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ABSTRACT

In sequential tasks, planning-based agents have a number of advantages over
model-free agents, including sample efficiency and interpretability. Recurrent
action-conditional latent dynamics models trained from pixel-level observations
have been shown to predict future observations conditioned on agent actions accu-
rately enough for planning in some pixel-based control tasks. Typically, models of
this type are trained to reconstruct sequences of ground-truth observations, given
ground-truth actions. However, an action-conditional model can take input ac-
tions and states other than the ground truth, to generate predictions of unobserved
counterfactual states. Because counterfactual state predictions are generated by
differentiable networks, relationships among counterfactual states can be included
in a training objective. We explore the possibilities of counterfactual regulariza-
tion terms applicable during training of action-conditional sequence models. We
evaluate their effect on pixel-level prediction accuracy and model-based agent
performance, and we show that counterfactual regularization improves the perfor-
mance of model-based agents in test-time environments that differ from training.

1 INTRODUCTION

Recent advancements in the use of variational inference and generative neural network architectures
have made it possible to build accurate transition models for high-dimensional sequential decision-
making environments. Networks have been trained to accurately predict future states conditioned
on actions in large Markov decision process state spaces including Atari, VisDoom, and pixel-based
robotic control tasks (Kurutach et al., 2018) (Ha & Schmidhuber, 2018) (Hafner et al., 2018). Using
such a transition model, an agent can plan sequences of future actions to maximize an expected reward,
using model-predictive control or other search algorithms. These approaches fall into the paradigm of
model-based reinforcement learning (RL), distinct from the standard model-free approach of training
a policy or value network. Model-based approaches have better sample efficiency than model-free
methods, which usually require a large amount of training data to perform well.

There are distinct differences between traditional model-based RL, in which a transition between
states are defined by a Markov transition matrix, and model-based approaches in which the state
representation is learned, in which the state is represented as a continuous vector. This is made more
unclear with environments that start with a scene described as an image, where it is well-known
typical transition models that maximize a variational bound on the likelihood of future observations,
similar to a variational autoencoder (Kingma & Welling, 2013) tend to generate blurry samples and
exhibit posterior collapse (van den Oord et al., 2017), a phenomenon showing that the learned states
may not be robust enough.

We hypothesize that a representation in which states are factored and well-separated will improve the
performance of model-based agents. In order to achieve this, we propose a new family of regular-
izations applicable to action-conditional sequence prediction models, which we call counterfactual
regularization. These regularizations are loss terms based on counterfactual states, which can be
generated by feeding non-ground-truth actions or states into a transition model. Specifically, we
propose regularization terms to achieve two goals. First, the set of possible states should be distinct
in such a way that any change in input actions should result in a change in latent state. Second, that
the dimensions of the learned state should be disentangled into separate factors in such a way that a
change to one factor should effect only a sparse set of other factors.
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Figure 1: Left: The graphical model representing the generative process. Shaded nodes are observed,
and empty nodes are not observed. In this example, the state at time t = 2 has been observed. Right:
The latent state space s is represented as a convolutional feature map, and the transition function T (s)
is implemented as a fully-convolutional neural network.

In order to test these regularizations, we introduce the StarIntruders game, a sequential environment
with test-time dynamics that vary from training dynamics to test the generalization performance
of trained agents. We propose a convolutional recurrent latent-state architecture well-suited for
modeling two-dimensional video environments and trained using counterfactual regularization. Our
experiments show that a simple planning agent using an action-conditional model trained with the
proposed counterfactual regularization outperforms both non-regularized models, and a model-free
agent, in test environments that differ from training.

2 LATENT DYNAMICS MODELS

2.1 PRELIMINARIES

We consider a partially-observable Markov decision process (POMDP) in which an agent observes at
each time step t an observation ot from an observation space O and a reward rt from a reward space
R and executes an action at from a discrete set of actions A. The agent executes actions from t = 1
until a terminal timestep t = T , generating a trajectory (o1, r1, a1)...(oT , rT , aT ). An optimal agent
will take actions that maximize the cumulative reward

∑T
t rt over the trajectory.

In pixel-based domains, ot may be a high-dimensional vector (e.g. O = R256x256x3) and the
underlying dynamics function p(ot, rt|o<t, r<t, a<t) may not be known. We are concerned with
the problem of learning from experience a parameterized function pθ that estimates the distribution
of future observations and rewards conditioned on actions. We model the environment using a
neural network similar to the deterministic state space model from (Hafner et al., 2018), trained on
trajectories collected by an exploration policy.

Using such a function (a model of the environment), planning algorithms such as model-predictive
control can be applied to compute an optimal action at at each timestep. Unlike model-free reinforce-
ment learning agents, a model-based agent does not learn a policy network or value function estimate;
instead, actions are chosen by searching among possible future trajectories.

Previous work has explored the efficiency benefits of model-based methods, which can achieve
similar performance to model-free methods using far fewer training examples (Hafner et al., 2018)
(Kaiser et al., 2019b). Our work instead explores the capability of model-based agents to generalize
to changes in the environment.

The graphical model in Fig. 1 illustrates our assumptions about the generative process. We model all
dependencies on previous timesteps through an unobserved latent state variable st, which depends
only on the previous state and action st−1, at−1. Each observation depends only on the current state.
Accurately predicting future observations and rewards depends on building a highly accurate latent
dynamics model.
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Figure 2: Example sequence predictions in the StarIntruders task. The encoder E converts observed
pixels to a latent state s. The recurrent transition function T (s, a) predicts future latent states, and a
decoder network D decodes states back to pixel space.

2.2 MODEL ARCHITECTURE

Our latent dynamics model consists of the following components: an encoder E : O → S, an
action-conditional transition function T : S ×A→ S, a decoder G : S → O, and a reward decoder
R : S → RK , as shown in Figure 1. Each component is a convolutional deep neural network
with strided and transposed convolutions, and LeakyReLU nonlinearities. Spectral Normalization
(Miyato et al., 2018) is applied to each convolutional layer of T to assist in gradient propagation. For
environments in which state estimation requires observation of multiple sequential states, the input
layer of E is resized to take as input a stack of K sequential frames. Where not otherwise noted,
K = 3.

The transition network T converts each integer action input to a one-hot categorical representation,
broadcast across the spatial input to the network. The reward networkR predicts a positive or negative
reward at each timestep, for each spatial location, for each reward type. To improve training stability,
reward estimates are discretized in the following way: each spatial location is classified as causing -1,
0, or +1 reward, and the output reward is the sum of all spatial locations.

2.3 TRAINING

The model is trained to reconstruct sequences of observations gathered from the true environment by
an exploration policy. Given a sequence of ground truth observations, the model must reconstruct
future observations and rewards (see Figure 2). Similar to (Hafner et al., 2018), our model consists
of separate encoder/decoder networks which convert between observations and a learned latent
representation, and a transition network which operates recurrently in the latent space (See Figure 1).
This structure allows the latent representation to keep track of parts of the state not visible in current
observations.

2.4 MODEL-PREDICTIVE CONTROL

Given a predictive model of future observations and rewards, we apply a simple model-predictive
control algorithm to select actions at each time step during evaluation. The planning process produces
a batch of B = 64 trajectories for each possible action ai with each trajectory taking a random rollout
for a fixed horizon T = 20. The agent executes the action at that maximizes the estimated sum of
rewards

∑t+T
i=t+1 ri, observes the next observation ot+1 and then re-plans at each step.
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Figure 3: During training, in addition to predicting a ground truth sequence based on actions at, at+1...
our model predicts counterfactual trajectories based on alternate actions a′t, a

′
t+1... for which no

ground truth exists. By enforcing desired relationships between alternate simulated trajectories,
desired causal relationships can be imbued into the model.

2.5 COUNTERFACTUAL TRAJECTORIES

A transition network T takes as input a latent state st and an action at, and produces an esti-
mate of the successor state ŝt+1. The network is trained to simulate a ground truth trajectory
{(o1, a1), (o2, a2)...(oN , aN )} generated by a policy π in the real environment.

The transition network is applied recurrently to generate a sequence of states:

st+2 = T (st+1, at+1) = T (T (st, at), at+1)

During training, st is an observed state and at is a known ground-truth action, selected by the
training exploration policy. However, an alternate action a′t or an alternate state s′t can be input to
the transition function, thereby generating an alternate or counterfactual state: s′t+1 = T (st, a

′
t) or

s′t+1 = T (s′t, at). Repeated application of the transition function then generates a counterfactual
trajectory:

s′t+2 = T (s′t+1, a
′
t+1)

For many tasks, especially in physical environments, it may not be possible to repeat a previously
observed trajectory, and so the “true” value of a counterfactual state may never be observable.
However, the estimate ŝ′t+1 is computable, and because T is a differentiable parameterized function,
the gradient of a loss function involving generated counterfactual states can be computed with respect
to network parameters.

Relationships among estimates of real and counterfactual states provide a language by which state-
ments about causality can be converted into differentiable loss terms suitable for inclusion in a neural
network training process. Many useful desiderata can be posed in the language of counterfactuals, and
converted to loss terms along with standard pixel-reconstruction and reward losses used in predictive
models. By including a counterfactual loss term LR in the objective function, the full loss becomes:

L =
∑
t

||D(st)− ot||22 + ||R(st)− rt||22 + λLR (1)

where D and R are the decoder and reward prediction networks, ot, rt is a ground truth observation
and reward for timestep t, ŝt is a predicted latent state output by one or more recurrent applications
of T , λ is a scalar hyperparameter, and LR is one of the counterfactual regularization terms described
below.
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3 CAUSAL REGULARIZATION THROUGH COUNTERFACTUALS

By generating counterfactual trajectories during training (see Figure 3), we can augment the training
objective with new terms. We explore a number of possible types of counterfactual regularization,
given below.

3.1 ACTION-CONTROL REGULARIZATION

When exploring a complex environment with an untrained policy, it may be the case that the reward
function can be accurately modeled as a deterministic function of time, unrelated to the agent’s
actions. For instance, in a timed game ending with a reward of -1 or +1 indicating win or loss, a
poorly-initialized agent might learn that its actions have no effect on the environment, and may model
the reward mechanism as a timer that outputs 0 or -1. This failure case could be considered analogous
to the psychological phenomenon of learned helplessness, the perception of independence between
actions and outcomes (Langer, 1975).

To address this problem, we might wish to limit our learning system to consider only models with the
property that every action taken by the agent has a causal effect on the state. Using the language of
counterfactuals, we can express this property precisely: for any state st reached by taking actions
a1, a2, ...at−1, there must exist some a′1, ...a

′
t−1 such that st 6= s′t and ∃ i < t, ai 6= a′i.

Considering i = t− 1 for simplicity, we can convert the above constraint into a regularization term:

min
a′t−1

− log ||T (st−1, at−1)− T (st−1, a′t−1)||1

where s′t = T (st−1, a
′
t−1) is a counterfactual state generated by the alternate a′i. This regularization

ensures that the learned environment model must include a causal link from ai to st, in the sense that
for any st there must exist a counterfactual action a′i which would have resulted in a different state s′t.

In a more general case, the counterfactual a′i might be multiple time steps removed from st. Using
T (s, a1...an) to denote recurrent application of T to simulate multiple timesteps, the term can be
expanded to the general case of i < t− 1.

LR = min
a′i

− log ||T (si, ai...at−1)− T (si, a′i...a′t−1)|| (2)

For finite discrete action spaces, a′i can be minimized by exhaustive search, but for simple environ-
ments it suffices to generate a′i by sampling uniformly from A \ {at}. This loss term has the effect of
biasing the transition model by forcing the latent state to change as a result of every agent action,
which is an appropriate assumption for many control tasks.

3.2 DISENTANGLEMENT REGULARIZATION

Many practical environments contain separate and largely independent factors of variation. For
example, in the game of Space Invaders, the agent controls one visible object on the screen (the
player character) while enemy characters move across the screen, independently of the player. The
only interaction between enemy position and player position is through projectiles fired by the
player at enemies. It might be desired that a model of the game represent the position of enemies as
independent of the position of the player, conditioned on projectiles.

In a non-sequential variational autoencoder setting, FactorVAE (Kim & Mnih, 2018) applies a
regularization based on adversarial training using examples generated by permuting the dimensions
of the latent representation of real examples. This forces the network to learn a representation such
that any two latent dimensions could be swapped, and the result should still be realistic. The resulting
representation maximizes the independence of latent dimensions.

Similarly but in a sequential environment, we desire a representation with the property that any
two latent dimensions indices k, j of a state st can be swapped to create an alternate s′t, and the
resulting sequence of counterfactual states s′t+1, s

′
t+2, ... would continue on with all dimensions that

are independent of k and j unchanged. That is, changing the values of some dimensions of the latent
representation should cause a sparse and minimal change in other latent dimensions.
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Figure 4: An agent completing the training version of the StarIntruders task. Destroying an enemy
generates +1 reward, and destroying a human generates -1. A regularized model-based agent destroys
fewer humans than a non-regularized model-based agent or a model-free agent, even in perturbed
versions of the environment.

We represent this sparsity with an L1 regularization term:

LD =
∑

i/∈{j,k}

|s(i)t+H − s
′
t+H

(i)| (3)

where s(i) denotes the ith dimension (or channel) of the latent state vector s. Here, st =[
s
(1)
t , ...s

(i)
t , ...s

(j)
t , ...s

(K)
t

]
is the state vector at time t and s′t =

[
s
(1)
t , ...s

(j)
t , ...s

(k)
t , ...s

(K)
t

]
is

the vector with dimensions j and k swapped. A fixed number of time steps H is used between the
counterfactual intervention and the regularization. The effect of this regularization is to promote
sparse, rather than dense, relationships between latent factors. This is appropriate for environments
where the underlying mechanics are discrete and deterministic.

4 EXPERIMENTS

4.1 ACTION-CONDITIONAL STATE PREDICTION

Our model is trained with ground-truth trajectories sampled by a random exploration policy. We train
with λ = .01 and a maximum prediction horizon of H = 10 in both environments. After training,
the model-predictive control (MPC) agent is applied to select the action with highest expected reward
over the planning horizon at each time step.

4.2 GENERALIZATION EVALUATION ENVIRONMENT

We train and evaluate agents in the Star Intruders game, a custom sequential environment with
mechanics similar to Space Invaders, built using the StarCraft II Learning Environment (Vinyals
et al., 2017). The state space of the task includes a 256x256x3 RGB pixel matrix for visualization,
and a 64x64x4 binary mask input to the network, indicating the positions of each type of object. The

MSE H=3 MSE H=5 MSE H=10 MSE H=20 Avg. Game Score
Ablation .0017 .0021 .0025 .0027 4.43

Action-Control .0019 .0023 .0043 .0072 5.11
Disentanglement .0015 .0017 .0020 .0023 5.83

Table 1: MiniPacMan environment: Mean squared error (MSE) of predicted video frames at selected
timestep horizons H . Right Column: Average score of the model-predictive control agent on 100
games. Ablation is trained with the standard reconstruction loss: each other network is trained with
one of the proposed regularizations.
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dynamics of the task are as follows (See Figure 4). The agent controls a unit at the bottom of the
game map. Above the agent, randomly-positioned friendly and enemy units patrol left and right At
each time step, the agent can take one of four actions: move left, move right, fire, or no-op. The fire
action fires a projectile from the player’s current position, which annihilates upon contact with any
enemy or friendly unit.

When a projectile destroys an enemy unit, the agent receives a reward of 1, and when a projectile
destroys a friendly unit, the agent receives a reward of -1. The optimal policy will fire projectiles
aimed in such a way that all enemy units are destroyed but no friendly units are destroyed.

The training environment contains 8 friendly units and 8 enemy units. Each friendly unit begins at a
random location in the bottom half of the map, and moves horizontally in a repeating pattern, from its
starting location to the rightmost edge of the map, then to the leftmost edge, and so on. Each enemy
unit patrols similarly from a random starting location in the top half of the map. The maximum
cumulative reward for an episode is 8, and the minimum is -8. Each episode continues until either all
enemy units are destroyed, or a maximum number of time steps TM = 300 are elapsed.

4.2.1 GENERALIZATION EVALUATION

After training, each policy is evaluated in three environments. The Training environment operates
exactly as described in the previous section. The Test A environment operates in the same way as
the training environment, except that instead of patrolling right-to-left, each unit will patrol either
right-to-left or left-to-right with equal probability. The Test B environment operates in the same
way as the training environment, except that instead of starting at random locations within the entire
bottom half of the map, all friendly units are positioned within a small horizontal band close to the
bottom of the map. From a subjective human perspective, the Test A and Test B environments are no
more challenging than the training environment. Colors, textures, timing and input format in the test
environments are identical to the training environment.

For comparison with model-free methods, we train a network with the Rainbow algorithm (Hessel
et al., 2018) to maximize reward in the StarIntruders environment. The policy is trained for 1M time
steps in the original training environment. The trained policy is evaluated in the original training
environment, and in each variant version of the environment.

4.3 RESULTS

Table 2 shows game score in the StarIntruders training and test environments. Without regularization,
the model-free Rainbow algorithm outperforms our model-predictive control agent in the training
environment. However, the model-based method generalizes to new environments more effectively.
Applying counterfactual regularization to the predictive model improves the performance of our MPC
agent in both the training environment and test environments.

Table 1 shows both game score and pixel prediction error for the simpler MiniPacMan task. We note
that lower MSE does not necessarily coincide with higher score, so the proposed regularizations
do not simply improve pixel prediction accuracy. We conclude that counterfactual regularization
improves the representation learned by our environment model.

Method Training Test A Test B
Rainbow (Hessel et al., 2018) 7.38 4.92 5.05

MPC 6.50 7.30 7.00
MPC, Action-Control 7.60 7.70 7.60

MPC, Disentanglement 7.90 7.90 8.00

Table 2: StarIntruders environment: Per-episode cumulative reward for training and test tasks, average
of 10 episodes. The same model-predictive control (MPC) agent is applied using models trained with
the standard reconstruction loss, and models trained with each proposed regularization. A model-free
method, Rainbow is included for comparison.
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5 RELATED WORK

Much previous work in model-based reinforcement learning involves planning with model-predictive
control in low-dimensional state spaces using neural networks (Gal et al.) (Chua et al., 2018) or
other models (Deisenroth & Rasmussen, 2011). Other work has applied generative neural network
models to high-dimensional video prediction (Chiappa et al., 2017) or state prediction in Markov
reward processes (Silver et al., 2017) where transitions are not action-conditional. Some work has
explored action-conditional video prediction (Oh et al., 2015) without planning. Recent work has
applied model-predictive planning to high-dimensional image domains (Kaiser et al., 2019a) (Hafner
et al., 2018).

CAUSAL MODELS

It has been widely recognized in recent years that the capacity to model causal rather than correla-
tional relationships is a desirable quality in an AI system (Pearl, 2009), and that conventional deep
reinforcement learning techniques fail to handle causal reasoning (Garnelo et al., 2016). In (Lu et al.,
2018), causal effects are discovered through the estimation of a latent-variable model. In (Dasgupta
et al., 2019) a reinforcement learning agent learns to perform causal inference through interventions
in an episodic setting. Counterfactually-Guided Policy Search (Buesing et al., 2018) uses the concept
of counterfactual actions to de-bias predictions for a model-based agent.

DISENTANGLEMENT OF FACTORS

Factorized state representations have long been known to improve performance in reinforcement
learning tasks (Degris et al., 2006). In (Higgins et al., 2017), the Kullback-Liebler divergence
term of a variational autoencoder’s objective function is reinterpreted as a regularization term
promoting conditional independence of latent dimensions. In (Kim & Mnih, 2018), independence of
an autoencoder’s latent dimensions is achieved via an adversarial loss.

MODEL-BASED REINFORCEMENT LEARNING

Learning a predictive model of the environment has long been recognized as a more sample-efficient
approach than model-free policy learning. Predictive models were applied to discrete grid-world
tasks in Dyna-Q (Sutton, 1990), (Chentanez et al., 2005) and to low-dimensional robotic control
tasks in PILCO (Deisenroth & Rasmussen, 2011). In (de Avila Belbute-Peres et al., 2018), a linear
complementarity problem solver is used to simulate two-dimensional rigid body dynamics as a
differentiable layer within a network, allowing sample-efficient prediction and high performance on
control tasks. Other methods build models of environment dynamics which are then used to plan for
control tasks (Lowrey et al., 2018) (Chua et al., 2018). Many recent methods use generative deep
network models trained to predict transitions in high-dimensional visual environments. Planning-
based agents have been constructed using networks trained to simulate grid-based games such as
Sokoban (Racanière et al., 2017), Atari games (Kaiser et al., 2019a), pixel-based physics tasks (Hafner
et al., 2018) and visual robotic control tasks (Ebert et al., 2018).

6 CONCLUSIONS

The capability to generate and reason about counterfactual states is already considered valuable when
deploying agents that require interpretability or explainability (Wachter et al., 2017). We have shown
how counterfactual states can also be used during the training process, in order to force desired causal
dependencies or independencies that may be appropriate for a given task or environment.

We have proposed counterfactual regularization terms appropriate for two-dimensional video tasks,
but loss functions based on counterfactual states provide a flexible and general way to encode desired
properties into a loss function. Future work might explore new applications of counterfactual states
to enforce desired causal relationships during the training process. Additional future work includes
extending counterfactual regularization to new architectures and more complex physical control tasks,
as well as considering more sophisticated exploration policies for generating training data, and better
planning algorithms at test time.
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