied in security-
critical systems such as malware detection, face identification, and autonomous driving, robustness
of DNNs against adversarial attacks, i.e., the intently perturbed inputs to fool the system, has become
an important research topic (Szegedy et al., 2013; Papernot et al., 2016; Biggio et al., 2013).

One of the most widely studied classes of adversarial perturbations is `p-norm constrained adver-
sarial perturbations (Szegedy et al., 2013). Madry et al. (2017) formalize the adversarial learning
against this class of perturbations as a minimization problem of adversarial risk defined in a follow-
ing way. Let (X, y) ∈ X × Y be from some unknown distribution PX,Y . Given a loss function
` : Y × Y → R and a constraint constant ε > 0, the adversarial robust risk is

Rrob(f) = EX,Y
[

max
‖δ‖p≤ε

`(f(X + δ), y)
]
. (1)

Many adversarial learning methods can be interpreted as empirical minimization of (1) (Goodfellow
et al., 2014; Kurakin et al., 2016b; Ruitong Huang & Szepesvari, 2015; Madry et al., 2017). For
this optimization problem, Madry et al. (2017) propose to train a robust model with the augmented
data generated by the projected gradient descent method (PGD). On this adversarial training, they
make two important observations. First, it costs natural accuracy. A network trained with adversarial
examples tends to have a lower natural accuracy than a naturally trained network. This trade-off is
observed even with a small training ε. Second, the adversarial training requires a larger model ca-
pacity than the natural training does. If the model capacity is only sufficient for the natural learning,
the adversarial training can converge to a constant function.

For a large ε, the optimization problem of (1) itself may pose the trade-off. For instance, Tsipras
et al. (2018) show an example of an inherent tension between pursuits of accuracy and robustness
when ε is large enough to change the true class. For a smaller ε, however, the formulation in (1) does
not explicitly pose any conflict between the pursuit of robustness and accuracy. Note that Rrob(f)
is an upper bound of the standard risk of f . A perfectly robust model f with Rrob(f) = 0 is
also perfectly accurate for natural learning. If the perfect classifier exists in a given model class,
the trade-off may be caused by the large sample complexity of adversarially robust generalization
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(Schmidt et al., 2018; Yin et al., 2018; Stutz et al., 2019). Without sufficiently large amount of data,
the empirical minimization of (1) may result in a large standard risk by converging to a model of a
poor robust risk. On the other hand, if robust learning converges to a constant function, it cannot
achieve natural accuracy. In this sense, to resolve the trade-off problem, we may need to deal with
the increased requirement on the model capacity.

In this paper, we propose a novel framework, called sensible adversary, in order to overcome the
trade-off between natural accuracy and robustness. In particular, we restrict adversarial perturbations
not to cross the Bayes decision boundary besides the ε-ball constraint, so that the perturbation ball
is adaptively modified for every single data point. Our main contributions are:

• Under the framework of sensible adversary, the pursuit of robustness and accuracy given an
enough model capacity can align with each other, i.e., there is no trade-off. We theoretically
establish the Bayes rule is most robust against the sensible adversary. If the Bayes decision
boundary can be far from data manifolds at least by ε, our pursuit of sensible robustness
does not cost any adversarial robust risk.

• We propose an efficient algorithm for sensible adversarial training , which utilizes sensible
adversaries in the absence of the true Bayes rule. This sensible adversarial training enjoys
robustness without a significant drop of natural accuracy. Furthermore, the algorithm is not
sensitive to the model capacity. When insufficient model capacity is given, our algorithm
does not collapse to a constant function. Instead, it trains a model as robust as possible.

• We experimentally demonstrate that sensible adversarial training enables to stably learn a
robust and accurate model. In particular, on CIFAR10, we achieve 91.51% natural test ac-
curacy and 65.17% robust test accuracy against `∞ PGD attacks constrained to ε = 8/255.
To the best of our knowledge, there is no approaches known to achieve more than 60%
of robust accuracy against PGD attacks of ε = 8/255. Moreover, no previous approaches
pursuing robustness against this attack achieved the natural accuracy more than 90%.

1.1 RELATED WORK

Madry et al. (2017) formalize adversarial learning as a mini-max problem given perturbation restric-
tion, and theoretically and empirically established the feasibility of the optimization. Our sensible
adversary redefines the set of perturbation in the inner maximization problem on which their the-
oretical result is directly applicable. Tsipras et al. (2018) investigate the possible source of robust
trade-off. The key idea is that when there are features that are useful for natural classification but
vulnerable to adversarial perturbations, a robust model would abandon these features because other-
wise all of these features can adversarially move to promote incorrect prediction. Our work explores
the possibility of learning a robust model while not allowing such collective adversarial migration.
Zhang et al. (2019) investigate the Bayes decision boundary to resolve the trade-off problem. They
search for a model f having a small weighted sum of the natural risk and a probability that an adver-
sarial example can cross the decision boundary of f . Compared with their approach, our framework
directly prevents an adversarial example from crossing the decision boundary of the Bayes rules.
Gilmer et al. (2018) show that in high dimensional setting, even small test error can imply the exis-
tence of adversarial examples for most of data points. Our effort to prioritize natural accuracy to find
a robust model is consistent to the view in Gilmer et al. (2018). More related work will be presented
in Appendix A.

1.2 NOTATION

Let F denote the class of functions represented by DNNs with a fixed architecture. An opti-
mal robust model w.r.t. PX,Y is denoted by frob = arg minf∈F Rrob(f). Denote the stan-
dard risk w.r.t PX,Y by Rstd(f) = EX,Y [`(f(X), y)] and its optimal natural model by fstd =

arg minf∈F Rstd(f). Let P̃X,Y = PX,Y |X̃×Y denote a restricted distribution of PX,Y on a
subset X̃ × Y ⊂ X × Y . Likewise, denote the standard risk w.r.t P̃X,Y by R̃std(f) and the
robust risk w.r.t P̃X,Y by R̃rob(f). For a set A, the ε-neighborhood in `p-norm is defined as
B(A, ε) = {y|‖y − x‖p ≤ ε, x ∈ A}, and the interior is denoted by int(A). Denote the ε-
neighborhood of the decision boundary of f by DB(f, ε) = {x

∣∣ ∃x′ ∈ B(x, ε) s.t. f(x) 6= f(x′)}.
Let p̂f,y(x) denote the predicted probability of the label of x being y by a model f .
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2 ADVERSARIAL LEARNING MAY HELP STANDARD LEARNING

In this section, we use a toy example to investigate the synergistic effect between the pursuit of
robustness and natural accuracy.

Example: We can easily find an example of trade-off wherever an ε-ball attack can cross the
manifold boundary between classes. For example, consider a two-dimensional random vector
X = (X1, X2) on X = (0, 1) × (0, 1) with a binary class Y ∼ Ber(p), where p > 0.5. Let
the conditional distribution be (X1, X2)|Y = 0 ∼ Unif((0, 12 ) × (0, 1)) and (X1, X2)|Y = 1 ∼
Unif(( 1

2 , 1)×(0, 1)). Then the Bayes Rule is fB(x) = sign(x1−0.5), and it is a perfect classifier,
in thatRstd(fB) = 0 with ` as the 0-1 loss. If p > 0.5, the robust classifier against ε-ball attacks is
frob(x) = sign(x1−(0.5−ε)). Its decision boundary is deviated by−ε from that of the Bayes rule,
and this deviation costs natural accuracy byRstd(frob)−Rstd(f) = (1− p)ε. However, when the
data points reside in a high-dimensional space, the samples are too sparse to represent the underlying
true distribution. To take this phenomenon into account, consider a distribution P̃X,Y = PX,Y |X̃×Y
on a subset X̃ × Y ⊂ X × Y . Assume that we only observe data generated from P̃X,Y , and the
training and test sets do not provide any information on X̃ c × Y . Now by applying this support re-
striction to the example above, we demonstrate how adversarial learning dramatically changes from
harming to benefiting natural accuracy.

The Cheese hole distribution: For the above example, we restrict the support on X̃ = ∪3i=1 ∪3j=1

Hij ,whereHij = ((α2 ,
3α
2 )+2α(i−1))×((α2 ,

3α
2 )+2α(j−1)), α = 1

6 , and j = 1, 2, 3. Therefore
the sampling support X̃ comprises of nine small squares equally spaced by α. This is illustrated in
Figure 1 (a). Among all classifiers which predict the same as fB on X̃ , the worst one, denoted by
f̃B∗, predicts exact opposite on x ∈ X̃ c as illustrated in Figure 1 (b). For this worst case, the true
standard risk w.r.t PX,Y is 3

4 , although the standard risk w.r.t. P̃X,Y is zero.

We argue that pursuing robustness can mitigate this discrepancy. Among minimizers of R̃rob, let
f̃∗rob be the worst classifier in that it predicts incorrectly outside X̃ as depicted in Figure 1 (c). On
B(X̃ , ε), f̃∗rob should correctly classify, except on Aε = {(x1, x2)|0.5− ε ≤ x1 ≤ 0.5} ∩ B(X̃ , ε).
In this situation, the inaccuracy of f̃∗rob is compensated by its increased accuracy on B(X̃ , ε) \ Aε.
Moreover, the composition ofRrob(f̃B∗) is particularly interesting, and it is easy to show that

Rrob(f̃B∗) = P
(
f̃B∗(Y ) = X,X ∈ DB(f̃B∗, ε)

)
+ 3/4,

where 3/4 is from the standard inaccuracy on X̃ c. The major part of Rrob(f̃B∗) comes from the
inaccuracy of f̃B∗ outside of the sampling support X̃ . Therefore by simply reducing this in-
accuracy on X̃ c, we can lower the robust risk by 3/4. Another interesting observation is that
Bε = {(x1, x2)|0.5 − ε < x1 < 0.5 + ε} is the only area where the Bayes rule fB has its ro-
bust risk. Note that Rrob(fB) = P(X1 ∈ Bε, fB(X) = Y ) = 2ε which is greater than the optimal
robust risk. The reason why fB is not most robust is simply because it is accurate on Bε. This
prevents fB from being a robust function under the current adversarial robustness framework.

These observations have two implications. First, the robust pursuit can help to increase natural
accuracy outside of X̃ where the samples are poorly representative. Second, by accurately correcting
the model outside of X̃ in a standard sense, the robust risk can be significantly decreased. This is
where the pursuit of robustness and accuracy coincides.

Toward respecting the original data structure: What if we regard the adversarial robust risk near
the class border as reasonable gullibility? This corresponds to pursuit of robustness only against
adversarial examples which do not cross between the class manifolds, i.e., as long as this does not
harm the natural accuracy on X̃ . We call this robustness as sensible robustness, which respects the
structure represented by data. In this example, the sensible robustness can increase both robustness
and natural accuracy. Let f̃s∗rob denote the worst case sensibly robust classifier w.r.t P̃X,Y . The
decision boundary of f̃s∗ should not deviate to the left on B(X̃ , ε) no matter how large ε is, as
depicted in Figure 1 (d). Note that when ε ≥ α/2, f̃∗rob is the unique minimizer of R̃rob(f) as
B(X̃ , ε) covers X .

3



Under review as a conference paper at ICLR 2020

Figure 1: Cheese holes distribution. (a) The outer square is the support of the underlying true
distribution PX,Y , but the sampling is restricted on the small squares X̃ ×Y with distribution P̃X,Y .
(b) The worst case naturally optimal model w.r.t. P̃X,Y . (c) The worst case robustly optimal model
w.r.t. P̃X,Y . (d) The worst case sensibly robust model w.r.t. P̃X,Y .

3 SENSIBLE ADVERSARIAL ROBUSTNESS

In this section, we introduce a sensible adversary framework. Consider a general multi-class case
with the 0-1 loss, where Y = [K]. Assume the model capacity is enough so that the Bayes rule
fB ∈ F . We consider `p-norm constrained adversarial attacks, where p ∈ {0, 1, ...,∞}.
Definition 1. (sensible adversarial example) For a classifier f , let Sx,ε(f) = {z ∈ X |‖z − x‖p ≤
ε, f(z) = y}. Then the sensible adversarial example of (x, y) w.r.t f is defined as

x̃ =

x, if fB(x) 6= y

arg max
z∈Sx,ε(fB)

`(f(z), y), otherwise. (2)

Definition 2. (sensible robustness) Let the sensible adversarial loss be `srob,ε(f, x, y) = `(f(x̃), y)
where x̃ is a sensible adversarial example as defined above. Then the sensible robust risk of a model
f is defined by

Rsrob(f) = EPX,Y

[
`srob,ε(f,X, Y )

]
= EPX,Y

[
`(f(X̃), Y )

]
. (3)

We call its minimizer as a sensibly robust model w.r.t PX,Y and denote by fsrob , i.e.,

fsrob = arg min
f∈F
Rsrob(f).

Remark 1. Intuitively, a sensible adversarial example is an adversarial example restricted not to
cross the decision boundary of the Bayes rule. In addition, a sensible adversary does not perturb a
data point that the Bayes rule incorrectly classifies. Therefore, it is natural to expect that pursuing
sensible robustness would not cost natural accuracy, and the following theorem confirms it.
Theorem 1. Let R∗std denote the minimum standard risk which is Rstd(fB). Then we have
Rsrob(fB) = R∗std. Furthermore, fB is the unique minimizer ofRsrob(f) among f ∈ F .
Theorem 2. Let SX,ε be an ε-ball centered at X . Then for any f ∈ F and for any set A ⊂
X \DB(fB , ε),

P
(
∃ x′ ∈ SX,ε s.t. fB(x′) 6= Y,X ∈ A

)
≤ P

(
∃ x′ ∈ SX,ε s.t. f(x′) 6= Y,X ∈ A

)
.

Remark 2. According to the Theorem 1, a sensibly robust model w.r.t PX,Y is the Bayes rule,
i.e., fsrob = fB . This sensible robustness costs adversarial robustness since fB may have a larger
adversarial robust risk compared with frob, a direct minimizer of (1). However, Theorem 2 shows
fB is equally or even more robust than frob except on a certain area. In particular, Theorem 2
shows that fB is the most robust model except on DB(fB , ε). Therefore, fB is most robust almost
everywhere if the decision boundary of fB can lie outside of B(X , ε), so that X \DB(fB , ε) = X .
For example, this happens when each class has its own support apart from each other by at least 2ε.
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Algorithm 1 Sensible adversarial training for `∞ norm restriction

1: Input: Initialized f = fθ, c ∈ (0, 1), step number K, step sizes η1, η2, data X(0)
adv = X

2: repeat
3: for i = 1, ...,m, s.t. f(x

(0)
i,adv) = yi

4: for k = 1, ...,K

5: x
(k)
i,adv ← ΠB(xi,ε)(η1sign(∇x`(f(x

(k−1)
i,adv ), yi)) +x

(k−1)
i,adv ), Π: the projection operator

6: if `(f, x(k)i,adv, yi) > log 1
c

7: (sensible reversion) x(K)
i,adv = x

(k−1)
i,adv

8: break
9: θ ← θ − η2

∑c
i=1∇θ`(f, x

(K)
i,adv, yi)/m

10: until training converged

The next theorem shows that even when we only have data from P̃X,Y restricted on X̃ × Y , we can
find fsrob, the optimal function w.r.t. PX,Y .

Theorem 3. Let Aε =
{
f ∈ F

∣∣ P̃(f(x) = fB(x), ∀x ∈ SX,ε(f
B)
)

= 1
}

and R̃srob(f) =

EP̃X,Y [`srob,ε(f,X, Y )]. Then, for any ε > 0, R̃srob(f) is only minimized by any f ∈ Aε. Further-

more, if B(X̃ , ε) ⊃ X , fB is the unique minimizer of R̃srob(f).

4 ALGORITHM

A transition from theory to algorithm poses two main challenges. First, the 0-1 loss function in the
theory is hard to optimize. Therefore, as a common practice, we use the cross-entropy loss. Second,
fB on the entire space is practically unavailable. We note that a model that performs well on natural
data can be a nice approximation of fB on the restricted support X̃ × Y . Therefore, we generalize
sensible adversary in (2) to utilize a general loss function and a reference model that substitutes fB .
Definition 3. (generalized sensible adversarial example) Consider a loss function `. For a classi-
fier f and c ∈ (0, 1], let Sx,ε(f) = {z ∈ X |‖z− x‖p ≤ ε, `(f(z), y) ≤ log 1

c} ∪ {x}. Then given a
reference model fr, the sensible adversarial example of f for (x, y) is defined as

x̃|fr =

x, if fr(x) 6= y

arg max
z∈Sx,ε(fr)

`(f(z), y), otherwise. (4)

If ` is the cross-entropy loss, the condition `(fr(x), y) ≤ log 1
c is equivalent to p̂fr,y(x) ≥ c. In

binary case with c = 0.5, this requires the perturbed examples not to cross the decision boundary of
fr, and for general c, not to reach to a vicinity of the boundary.

In our algorithm we set fr as a naturally trained model or a current model. Given a fr, the implemen-
tation of sensible adversarial attacks is straightforward. For a correctly classified natural example by
fr, we add perturbations in the similar way to the PGD method (Madry et al., 2017). The difference
is that during the K-step of PGD iterations, once the loss of a currently generated example exceeds
log 1

c , we reverse it back to the previous step and break the iteration. This requires no additional
forward- or backward-propagation, compared with the PGD method. The proposed algorithm is in
Algorithm 1 for the `∞-norm and in Algorithm 2 in Appendix C for the other `p-norms.

The definition of the sensible adversary in (4) divides the data into three subsets: Afr = {x|fr(x) 6=
y or Sx,ε(fr) = {x}}, Bfr = {x|Sx,ε(fr) 6= Sx,ε, Sx,ε(fr) 6= {x}}, and Cfr = X \ (Af ∪ Bf ).
Therefore, our algorithms generate a sensible adversarial example x̃s|fr=f in three different ways:
(1) x̃s = x for x ∈ Af , (2) x̃s 6= x̃p for x ∈ Bf , and (3) x̃s = x̃p for x ∈ Cf , where x̃p is a
full K-step PGD attack. Therefore, sensible adversarial training inherently involves a set selection
mechanism. The sensible adversarial loss can be written as
`s(f, x, y) = `(f, x, y)1x∈Af + `(f, x̃s, y)1x∈Bf + `(f, x̃p, y)1x∈Cf

= `(f, x, y)1`(f,x,y)>log 1
c

+ `(f, x̃s, y)1x̃p 6=x̃s, x≤log 1
c

+ `(f, x̃p, y)1`(f,x̃p,y)≤log 1
c
.

(5)
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Figure 2: The natural and robust accuracies of our models for the varying parameter c.

When c ≥ 0.5, this optimization problem has a strong motivation to increase |Cf |, i.e., the number
of sensible adversarial attacks that are identical to full PGD attacks. BecauseAf = {x|`(f(x), y) >
log 1

c} for c ≥ 0.5, the loss on the natural stage Af is always greater than the loss of the sensibly
reversed stage Bf and the full PGD stage Cf . Furthermore, the loss for x ∈ Bf is always ap-
proximately log 1

c by adaptive sensible perturbations. Therefore, paradoxically, the smallest loss is
only achievable by full PGD examples. In other words, sensible adversarial training penalizes when
x 6∈ Cf . We note that the optimization problem has a smooth landscape; Although the data points
may jump around between Af , Bf , and Cf , there is no obvious discontinuity in the loss. Therefore,
during the training, `s(f, x, y) smoothly slides down, making both `(f, x, y) and `(f, x̃p, y) smaller
than log 1

c . This enables to learn a naturally and adversarially accurate model. More discussion on
the stability of our algorithms are presented in Appendix D.

5 EXPERIMENTS

5.1 EXPERIMENT 1: SENSITIVITY ANALYSIS

We perform the sensibility analysis to understand the effect of c and the model capacity for two
reasons. First, the sensible training prevents full PGD perturbations on an example until the loss on
it becomes less than log 1

c , which could hardly happen for a model with a small capacity. Second, as
Madry et al. (2017) point out, when the model capacity is insufficient for adversarial learning, the
model collapses to a constant function. We are interested in a range of c that keeps sensible learning
from collapsing. Therefore, we consider a sequence of CNNs of the increasing number of kernels
similar to Madry et al. (2017), where we denote the capacity by q ∈ {1, 2, 3, 4, 5}. The details of
the model architectures are presented in Appendix H. When we train them with natural examples,
the networks of capacity 1 and 2 achieve about 95% and 97% accuracy, whereas the networks of the
other capacities achieve more than 99%. When trained with regular PGD examples, the networks
with capacity 1,2, and 3 collapse. Therefore, capacity 3 is enough only for natural learning, and
capacities 1 and 2 are possibly insufficient even for natural learning.

For each capacity q, we train the models with sensible adversarial examples on MNIST with the
hyperparameters c ∈ {0, 0.1, · · · , 0.9, 1}. Note that sensible adversarial training is identical to
natural training when c = 1, and to adversarial learning without any perturbations for incorrectly
classified natural examples when c = 0. Figure 2 shows the natural and robust accuracy against
PGD-40 attacks with varying c for each capacity. In general, the natural accuracy tends to increase
as c increases while robustness decreases. For capacities 3, 4 and 5, the accuracies are almost
insensitive to varying c. On the other hand, the tendency is most distinct in capacity 1. In this case,
the network obtains best robustness when c = 0.5, which is the least loss bound among c ≥ 0.5, the
range of c with stable learning property. Even for capacity 1, however, the sensible learning does
not collapse except when c = 0. We also see that c = 0.5 is least sensitive to the model capacity.
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Figure 3: The prediction margins at convergence of capacity 5 on the test set. The natural margin of
a model f at (x, y) is log p̂f,y(x) −maxy′ 6=y log p̂f,y′(x). The adversarial margin is calculated by
log p̂f,y(x̃p)−maxy′ 6=y log p̂f,y′(x̃

p), where x̃p is a full PGD attack.

Table 1: The test result on natural examples and `∞-attacks for CIFAR10 (ε = 8/255).
NAT CW40 DeepFool FGSM LBFGS MIFGSM PGD20 PGD1000

SENSE 91.51 67.01 78.89 72.72 85.94 68.87 65.17 64.92
TRADE 84.92 62.19 61.38 61.06 81.58 57.95 56.61 56.43

Note that capacities 2 and 3 do not collapse even with c = 0. When c = 0, the only difference of
the sensible adversarial learning from the regular PGD training is that the sensible learning requires
robustness only for the correctly classified natural examples. When c = 0, at the convergence of the
models of capacities 1 and 2, about 5% of the data points are allowed to be free from the perturbation.
By paying only the 5% of robust training accuracy, the sensible learning avoids collapsing and
obtains about 80% of robust accuracy and 90% of natural accuracy.

Intuitively, an insufficient model capacity or locally close class manifolds can make a virtual deci-
sion boundary that is inevitable to keep a nice natural performance. In the algorithm, the sensible
reversion prevents adversarial examples from crossing this boundary. This effectively reduces the
requirement of the model capacity posed by the regular adversarial learning. The sensible reversion
also allows a robust model to have larger margins than the PGD trained model for the majority of
the dataset as in Figure 3. The PGD trained model has majority adversarial margins as positive.
Instead, it has much smaller natural margins than the naturally trained model. The SENSE model
with c = 0.5 has comparably large adversarial and natural margins. Instead, the number of data
points with negative adversarial margins is larger than that of the PGD trained model. As c increases
to 0.9, this model has much smaller and more negative adversarial margins. On the other hand, its
two types of margins are generally even larger. This phenomenon is consistent to the decreasing
robustness in Figure 2 for capacity 5. In general, for a fixed capacity, increasing c increases the
natural and adversarial margins of the majority of the data, while it also increases the portion of data
of negative adversarial margins.

The cost for this highly confident prediction is the robustness near the decision boundary at con-
vergence, i.e., the portion of the data points in the natural and sensibly reversed stage. When we
consider the margin on the training set, we find that there is a linear relationship between the portion
of the data points having negative adversarial margins and the test accuracy. In practice, such a por-
tion can be an indicator about the robustness of the model or the sufficiency of the model capacity,
without directly testing the model.

5.2 EXPERIMENT 2: ROBUSTNESS AGAINST ε-BALL ATTACKS

CIFAR10 We train WideResNet-34-10 (He et al., 2016) with sensible adversarial examples of
ε = 8/255 and c = 0.7 with the step number K = 10 and size η1 = ε/5. We attack our model
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Table 2: The transfer attack results between the TRADE and SENSE model on CIFAR10. The
`∞ PGD40 and MIFGSM attacks are generated. The subscripts of the column names denote the
generating model. The denominator and numerator in each cell are the number of adversarial attacks
and correct predictions respectively (ε = 8/255).

Defence model PGDSENSE PGDTRADE MIFGSMSENSE MIFGSMTRADE

TRADE 7831/10000 5655/10000 1584/3113 5888/10000
SENSE 6499/10000 6961/10000 6887/10000 2916/4112

Table 3: MNIST: test results of our models on natural examples and `∞ based attacks (ε = 0.3).
Defence model Natural PGD40 C&W40

SENSE 99.51 96.46 96.02

TRADE 99.48 96.07 96.90

with various white-box attacks with perturbations restricted to `∞ with ε = 8/255. We compare
the performance with TRADE using the same architecture (Zhang et al., 2019), which is know to
be robust and accurate. The result is in Table 1. Our model achieves 91.51natural accuracy. This
is 3.7% drop in natural accuracy from 95.2%, which is an accuracy that a naturally trained model
can achieve (Madry et al., 2017). With this architecture, Madry et al. (2017) achieve 47.04% robust
accuracy against PGD20 attacks and 87.3% natural accuracy. As a black-box attack, we try transfer
attacks between the TRADE and SENSE model by the `∞ based PGD and MIFGSM, which are
known to be effective for transfer attack (ε = 8/255). We obtain adversarial examples by applying
PGD and MIFGSM on a generating model, and then use the examples to attack a defense model.
The result is in Table 2. Overall we observe that our model outperforms both the TRADE and Madry
model. In particular, sensible adversary achieves more than 60% of robust accuracy against PGD
attacks of ε = 8/255, and no previous approaches pursuing robustness against this attack achieve
this level. This performance is consistent to the test margin distribution in Figure 8, and this is
discussed in detail in Appendix E.

MNIST We consider a CNN model with three convolutional layers followed by a fully connected
linear layer, which is the same architecture in (Zhang et al., 2019). We train an MNIST model with
sensible adversarial examples of ε = 0.3 and c = 0.5 with the step number K = 10 and size
η1 = 0.05. The robust test result in Table 3 shows the comparable performance of our model.

6 CONCLUDING REMARKS

In this paper, we proposed a sensible adversary which is useful for learning a defense model, keep-
ing a high natural accuracy simultaneously. We theoretically establish that the Bayes rule is most
robust under the framework of sensible adversarial learning. Our learning algorithm is efficient and
stable, and not sensitive to the choice of the main hyperparameter c. Also, c has a clear meaning as
the lowest prediction-probability bound. Our empirical experiments yield state-of-the-art results of
adversarial learning on the CIFAR10 and MNIST datasets. In addition, we showed that the sensible
approach can effectively deal with the lack of model capacity. This is because by paying a robust
accuracy on a certain area, the algorithm protects the model from being collapsed by influential
adversarial examples. Furthermore, the sensible adversarial learning trains a model to have high
prediction margins on both natural and adversarial examples.

We now mention several future directions for research on sensible adversary. One remaining the-
oretical problem is to develop generalization error bounds for sensible adversary learning, so that
we can theoretically justify our empirical performance. In fact, in this work, we did not tackle the
lack of sample size. In particular, as our algorithm tends to produce a model with large natural and
adversarial prediction margins, in the lack of sample size, it is not clear if this large margins are
always beneficial. Therefore, there is much remaining work to be done to theoretically understand
the high margin tendency of the models trained with sensible adversarial examples with relation to
generalization.
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Sébastien Bubeck, Eric Price, and Ilya Razenshteyn. Adversarial examples from computational constraints.
arXiv preprint arXiv:1805.10204, 2018.

Gavin Weiguang Ding, Kry Yik Chau Lui, Xiaomeng Jin, Luyu Wang, and Ruitong Huang. On the sensitivity
of adversarial robustness to input data distributions. arXiv preprint arXiv:1902.08336, 2019a.

Gavin Weiguang Ding, Luyu Wang, and Xiaomeng Jin. AdverTorch v0.1: An adversarial robustness toolbox
based on pytorch. arXiv preprint arXiv:1902.07623, 2019b.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting ad-
versarial attacks with momentum. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 9185–9193, 2018.

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin Wattenberg, and Ian
Goodfellow. Adversarial spheres. arXiv preprint arXiv:1801.02774, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2016a.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016b.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. AT&T Labs [Online]. Avail-
able: http://yann. lecun. com/exdb/mnist, 2:18, 2010.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate
method to fool deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2574–2582, 2016.

Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Ambrish Rawat, Martin Wistuba, Valentina Zantedeschi,
Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Ian Molloy, and Ben Edwards. Adversarial robustness
toolbox v0.8.0. CoRR, 1807.01069, 2018. URL https://arxiv.org/pdf/1807.01069.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami.
The limitations of deep learning in adversarial settings. In 2016 IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 372–387. IEEE, 2016.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox v0.8.0: A python toolbox to benchmark the
robustness of machine learning models. CoRR, abs/1707.04131, 2017. URL http://arxiv.org/abs/
1707.04131.

Dale Schuurmans Ruitong Huang, Bing Xu and Csaba Szepesvari. Learning with a strong adversary. arXiv
preprint arXiv:1511.03034, 2015.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Adversarially
robust generalization requires more data. In Advances in Neural Information Processing Systems, pp. 5014–
5026, 2018.

David Stutz, Matthias Hein, and Bernt Schiele. Disentangling adversarial robustness and generalization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6976–6987, 2019.

9

https://arxiv.org/pdf/1807.01069
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1707.04131


Under review as a conference paper at ICLR 2020

Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is robustness the cost of
accuracy?–a comprehensive study on the robustness of 18 deep image classification models. In Proceedings
of the European Conference on Computer Vision (ECCV), pp. 631–648, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Pedro Tabacof and Eduardo Valle. Exploring the space of adversarial images. In 2016 International Joint
Conference on Neural Networks (IJCNN), pp. 426–433. IEEE, 2016.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robustness
may be at odds with accuracy. stat, 1050:11, 2018.

Dong Yin, Kannan Ramchandran, and Peter Bartlett. Rademacher complexity for adversarially robust general-
ization. arXiv preprint arXiv:1810.11914, 2018.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan. Theoreti-
cally principled trade-off between robustness and accuracy. arXiv preprint arXiv:1901.08573, 2019.

10



Under review as a conference paper at ICLR 2020

Appendices
A ADDITIONAL RELATED WORK

Bubeck et al. (2018) conjecture that learning a robust model is information theoretically possible but computa-
tionally intractable. They introduce an example which is not robustly learnable in polynomial time. Our view
is consistent with Bubeck et al. (2018) in that a robust model exists, but we search for an efficient algorithm
to estimate a robust model in a reasonable time. Su et al. (2018) compared various naturally trained models
on ImageNet, and found that the trade-off varies among different model architectures. Also, they empirically
discovered that more accurate models tend to be less robust when the models are trained with natural examples.
Stutz et al. (2019) demonstrate that given a large training set, adversarial training can produce a robust model
that is as accurate as a naturally trained model. Our work to maximize the synergistic effect between natural
and adversarial accuracy is consistent to their demonstration. Also, they show that most of PGD attacks are off-
manifold of the original data, and by on-manifold adversarial training, the natural accuracy can be improved.
If we see the restricted space X̃ as the data manifold, and X̃ c as off-manifold, our sensible framework aligns
with their view, given the data manifolds of different classes are separated by at least 2ε. Kurakin et al. (2016b)
suggest adversarial learning that trains with data randomly divided into two parts, a natural and adversarial
set. We divide data in a data adaptive way into three parts including a sensibly reversed adversarial set. The
relationship between their approach and our algorithm is discussed more in Appendix F.

B PROOFS OF THEOREMS

To save the space, we use η(k|x) to denote P(Y = k|X = x).

Theorem 1. (Restated) Let R∗std denote the minimum standard risk which is Rstd(fB). Then we have
Rsrob(fB) = R∗std. Furthermore, fB is the unique minimizer ofRsrob(f) among f ∈ F .

Proof.

Rsrob(fB) = P(fB(X̃) 6= Y )

= P(fB(X) 6= Y ) + P(fB(X) = Y, and ∃x′ ∈ SX,ε(fB) s.t. fB(x′) 6= Y )

= P(fB(X) 6= Y ) + 0, by the definition of SX,ε(fB)

= Rstd(fB) = R∗std.

It is obvious that fB is a minimizer ofRsrob(f) becauseR∗std is a lower bound ofRsrob(f) for any f ∈ F .

Now we show fB is the unique minimizer ofRsrob(f).

Rsrob(f) = P(fB(X) 6= Y, f(X) 6= Y ) + P(fB(X) = Y, ∃x′ ∈ SX,ε(fB) s.t. f(x′) 6= Y )

=

K∑
k=1

P(fB(X) 6= k, f(X) 6= k, Y = k) + P(fB(X) = k, ∃x′ ∈ SX,ε(fB) s.t. f(x′) 6= k, Y = k)

=

K∑
k=1

∫
X
P(fB(x) 6= k, f(x) 6= k, Y = k|X = x)

+ P(fB(x) = k, ∃x′ ∈ Sx,ε(fB) s.t. f(x′) 6= k, Y = k|X = x)dP(x)

=

K∑
k=1

∫
X
1fB(x)6=k,f(x)6=kη(k|x) + 1fB(x)=k,∃x′∈Sx,ε(fB) s.t. f(x′)6=kη(k|x)dP(x)

= Rstd(f) +
K∑
k=1

∫
X
1fB(x)=k(1∃x′∈Sx,ε(fB) s.t. f(x′)6=k − 1f(x)6=k)η(k|x)dP(x) (6)

The last equality is by 1fB(x)6=k,f(x)6=k = (1− 1fB(x)=k)1f(x)6=k.

The first termRstd(f) is uniquely minimized by the Bayes rule fB . The second term is always non-negative,
and is zero when f = fB . Therefore,Rsrob(f) is uniquely minimized by fB .
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Theorem 2. (Restated) Let SX,ε be an ε-ball centered at X . Then for any f ∈ F and for any set A ⊂
X \DB(fB , ε),

P
(
∃ x′ ∈ SX,ε s.t. fB(x′) 6= Y,X ∈ A

)
≤ P

(
∃ x′ ∈ SX,ε s.t. f(x′) 6= Y,X ∈ A

)
.

Proof. For any setA ⊂ X\DB(fB , ε), P(∃x′ ∈ SX,ε s.t. fB(x′) 6= Y,X ∈ A) = P(fB(X) 6= Y,X ∈ A).
Note that on any subset B ⊂ X , the Bayes rule has the least error probability. Therefore, P(fB(X) 6= Y,X ∈
A) ≤ P(f(X) 6= Y,X ∈ A) ≤ P(∃x′ ∈ SX,ε s.t. f(x′) 6= Y,X ∈ A). The last inequality is trivial because
if f(X) 6= Y ⇒ ∃x′ ∈ SX,ε s.t. f(x′) 6= Y .

Theorem 3. (Restated) Let Aε =
{
f ∈ F

∣∣P̃(f(x) = fB(x), ∀x ∈ SX,ε(f
B)
)
= 1

}
and R̃srob(f) =

EP̃X,Y [`
s
rob,ε(f,X, Y )]. Then, for any ε > 0, R̃srob(f) is only minimized by any f ∈ Aε. Furthermore, if

B(X̃ , ε) ⊃ X , fB is the unique minimizer of R̃srob(f).

Proof. The sensible risk of f w.r.t. the restricted distribution corresponding to (6) is

R̃srob(f) = R̃std(f) +
K∑
k=1

∫
X̃
1fB(x)=k(1∃x′∈Sx,ε(fB) s.t. f(x′)6=k − 1f(x)6=k)η(k|x)dP̃(x) (7)

= R̃std(f) +
∫
X̃

K∑
k=1

1fB(x)=k(1∃x′∈Sx,ε(fB) s.t. f(x′)6=fB(x) − 1f(x) 6=fB(x))η(f
B(x)|x)dP̃(x)

= R̃std(f) +
∫
X̃
(1∃x′∈Sx,ε(fB) s.t. f(x′)6=fB(x) − 1f(x)6=fB(x))η(f

B(x)|x)dP̃(x) (8)

because P̃(Y = k|X = x) = P(Y = k|X = x) for x ∈ X̃ . The minimum of R̃srob(f) is achieved by fB

with the minimum value R̃∗ = R̃std(fB) + 0. Therefore, any function f that R̃std(f) > R̃∗ cannot achieve
the minimum of R̃srob(f) because the term (1∃x′∈Sx,ε(fB) s.t. f(x′)6=fB(x) − 1f(x)6=fB(x)) in (8) is always
non-negative. Therefore, only functions in A =

{
f ∈ F|P̃

(
f(X) = fB(X)

)
= 1
}

need to be considered as
possible minimizers of R̃srob(f).

Note that Aε ⊂ A. By the definition, we know that f ∈ A \ Aε if and only if

i)P̃
(
f(X) = fB(X)

)
= 1

ii)P̃
(
f(x) = fB(x), ∀x ∈ SX,ε(fB)

)
< 1

Therefore, for f ∈ A\Aε, ∃A ⊂ X̃ s.t. P̃
(
X ∈ A

)
> 0 and ∃x′ ∈ Sx,ε(fB) for ∀x ∈ A s.t. f(x′) 6= fB(x′).

For this f , the equation in (8) can be written as R̃srob(f) = R̃∗+α for some α ≥ 0. Now we show that α > 0.

Note that by the definition of the Bayes rule, P(y = fB(x)|X = x) ≥ 1
K

. Otherwise, 1 =
∑K
k=1 P(y =

k|X = x) ≤ KP(y = fB(x)|X = x) < 1, which is contradict. Then, for the f ∈ A \ Aε and A ⊂ X̃ that
are described above,∫

(1∃x′∈Sx,ε(fB) s.t. f(x′)6=fB(x) − 1f(x)6=fB(x))η(f
B(x)|x)dP̃(x)

≥ 1

K

∫
X̃
(1∃x′∈Sx,ε(fB) s.t. f(x′)6=fB(x) − 1f(x)6=fB(x))dP̃(x)

=
1

K

∫
X̃
(1∃x′∈Sx,ε(fB) s.t. f(x′)6=fB(x))dP(x) by f ∈ A

≥ 1

K

∫
A

(1∃x′∈Sx,ε(fB) s.t. f(x′)6=fB(x))dP(x) =
P(A)
K

> 0.

Therefore, α > 0. Note that for any f ∈ Aε, the second term in (8) is zero by the definition of Aε. Therefore,
first result of the theorem is proved. Furthermore, for ε such that B(X̃ , ε) ⊃ X ,Aε = {fB}. Therefore, when
B(X̃ , ε) ⊃ X , fB is the unique minimizer of R̃srob(f).

Theorem 4. Let A =
{
f ∈ F|P̃

(
f(X) = fB(X)

)
= 1

}
, and take a reference function fr ∈ A. Consider

extended sensible adversarial examples, with c < 1 and ` as the 0-1 loss. Then, for any ε > 0, R̃srob(f |fr) =
EP̃X,Y [`(f(X̃|fr , Y )] is uniquely minimized by fr .
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Theorem 4 says that for fr ∈ A, which behaves as the Bayes rule fB on the restricted support, the correspond-
ing sensible adversarial riskEP̃X,Y [`(f(X̃|fr , Y )] is minimized only by fr . This implies that if we do not have

any information about the Bayes rule on X̃ c, the sensibly optimal model w.r.t. P̃X,Y can be arbitrary on X̃ c
although this optimal model is the Bayes rule on X̃ . Our algorithm deals with this arbitrariness by searching
for a better reference function in each iteration. As a current model is used as a reference function, i.e., the
estimation of the defense model and the reference model is identical, the algorithm essentially pursues sensi-
bleness on X̃ and robustness on X̃ c of the trained model. Note that on X̃ , sensibleness a sufficient condition
for natural accuracy.

Proof. By using the same way to derive (6) and (8) and noting that fr(x) = fB(x) on X̃ , we get

R̃srob(f |fr) = R̃std(f) +
K∑
k=1

∫
X̃
1fB(x)=k(1∃x′∈Sx,ε(fr) s.t. f(x′) 6=k − 1f(x)6=k)η(k|x)dP̃(x)

= R̃std(f) +
∫
X̃
(1∃x′∈Sx,ε(fr) s.t. f(x′)6=fB(x) − 1f(x)6=fB(x))η(f

B(x)|x)dP̃(x) (9)

Because fr(x) = fB(x) on X̃ , R̃std(fr) = R̃std(fB). This implies fr minimizes R̃srob(f |fr) because
R̃std(fB) is the minimum of R̃std(f) for all f ∈ F and the second term in (9) is non-negative. This implies
any function f s.t. R̃std(f) > R̃std(fB) cannot achieve the minimum of R̃srob(f |fr). Therefore, as a
minimizer of R̃srob(f |fr), we only need to consider f ∈ A. Note that 1f(x)6=fB(x) = 0 for f ∈ A on X̃ .
Therefore, by letting R̃∗std be R̃std(fB), the equation in (9) can be written as

R̃srob(f |fr) =R̃∗std +
∫
X̃
1∃x′∈Sx,ε(fr) s.t. f(x′)6=fB(x)η(f

B(x)|x)dP̃(x)

=R̃∗std +
∫
X̃
1∃x′∈Sx,ε(fr) s.t. f(x′) 6=fr(x)η(f

B(x)|x)dP̃(x) (10)

Note that η(fB(x)|x) is positive on X̃ . Therefore, for f ∈ A to minimize (10), it must satisfy that P̃
(
∃x′ ∈

SX,ε(fr) s.t. f(x
′) 6= fr(x

′)
)
= 0. This essentially says f should be fr .

C ALGORITHM

Algorithm 2 Sensible adversarial training for `p norm restriction

Input: Initialized f = fθ, c ∈ (0, 1), step number and sizes K, η1, η2, data X(0)
adv = X

2: repeat
for i = 1, ...,m, s.t. f(x

(0)
i,adv) = yi

4: for k = 1, ...,K

x
(k)
i,adv ← ΠBp(xi,ε)(η1

∇x`(f(x(k−1)
i,adv ),yi)

‖∇x`(f(x(k−1)
i,adv ),yi)‖p

+ x
(k−1)
i,adv ), Π: the projection operator

6: if `(f, x(k)i,adv, yi) > log 1
c

(sensible reversion) x(K)
i,adv = x

(k−1)
i,adv

8: break
θ ← θ − η2

∑c
i=1∇θ`(f, x

(K)
i,adv, yi)/m

10: until training converged

D THE LANDSCAPE FOR SENSIBLE ROBUST OPTIMIZATION

Note that when the original examples are incorrectly classified, full PGD examples can be very influential in
regular adversarial training. If we do not add any perturbations on these potentially influential examples and add
full PGD perturbations on the other examples, the resultant examples are equivalent to the sensible adversarial
examples when c = 0. Experiment 1 shows this small change keeps the models from collapsing, demonstrating
how influential the PGD perturbations on the incorrectly classified natural examples. However, an adversarial
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Figure 4: An abstraction of the sensible adversarial loss when c ≥ 0.5. When x is in the sensibly
reversed stage for a current model f , the loss of x̃s is approximately log 1

c . Although the loss
is approximately the same while x stays in this stage, the model updates in a way to pushes the
sensible adversarial example to become a full PGD attack as the arrow.

training with the sensible adversarial examples with c = 0, the empirical loss can largely fluctuate during the
training; Once an incorrectly classified natural example becomes correctly classified, its full PGD attack can
pose a sudden large gradient for the model update. Then, when it is incorrectly classified again, the loss on it
suddenly reduces to the natural loss that is distinctly smaller than the large loss value on its full PGD attack.
Therefore, whenever an example changes its state between a correctly and incorrectly classified example, i.e.,
the full PGD and natural stage, the corresponding loss can fluctuate making the learning unstable.

However, if we add sensible reversion step, particularly if c ≥ 0.5, this fluctuation does not occur. Between
the two stages, the sensibly reversed stage provides a kind of cushion between the natural and full PGD stage,
preventing the sudden change in the loss value as described. Until Sx,ε(f) = Sx,ε, the sensibly adversarial
perturbation for x is adapted to make the loss of the current function approximately equal to log 1

c
. As the

abstraction in Figure 4, it is like to have a virtually extended area at p̂f,y(x) = c on the loss function that
is locally flat on {x̃s|Sx,ε(f) = Sx,ε}, i.e., on a set of x̃s that are in the sensibly reversed stage. However,
in spite of the existence of such a flat loss area, the model still can learn with x̃s in sensibly reversed stage.
This is obvious because the cross-entropy loss has its non-zero gradient when it is log 1

c
. Interestingly, when

the model is updated in a way to decrease the loss of the previous x̃s, the new sensible perturbation is again
adapted to have the loss approximately equal to log 1

c
. Therefore, the course of training directs the model to

have sensible adversarial examples in the full PGD stage. Furthermore, as long as c > 0, even when x̃s is in a
sensibly reversed stage, it still has perturbation in an adapted ε-ball. This helps to obtain a robustness although
it is not on a full ε ball.

Note that for c ≥ 0.5, the learning is very stable because only natural examples can overpower the training;
The large loss values are only achievable by sensible attack in the natural stage. Any single full PGD attack
cannot dominate the next update of the training because the loss function has relatively small gradients on the
full PGD stage. Therefore, our algorithms not only effectively ignore any influential full PGD attacks that may
overpower the next update but also train a model that allows as many sensible attacks to be full PGD attacks.
In other words, our algorithms can stably learn a robust model.

E HIGH MARGIN PROPERTY OF SENSIBLE ADVERSARIAL TRAINING

In sensible adversarial learning, the natural accuracy clearly takes priority over the adversarial accuracy. The
perturbed example is not allowed to cross the decision boundary of the Bayes rule in (2) or to reach the vicinity
of the decision boundary of a reference function in (4). As mentioned, when the cross-entropy loss is used,
p̂f,y(x) ≥ c is a prerequisite for adding any adversarial perturbation on x. We note that this condition provides
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Figure 5: The prediction margins at convergence of the models in Experiment 1 on the test set.

a lower bound of the following natural margin as

M(f, x, y) = log p̂f,y(x)−max
y′ 6=y

log p̂f,y′(x) ≥ log
p̂f,y(x)

1− p̂f,y(x)
≥ log

c

1− c .

Therefore, the priority of natural accuracy hints that the learning will prevent the natural margin from being
sacrificed for the sake of adversarial robustness. We note that the natural margin of x is an upper bound of its
adversarial margin. Therefore, if a model cannot confidently predict a natural example x, neither can the model
confidently predict any adversarial examples of x.

Experiment 1 We investigate the margins of the models trained in Experiment 2, to understand the effect of
c. In Figure 5 we draw density plots of the margins on the test set for varying c for the fixed capacities. Overall,
we see that a larger c results in a larger adversarial margins and natural margins. In Figure 6, we also draw
the margins but for varying model capacity. In general, for a each c, a smaller capacity has more data points
of negative margins. However, for naturally trained models, i.e., the models with c = 1.0, a larger model has
smaller adversarial margins. This is consistent to the observation of Su et al. (2018) that accurate models tend
to be less robust when the models are trained with natural examples. On the other hand, although not displayed,
the plots corresponding to c = 0.9 are essentially similar to the plots in the second low. This implies even for
large c, our method is not like natural learning; The models trained with c = 0.9 still have larger natural and
adversarial margins.

Note that in Figure 3, the regular PGD model of capacity 5 has only few negative adversarial margins. Instead,
their natural margins significantly smaller than those of the natural models. In contrast, our model has negative
adversarial margins for a few more data points. Note that the majority of both natural and adversarial margins
of the our models are significantly larger than that of the regular PGD models. For capacity 1,2 and 3, the
regular PGD models collapse having small ”mean” of adversarial losses. On the contrary, our models deal with
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Figure 6: The prediction margins at convergence of the models in Experiment 1 on the test set.

the lack of model capacity by letting more portion of examples to have negative margins. As demonstrated by
Figure 5, in our methods the mean adversarial loss can be arbitrarily large. Instead, it maintains a large portion
of points having relatively large adversarial margins, i.e., being far from decision boundaries.

The flip side of the advantage of high margin is the possibility of over fitting. For c ≥ 0.5 in Figure 7, the best
robust accuracies are not achieved when capacity is 5 but when capacity is 3. On the contrary, the PGD method
achieves better robustness as the capacity increases. Therefore, there is a possibility of over-fitting problem that
arises form the high margin property of sensible adversarial learning.

Experiment 2 In Figure 8, we draw the plot of natural and adversarial margins on the testset of CIFAR10.
Compared with the distribution of the TRADE model, the natural margin of the SENSE model is large. For
the adversarial margins, the SENSE model has two clearly separated clusters; one is of negative margins and
the other is of positive margins. Instead, the positive margins are distributed on the larger values. We remark
that this phenomenon is consistent to the sensible idea to allow to be fooled near the decision boundary of the
Bayes rule. When the capacity is not enough, the concept of the decision boundary is not of the Bayes rule. Its
is projected to an inevitable boundary of a model with nice natural performance, caused by the lack of model
capacity. The portion of negative adversarial margin is a cost for sensibility and with this cost, the model can
obtain robustness as much as possible given a model capacity. We see the portion of adversarial margins of the
SENSE model in the negative area in Figure 8 is not small. This may imply the current model capacity and the
sample size for SENSE are not enough.
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Figure 7: Another visualization of Figure 2. The name of each panel denotes the hyperparameter c.
-Inf denotes the model trained with the PGD method.

Figure 8: Adversarial and natural prediction margins on CIFAR10 of the SENSE and TRADE
model. The margins are calculated by M(f, x, y) = log p̂y(x) − maxy′ 6=y log p̂y′(x) = sy(x) −
maxy′ 6=y sy′(x), where s denote a score function of f , i.e., the output of the neural network.
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Table 4: MNIST: test results of the our models on natural examples and `∞ based attacks.
Defence model ε = 0.3 ε = 0.33 ε = 0.36 ε = 0.39

SENSE 96.46 92.89 83.15 63.51

TRADE 96.72 90.56 46.94 11.66

F COMPARISON WITH OTHER METHODS

The sensible selection and reversion in our approach distinguish sensible learning from other approaches that
balance between the natural and adversarial accuracy. The objective function of our algorithm can be rewritten
as follows. For f ∈ F ,

L(f) = 1

n

n∑
i=1

`s(f, xi, yi)

=
|Af |
n
R̂std(f |Af ) +

|Bf |
n
R̂srob(f |Bf ) +

|Cf |
n
R̂rob(f |Cf ), (11)

where `s(f, x, y) is defined in (5).

Kurakin et al. (2016b) suggest adversarial training that randomly divides data into two parts, a natural
and adversarial set. The objective function can be written as the following. For random index sets A and C s.t.
|A|+ |C| = n and A ∩ C = φ,

L(f) = 1

|A|+ λ|C|
[∑
i∈A

`(f(xi), yi) + λ
∑
i∈C

`(f(x̃i), yi)
]

=
|A|

|A|+ λ|C| R̂std(f |A) + λ
|C|

|A|+ λ|C| R̂rob(f |C), (12)

where x̃i is an adversarial example of xi.

Our approach is similar in that we also divide the data for different usage. However, we divide the data by not a
random but an adaptive way, so that `s(f, xi, yi) ≥ `s(f, xj , yj) for xi ∈ Af and xj ∈ Cf . Also, we have an
additional set other than a natural and fully adversarial set. This additional set, a sensibly reversed adversarial
set, plays an important role in allowing a data point smoothly changes its identity between a natural example and
a full adversarial example. Note that we do not have any weight controllers like λ in (12). The hyperparameter
c itself controls the importance of the natural accuracy in comparison to the adversarial accuracy.

Zhang et al. (2019) investigate the Bayes decision boundary to resolve the trade-off problem. They propose
TRADE, of which the objective function is for β > 0,

L(f) = E
[
`(f(X), y) + β max

X′∈B(X,ε)
`(f(X ′), f(X))

]
. (13)

This formulation shows several key differences between TRADE and SENSE. First, (13) uniformly restricts
the perturbation norm to ε for all data points, whereas (11) selects the sets for Af , Bf and Cf and restricts
the perturbation in different ways. Second, the main parameter β in (13) controls the importance of the natural
accuracy in comparison to the smoothness of the model. However, the main parameter c in (11) directly
controls the lower bound of the natural and adversarial loss of the individual data. This is the lower bound
on the prediction probability c if ` is the cross entropy loss. Third, the term `(f(X ′), f(X)) in (13) leads
the model to be smooth to all directions in the input space, but `s(f, x, y) in (11) leads to be close to one.
Therefore, intuitively, TRADE achieves robustness by obtaining smoothness of the model, whereas SENSE
achieves robustness by reformulating (1) in a way to promote high confidency of the robust prediction. This
may provide an intuition on the plot of the margin density in Figure 8. By this intuition, we apply PGD attacks
with larger perturbation of the training ε. We apply the attacks on our trained models and the TRADE model
by Zhang et al. (2019) for MNIST and CIFAR10. The results are in Table 4 and Table 5.

G ADDITIONAL INFORMATION ABOUT CHEESE HOLE DISTRIBUTION

Figure 9 (e) compares the worst-case standard risk Rstd(f̃∗rob) and Rstd(f̃B∗). Although Rstd(f̃∗rob) does
not consistently decrease as ε increases, it is always much smaller than Rstd(f̃B∗). Therefore, pursuit of
robustness leads to a more naturally accurate classifier. Figure 9 (e) shows that, as ε increases from ε = α/2 to
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Table 5: CIFAR: test results of the our models on natural examples and `∞ based attacks.
Defence model ε = 10/255 ε = 12/255 ε = 14/255 ε = 16/255

SENSE 62.63 60.39 58.05 55.09

TRADE 47.61 39.05 31.57 25.15

1, the standard risk of the robustly optimal model gradually increases whereas the sensibly robust model keeps
zero risk. Figure 9 (f) demonstrates the robustness against ε-ball attacks of f̃B∗nat (black), f̃∗rob (blue), and f̃s∗rob
(red). Although sensibly robust models have large adversarial robustness increasing to 1 as ε increases, this is
because more and more adversarial examples can cross the border, while the model keeps its decision boundary
consistent to the class border line. On the other hand, adversarially robust functions have constant robust risk
for ε > 1/4. This is because the robust functions predict as y = 1 for every x ∈ X .

Figure 9: Cheese holes distribution. (e) and (f) The natural and robust risk when p = 0.55. The
black, blue, and red colors are the worst cases of naturally, adversarially, and sensibly robust func-
tions. (g) The robustly optimal model when ε > 0.25. (h) The sensibly robust model when ε > 1/12.

The sketch of the proof on the standard and adversarial robust risks in (e) and (f) in Figure 9
We first calculate the three classes of functions which minimize natural, adversarial robust, and sensibly robust
risk respectively, w.r.t P̃X,Y . Then for each class, we consider the worst case function from each class, in that
the function maximizes the standard risk w.r.t PX,Y . The corresponding standard risks are in Figure 9 (e).
Likewise, for each class, we consider the worst case function from each class, in that the function maximizes
the adversarial robust risk w.r.t PX,Y . The corresponding adversarial robust risks are in Figure 1 (f).

First, the minimizers of each risk w.r.t. P̃X,Y are as following.

1) Let F̃B be a set of naturally optimal functions w.r.t P̃X,Y :

F̃B = {f ∈ F|f(x) = sign(x1 − 0.5) for (x1, x2) ∈ X̃}

2) Let F̃srob be a set of sensibly optimal functions w.r.t P̃X,Y :

F̃srob = {f ∈ F|f(x) = sign(x1 − 0.5) for (x1, x2) ∈ B(X̃ , ε)}.

3) Let F̃rob be a set of robustly optimal functions w.r.t P̃X,Y :

F̃rob = {f ∈ F|f(x) = g(x) for (x1, x2) ∈ B(X̃ , ε)},

where

g(x) =

{
sign(x1 − 0.5 + ε) if ε < α/2 or ε ≥ 3α/4

1(x1≥0.5−ε) − 1(x1≤3α/2+ε) if α/2 ≤ ε < 3α/4
(14)

Second, we consider the worst case standard risk w.r.t. PX,Y for each class above.

1) maxf∈F̃B Rstd(f): Although p 6= 0.5, due to the symmetry of the shape of X̃ , maxf∈F̃B Rstd(f) is the
area on X \ X̃ , the area outside the small nine squares.
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2) maxf∈F̃s
rob
Rstd(f): For the same reason above, maxf∈F̃s

rob
Rstd(f) is the area on X \B(X̃ , ε), the area

outside the small nine squares extended by ε.

3) maxf∈F̃rob Rstd(f): When ε < α/2 or ε ≥ 3α/4, we consider the deviated line on B(X̃ , ε), and regard
the model outside B(X̃ , ε) as incorrect. The risk is calculated easily by using the fact that the risk of any
f ∈ F̃rob on is B(X̃ , ε) is 3×min(a+2ε, 2a)× (1− p)×min(2ε, 0.5)/0.5. When α/2 ≤ ε < 3α/4, since
B(X̃ , ε) covers X̃ , the worst case functions are in a form of f(x) = sign(x1 − 0.5 + cε) for some c on the
entire X̃ . For each ε s.t. 3α/2 + ε < x1 < 0.5− ε, it is easy to find the corresponding cε.

Last, for the worst case adversarial robust risk w.r.t. PX,Y , we can calculate the risks in a similar way to above.

H ADDITIONAL INFORMATION ABOUT EXPERIMENTS

H.1 EXPERIMENT 1

Model Architecture We conduct Experiment 1 on the MNIST dataset (LeCun et al., 2010). We consider
a sequence of CNNs with the increasing number of kernels. A network of capacity q has two convolutional
layers with 2(d−1) and 2d filters respectively, followed by a fully connected linear layer of 2(d+4) units. Each
layer is activated by ReLU. Each convolutional layer is followed by 2× 2 a max-pooling layer. The size of all
convolutional filters is 5× 5.

With a similar sequence of CNNs, Madry et al. (2017) investigate the model behavior when the capacity in-
creases. They have capacity scale 1,2,4,8 and 16. In their experiment, capacity scale 1 and 2 collapse. our
capacities 2 and 3 are comparable to the capacity scale 1 and 2 by Madry et al. (2017). Likewise, our capacities
4 and 5 are comparable to their capacity scale 4 and 81. Therefore, our result, which shows the PGD models of
capacity 1,2 and 3 collapse, is consistent to the result by Madry et al. (2017).

Training We train the sequence of MNIST models with sensibly adversarial example with ε = 0.3, η1 =
0.05 and K = 10 for varying c ∈ {0.0, 0.1, · · · , 0.9}. The initial learning rate η2 is 0.01, and we train for 500
epochs. When training the PGD models, we use the same hyperparameters except c.

Testing The MNIST models are tested with `∞ PGD attacks of ε = 0.3 with the step number K = 40 and
step size η1 = 0.01. We generate the attacks by using a Python package Advertorch by Ding et al. (2019b).

H.2 EXPERIMENT 2

We consider the MNIST and CIFAR-10 dataset (LeCun et al., 2010; Krizhevsky & Hinton, 2009).

Training For each dataset, we initialize our model by a naturally trained model. Then, we train the initialized
model with sensible adversarial examples with the specifications in Table 6.

Table 6: The learning specifications for the SENSE models in experiment 2
Dataset ε η1 K c Initial η2 Epoch

MNIST 0.3 0.05 10 0.5 0.01 500

CIfAR10 8
255

8
255 ×

2
10 10 0.7 0.1 300

Testing with white-box attacks For white-box attacks, we consider PGD (Madry et al., 2017), C&W
(Ding et al., 2019a), DeepFool (Moosavi-Dezfooli et al., 2016), FGSM (Kurakin et al., 2016a), LBFGS (Taba-
cof & Valle, 2016), and MIFGSM (Dong et al., 2018). In Experiment2, we consider adversarial perturbations
with `∞-norm less than ε, where ε = 0.3 for the MNIST dataset and ε = 8/255 for the CIFAR10 dataset.

We attack our models with the white-box attacks. We use the attacks implemented in Foolbox (Rauber et al.,
2017), Advertorch (Ding et al., 2019b), and Adversarial Robustness 360 Toolbox (ART) (Nicolae et al., 2018).
The attack specifications are in Table 7. The options that are not listed in the table are kept as default of the
attack generating functions.

1Our models could be slightly smaller than the counterparts by Madry et al. (2017) because our max-pooling
layers do not apply any padding.
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Table 7: The white-box attack specifications. We denote the step size and step number by η1 and K.
Dataset Attack η1 K Python package Function

MNIST PGD40 0.01 40 Advertorch LinfPGDAttack
MNIST C&W40 0.01 40 ART CarliniLInfMethod

CIfAR10 PGD20 8
255 ×

1
10 20 Advertorch LinfPGDAttack

CIfAR10 PGD1000 8
255 ×

1
500 1000 Advertorch LinfPGDAttack

CIfAR10 C&W40 8
255 ×

1
20 40 ART CarliniLInfMethod

CIfAR10 DeepFool default default Foolbox DeepFoolLinfinityAttack
CIfAR10 FGSM 8

255 1 Advertorch GradientSignAttack
CIfAR10 LBFGS default default Foolbox LBFGSAttack
CIfAR10 MIFGSM 8

255 ×
1

40.001 40 Foolbox MomentumIterativeAttack
(distance=Linfinity,
return early=False)

We set the step size for MIFGSM as slightly smaller than 8
255
× 1

40
in order to keep the adversarial example

from having the perturbation norm greater than ε = 8/255. For the performance of TRADE on C&W40, we
apply the C&W40 attack with the same specifications in Table 7. For the other results of TRADE in Table 1,
we refer to Zhang et al. (2019).

Testing with black-box attacks We attack our models with PGD40 and MIFGSM swith the specifications
in Table 7. As the Foolbox implementation for MIGSM only returns the successful attacks on the generating
model, we only apply these attacks on the defense model. We note that the argument return early of MIFGSM
is set to False as in Table 7. For TRADE, we use the models by Zhang et al. (2019) for both MNIST and
CIFAR10.

H.3 ADDITIONAL EXPERIMENT FOR TABLE 4 AND TABLE 5

We conduct our additional experiment on the MNIST and CIFAR-10 dataset (LeCun et al., 2010; Krizhevsky
& Hinton, 2009). For each dataset, we consider the SENSE model trained in Experiment 1 and the TRADE
model by Zhang et al. (2019). We note that for each dataset, the TRADE and SENSE model share the same
architecture. On theses models, we apply the PGD attacks with perturbations larger than the training ε. We
generate the PGD attacks, using a Python package Advertorch by Ding et al. (2019b) with the following attack
specifications.

MNIST Let ε0 = 0.3, which is the training ε for each model. For δ ∈ {1.1, 1.2, 1.3}, we generate the `∞
PGD attacks of ε = δε0 with the step number K = 40× δ and step size η1 = 0.01.

CIFAR-10 Let ε0 = 8/255, which is the training ε for each model. For δ ∈ { 10
8
, 12

8
, 14

8
, 16

8
}, we generate

the `∞ PGD attacks of ε = δε0 with the step number K = 40× δ step size η1 = ε0/20.
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