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ABSTRACT

Person re-identification (re-ID) aims at identifying the same persons’ images
across different cameras. However, domain diversities between different datasets
pose an evident challenge for adapting the re-ID model trained on one dataset to
another one. State-of-the-art unsupervised domain adaptation methods for per-
son re-ID transferred the learned knowledge from the source domain by opti-
mizing with pseudo labels created by clustering algorithms on the target domain.
Although they achieved state-of-the-art performances, the inevitable label noise
caused by the clustering procedure was ignored. Such noisy pseudo labels sub-
stantially hinders the model’s capability on further improving feature representa-
tions on the target domain. In order to mitigate the effects of noisy pseudo labels,
we propose to softly refine the pseudo labels in the target domain by proposing
an unsupervised framework, Mutual Mean-Teaching (MMT), to learn better fea-
tures from the target domain via off-line refined hard pseudo labels and on-line
refined soft pseudo labels in an alternative training manner. In addition, the com-
mon practice is to adopt both the classification loss and the triplet loss jointly
for achieving optimal performances in person re-ID models. However, conven-
tional triplet loss cannot work with softly refined labels. To solve this problem,
a novel soft softmax-triplet loss is proposed to support learning with soft pseudo
triplet labels for achieving the optimal domain adaptation performance. The pro-
posed MMT framework achieves considerable improvements of 14.4%, 18.2%,
13.1% and 16.4% mAP on Market-to-Duke, Duke-to-Market, Market-to-MSMT
and Duke-to-MSMT unsupervised domain adaptation tasks.

1 INTRODUCTION

Person re-identification (re-ID) aims at retrieving the same persons’ images from images captured
by different cameras. In recent years, person re-ID datasets with increasing numbers of images were
proposed to facilitate the research along this direction. All the datasets require time-consuming an-
notations and are keys for re-ID performance improvements. However, even with such large-scale
datasets, for person images from a new camera system, the person re-ID models trained on exist-
ing datasets generally show evident performance drops because of the domain gaps. Unsupervised
Domain Adaptation (UDA) is therefore proposed to adapt the model trained on the source image do-
main (dataset) with identity labels to the target image domain (dataset) with no identity annotations.

State-of-the-art UDA methods (Song et al., 2018; Zhang et al., 2019b; Yang et al., 2019) for person
re-ID group unannotated images with clustering algorithms and train the network with clustering-
generated pseudo labels. Although the pseudo label generation and feature learning with pseudo
labels are conducted alternatively to refine the pseudo labels to some extent, the training of the
neural network is still substantially hindered by the inevitable label noise. The noise derives from the
limited transferability of source-domain features, the unknown number of target-domain identities,
and the imperfect results of the clustering algorithm. The refinery of noisy pseudo labels has crucial
influences to the final performance, but is mostly ignored by the clustering-based UDA methods.

To effectively address the problem of noisy pseudo labels in clustering-based UDA methods (Song
et al., 2018; Zhang et al., 2019b; Yang et al., 2019) (Figure 1), we propose an unsupervised Mutual
Mean-Teaching (MMT) framework to effectively perform pseudo label refinery by optimizing the
neural networks under the joint supervisions of off-line refined hard pseudo labels and on-line refined
soft pseudo labels. Specifically, our proposed MMT framework provides robust soft pseudo labels
in an on-line peer-teaching manner, which is inspired by the teacher-student approaches (Tarvainen
& Valpola, 2017; Zhang et al., 2018b) to simultaneously train two same networks. The networks
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Figure 1: Person image A1 and A2 belong to the same identity while B with similar appearance is
from another person. However, clustering-generated pseudo labels in state-of-the-art Unsupervised
Domain Adaptation (UDA) methods contain much noise that hinders feature learning. We propose
pseudo label refinery with on-line refined soft pseudo labels to effectively mitigate the influence of
noisy pseudo labels and improve UDA performance on person re-ID.

gradually capture target-domain data distributions and thus refine pseudo labels for better feature
learning. To avoid training error amplification, the temporally average model of each network is
proposed to produce reliable soft labels for supervising the other network in a collaborative training
strategy. By training peer-networks with such on-line soft pseudo labels on the target domain, the
learned feature representations can be iteratively improved to provide more accurate soft pseudo
labels, which, in turn, further improves the discriminativeness of learned feature representations.

The classification and triplet losses are commonly adopted together to achieve state-of-the-art per-
formances in both fully-supervised (Luo et al., 2019) and unsupervised (Zhang et al., 2019b; Yang
et al., 2019) person re-ID models. However, the conventional triplet loss (Hermans et al., 2017) can-
not work with such refined soft labels. To enable using the triplet loss with soft pseudo labels in our
MMT framework, we propose a novel soft softmax-triplet loss so that the network can benefit from
softly refined triplet labels. The introduction of such soft softmax-triplet loss is also the key to the
superior performance of our proposed framework. Note that the collaborative training strategy on
the two networks is only adopted in the training process. Only one network is kept in the inference
stage without requiring any additional computational or memory cost.

The contributions of this paper could be summarized as three-fold. (1) We propose to tackle the
label noise problem in state-of-the-art clustering-based UDA methods for person re-ID, which is
mostly ignored by existing methods but is shown to be crucial for achieving superior final per-
formance. The proposed Mutual Mean-Teaching (MMT) framework is designed to provide more
reliable soft labels. (2) Conventional triplet loss can only work with hard labels. To enable train-
ing with soft triplet labels for mitigating the pseudo label noise, we propose the soft softmax-triplet
loss to learn more discriminative person features. (3) The MMT framework shows exceptionally
strong performances on all UDA tasks of person re-ID. Compared with state-of-the-art methods,
it leads to significant improvements of 14.4%, 18.2%, 13.1%, 16.4% mAP on Market-to-Duke,
Duke-to-Market, Market-to-MSMT, Duke-to-MSMT re-ID tasks.

2 RELATED WORK

Unsupervised domain adaptation (UDA) for person re-ID. UDA methods have attracted much
attention because their capability of saving the cost of manual annotations. There are three main
categories of methods. The first category of clustering-based methods maintains state-of-the-art per-
formance to date. (Fan et al., 2018) proposed to alternatively assign labels for unlabeled training
samples and optimize the network with the generated targets. (Lin et al., 2019) proposed a bottom-
up clustering framework with a repelled loss. (Yang et al., 2019) introduced to assign hard pseudo
labels for both global and local features. However, the training of the neural network was substan-
tially hindered by the noise of the hard pseudo labels generated by clustering algorithms, which was
mostly ignored by existing methods. The second category of methods learns domain-invariant fea-
tures from style-transferred source-domain images. SPGAN (Deng et al., 2018) and PTGAN (Wei
et al., 2018) transformed source-domain images to match the image styles of the target domain while
maintaining the original person identities. The style-transferred images and their identity labels were
then used to fine-tune the model. HHL (Zhong et al., 2018) learned camera-invariant features with
camera style transferred images. However, the retrieval performances of these methods deeply relied
on the image generation quality, and they did not explore the complex relations between different
samples in the target domain. The third category of methods attempts on optimizing the neural
networks with soft labels for target-domain samples by computing the similarities with reference
images or features. ENC (Zhong et al., 2019) assigned soft labels by saving averaged features with

2



Under review as a conference paper at ICLR 2020

an exemplar memory module. MAR (Yu et al., 2019) conducted multiple soft-label learning by
comparing with a set of reference persons. However, the reference images and features might not be
representative enough to generate accurate labels for achieving advanced performances.
Generic domain adaptation methods for close-set recognition. Generic domain adaptation meth-
ods learn features that can minimize the differences between data distributions of source and target
domains. Adversarial learning based methods (Zhang et al., 2018a; Tzeng et al., 2017; Ghifary
et al., 2016; Bousmalis et al., 2016; Tzeng et al., 2015) adopted a domain classifier to dispel the dis-
criminative domain information from the learned features in order to reduce the domain gap. There
also exist methods (Tzeng et al., 2014; Long et al., 2015; Yan et al., 2017; Saito et al., 2018; Ghi-
fary et al., 2016) that minimize the Maximum Mean Discrepancy (MMD) loss between source- and
target-domain distributions. However, these methods assume that the classes on different domains
are shared, which is not suitable for unsupervised domain adaptation on person re-ID.
Teacher-student models have been widely studied in semi-supervised learning methods and knowl-
edge/model distillation methods. The key idea of teacher-student models is to create consistent
training supervisions for labeled/unlabeled data via different models’ predictions. Temporal ensem-
bling (Laine & Aila, 2016) maintained an exponential moving average prediction for each sample
as the supervisions of the unlabeled samples, while the mean-teacher model (Tarvainen & Valpola,
2017) averaged model weights at different training iterations to create the supervisions for unlabeled
samples. Deep mutual learning (Zhang et al., 2018b) adopted a pool of student models instead of
the teacher models by training them with supervisions from each other. However, existing methods
with teacher-student mechanisms are mostly designed for close-set recognition problems, where
both labeled and unlabeled data share the same set of class labels and could not be directly utilized
on unsupervised domain adaptation tasks of person re-ID.

3 PROPOSED APPROACH
We propose a novel Mutual Mean-Teaching (MMT) framework for tackling the problem of noisy
pseudo labels in clustering-based Unsupervised Domain Adaptation (UDA) methods. The label
noise has important impacts to the domain adaptation performance but was mostly ignored by those
methods. Our key idea is to conduct pseudo label refinery in the target domain by optimizing the
neural networks with off-line refined hard pseudo labels and on-line refined soft pseudo labels in
a collaborative training manner. In addition, the conventional triplet loss cannot properly work
with soft labels. A novel soft softmax-triplet loss is therefore introduced to better utilize the softly
refined pseudo labels. Both the soft classification loss and the soft softmax-triplet loss work jointly
to achieve optimal domain adaptation performances.

Formally, we denote the the source domain data as Ds = {(xsi ,ysi )|
Ns
i=1}, where xsi and ysi denote

the i-th training sample and its associated person identity label, Ns is the number of images, and
Ms denotes the number of person identities (classes) in the source domain. The Nt target-domain
images are denoted as Dt = {xti|

Nt
i=1}, which are not associated with any ground-truth identity label.

3.1 CLUSTERING-BASED UDA METHODS REVISIT

State-of-the-art UDA methods (Fan et al., 2018; Lin et al., 2019; Zhang et al., 2019b; Yang et al.,
2019) follow a similar general pipeline. They generally pre-train a deep neural networkF (·|θ) on the
source domain, where θ denotes current network parameters, and the network is then transferred to
learn from the images in the target domain. The source-domain images’ and target-domain images’
features encoded by the network are denoted as {F (xsi |θ)}|

Ns
i=1 and {F (xti|θ)}|

Nt
i=1 respectively.

As illustrated in Figure 2 (a), two operations are alternated to gradually fine-tune the pre-trained
network on the target domain. (1) The target-domain samples are grouped into pre-defined Mt

classes by clustering the features {F (xti|θ)}|
Nt
i=1 output by the current network. Let ỹti denotes the

pseudo label generated for image xti. (2) The network parameters θ and a learnable target-domain
classifier Ct : f t → {1, · · · ,Mt} are then optimized with respect to an identity classification (cross-
entropy) loss Ltid(θ) and a triplet loss (Hermans et al., 2017) Lttri(θ) in the form of,

Lt
id(θ) =

1

Nt

Nt∑
i=1

Lce

(
Ct(F (xt

i|θ)), ỹt
i

)
, (1)

Lt
tri(θ) =

1

Nt

Nt∑
i=1

max
(
0, ||F (xt

i|θ)− F (xt
i,p|θ)||+m− ||F (xt

i|θ)− F (xt
i,n|θ)||

)
, (2)

where || · || denotes the L2-norm distance, subscripts i,p and i,n indicate the hardest positive and
hardest negative feature index in each mini-batch for the sample xti, and m = 0.5 denotes the
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Figure 2: (a) The pipeline for existing clustering-based UDA methods on person re-ID with noisy
hard pseudo labels. (b) Overall framework of the proposed Mutual Mean-Teaching (MMT) with
two collaborative networks jointly optimized under the supervisions of off-line refined hard pseudo
labels and on-line refined soft pseudo labels. A soft identity classification loss and a novel soft
softmax-triplet loss are adopted. (c) One of the average models with better validated performance is
adopted for inference as average models perform better than models with current parameters.

triplet distance margin. Such two operations, pseudo label generation by clustering and feature
learning with pseudo labels, are alternated until the training converges. However, the pseudo labels
generated in step (1) inevitably contain errors due to the imperfection of features as well as the errors
of the clustering algorithms, which hinder the feature learning in step (2). To mitigate the pseudo
label noise, we propose the Mutual Mean-Teaching (MMT) framework together with a novel soft
softmax-triplet loss to conduct the pseudo label refinery.
3.2 MUTUAL MEAN-TEACHING (MMT) FRAMEWORK

3.2.1 SUPERVISED PRE-TRAINING FOR SOURCE DOMAIN

UDA task on person re-ID aims at transferring the knowledge from a pre-trained model on the source
domain to the target domain. A deep neural network is first pre-trained on the source domain. Given
the training data Ds, the network is trained to model a feature transformation function F (·|θ) that
transforms each input sample xsi into a feature representation F (xsi |θ). Given the encoded features,
the identification classifier Cs outputs anMs-dimensional probability vector to predict the identities
in the source-domain training set. The neural network is trained with a classification loss Lsid(θ)
and a triplet loss Lstri(θ) to separate features belonging to different identities. The overall loss is
therefore calculated as

Ls(θ) = Ls
id(θ) + λsLs

tri(θ), (3)
where Lsid(θ) and Lstri(θ) are defined similarly to equation 1 and equation 2 but with ground-truth
identity labels {ysi |

Ns
i=1}, and λs is the parameter weighting the two losses.

3.2.2 PSEUDO LABEL REFINERY WITH ON-LINE REFINED SOFT PSEUDO LABELS

Our proposed MMT framework is based on the clustering-based UDA methods with off-line refined
hard pseudo labels as introduced in Section 3.1, where the pseudo label generation and refinement
are conducted alternatively. However, the pseudo labels generated in this way are hard (i.e., they are
always of 100% confidences) but noisy. In order to mitigate the pseudo label noise, apart from the
off-line refined hard pseudo labels, our framework further incorporates on-line refined soft pseudo
labels (i.e., pseudo labels with < 100% confidences) into the training process.

Our MMT framework generates soft pseudo labels by collaboratively training two same networks
with different initializations. The overall framework is illustrated in Figure 2 (b). The pseudo
classes are still generated the same as those by existing clustering-based UDA methods, where each
cluster represents one class. In addition to the hard and noisy pseudo labels, our two collaborative
networks also generate on-line soft pseudo labels by network predictions for training each other. The
intuition is that, after the networks are trained even with hard pseudo labels, they can roughly capture
the training data distribution and their class predictions can therefore serve as soft class labels for
training. However, such soft labels are generally not perfect because of the training errors and noisy
hard pseudo labels in the first place. To avoid two networks collaboratively bias each other, the
past temporally average model of each network instead of the current model is used to generate the
soft pseudo labels for the other network. Both off-line hard pseudo labels and on-line soft pseudo
labels are utilized jointly to train the two collaborative networks. After training, only one of the past
average models with better validated performance is adopted for inference (see Figure 2 (c)).

We denote the two collaborative networks as feature transformation functions F (·|θ1) and F (·|θ2),
and denote their corresponding pseudo label classifiers as Ct1 and Ct2, respectively. To simulta-
neously train the coupled networks, we feed the same image batch to the two networks but with
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separately random erasing, cropping and flipping. Each target-domain image can be denoted by xti
and x′ti for the two networks, and their pseudo label confidences can be predicted as Ct1(F (x

t
i|θ1))

andCt2(F (x
′t
i|θ2)). One naı̈ve way to train the collaborative networks is to directly utilize the above

pseudo label confidence vectors as the soft pseudo labels for training the other network. However, in
such a way, the two networks’ predictions might converge to equal each other and the two networks
lose their output independences. The classification errors as well as pseudo label errors might be
amplified during training. In order to avoid error amplification, we propose to use the temporally
average model of each network to generate reliable soft pseudo labels for supervising the other net-
work. Specifically, the parameters of the temporally average models of the two networks at current
iteration T are denoted as E(T )[θ1] and E(T )[θ2] respectively, which can be calculated as

E(T )[θ1] = αE(T−1)[θ1] + (1− α)θ1,

E(T )[θ2] = αE(T−1)[θ2] + (1− α)θ2, (4)
where E(T−1)[θ1], E(T−1)[θ2] indicate the temporal average parameters of the two networks in the
previous iteration (T−1), the initial temporal average parameters areE(0)[θ1] = θ1,E(0)[θ2] = θ2,
and α is the ensembling momentum to be within the range [0, 1). The robust soft pseudo label
supervisions are then generated by the two temporal average models as Ct1(F (x

t
i|E(T )[θ1])) and

Ct2(F (x
′t
i|E(T )[θ2])) respectively. The soft classification loss for optimizing θ1 and θ2 with the

soft pseudo labels generated from the other network can therefore be formulated as

Lt
sid(θ1|θ2) = −

1

Nt

Nt∑
i=1

(
Ct

2(F (x′
t
i|E(T )[θ2])) · logCt

1(F (xt
i|θ1))

)
,

Lt
sid(θ2|θ1) = −

1

Nt

Nt∑
i=1

(
Ct

1(F (xt
i|E(T )[θ1])) · logCt

2(F (x′
t
i|θ2))

)
. (5)

The two networks’ pseudo-label predictions are better dis-related by using other network’s past
average model to generate supervisions and can therefore better avoid error amplification.

Generalizing classification cross-entropy loss to work with soft pseudo labels has been well studied
(Hinton et al., 2015), (Müller et al., 2019). However, optimizing triplet loss with soft pseudo labels
poses a great challenge as no previous method has investigated soft labels for triplet loss. For
tackling the difficulty, we propose to use softmax-triplet loss, whose hard version is formulated as

Lt
tri(θ1) =

1

Nt

Nt∑
i=1

Lbce

(
Ti(θ1),1

)
, (6)

where Ti(θ1) =
exp([F (xt

i|θ1)]TF (xt
i,n|θ1))

exp([F (xt
i|θ1)]TF (xt

i,p|θ1)) + exp([F (xt
i|θ1)]TF (xt

i,n|θ1))
. (7)

Here Lbce(·, ·) denotes the binary cross-entropy loss, F (xti|θ1) is the encoded feature for target-
domain sample xti by network 1, the subscripts i,p and i,n denote sample xti’s hardest positive and
negative samples in the mini-batch, [F (xti|θ1)]TF (xti,p|θ1) is the dot product between sample xti
and its positive sample xti,p to measure their similarity, and “1” denotes the ground-truth that the
positive sample xti,p should be closer to the sample xti than its negative sample xti,n. Given the two
collaborative networks, we can utilize the one network’s past temporal average model to generate
soft triplet labels for the other network with the proposed soft softmax-triplet loss,

Lt
stri(θ1|θ2) =

1

Nt

Nt∑
i=1

Lbce

(
Ti(θ1), Ti

(
E(T )[θ2])

))
,

Lt
stri(θ2|θ1) =

1

Nt

Nt∑
i=1

Lbce

(
Ti(θ2), Ti

(
E(T )[θ1])

))
, (8)

where Ti(E(T )[θ1]) and Ti(E(T )[θ2]) are the soft triplet labels generated by the two networks’ past
temporally average models. Such soft triplet labels are fixed as training supervisions. By adopting
the soft softmax-triplet loss, our MMT framework overcomes the limitation of hard supervisions by
the conventional triple loss (equation 2). It can be successfully trained with soft triplet labels, which
are shown to be important for improving the domain adaptation performance in our experiments.
Note that such a softmax-triplet loss was also studied in (Zhang et al., 2019a). However, it has never
been used to generate soft labels and was not designed to work with soft pseudo labels before.

3.2.3 OVERALL LOSS AND ALGORITHM

Our proposed MMT framework is trained with both off-line refined hard pseudo labels and on-line
refined soft pseudo labels. The overall loss function L(θ1,θ2) simultaneously optimizes the coupled
networks, which combines equation 1, equation 5, equation 6, equation 8 and is formulated as,
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Require: Target-domain data Dt;
Require: Ensembling momentum α for equation 4, weighting factors λt

id, λt
tri for equation 9;

Require: Initialize pre-trained weights θ1 and θ2 by optimizing with equation 3 on Ds.
for n in [1, num epochs] do

Generate hard pseudo labels ỹt
i for each sample xt

i in Dt by clustering algorithms.
for each mini-batchB ⊂ Dt, iteration T do

1: Generate soft pseudo labels from the collaborative networks by predicting Ti∈B(E(T )[θ1]), Ti∈B(E(T )[θ2]),
Ct

1(F (xt
i∈B |E

(T )[θ1])), Ct
2(F (x′t

i∈B |E
(T )[θ2]));

2: Joint update parameters θ1 & θ2 by the gradient descent of the objective function equation 9;
3: Update temporally average model weightsE(T+1)[θ1] &E(T+1)[θ2] following equation 4.

end for
end for

Algorithm 1: Unsupervised Mutual Mean-Teaching (MMT) Training Strategy

L(θ1,θ2) = (1− λt
id)(Lt

id(θ1) + Lt
id(θ2)) + λt

id(Lt
sid(θ1|θ2) + Lt

sid(θ2|θ1))
+ (1− λt

tri)(Lt
tri(θ1) + Lt

tri(θ2)) + λt
tri(Lt

stri(θ1|θ2) + Lt
stri(θ2|θ1)), (9)

where λtid, λttri are the weighting parameters. The detailed optimization procedures are summarized
in Algorithm 1. The hard pseudo labels are off-line refined after training with existing hard pseudo
labels for one epoch. During the training process, the two networks are trained by combining the off-
line refined hard pseudo labels and on-line refined soft labels predicted by their peers with proposed
soft losses. The noise and randomness caused by hard clustering, which lead to unstable training
and limited final performance, can be alleviated by the proposed MMT framework.

4 EXPERIMENTS
4.1 DATASETS

We evaluate our proposed MMT on three widely-used person re-ID datasets, i.e., Market-
1501 (Zheng et al., 2015), DukeMTMC-reID (Ristani et al., 2016), and MSMT17 (Wei et al., 2018).
The Market-1501 (Zheng et al., 2015) dataset consists of 32,668 annotated images of 1,501 identi-
ties shot from 6 cameras in total, for which 12,936 images of 751 identities are used for training and
19,732 images of 750 identities are in the test set. DukeMTMC-reID (Ristani et al., 2016) contains
16,522 person images of 702 identities for training, and the remaining images out of another 702
identities for testing, where all images are collected from 8 cameras. MSMT17 (Wei et al., 2018) is
the most challenging and large-scale dataset consisting of 126,441 bounding boxes of 4,101 identi-
ties taken by 15 cameras, for which 32,621 images of 1,041 identities are spitted for training. For
evaluating the domain adaptation performance of different methods, four domain adaptation tasks
are set up, i.e., Duke-to-Market, Market-to-Duke, Duke-to-MSMT and Market-to-MSMT, where
only identity labels on the source domain are provided. Mean average precision (mAP) and CMC
top-1, top-5, top-10 accuracies are adopted to evaluate the methods’ performances.

4.2 IMPLEMENTATION DETAILS

4.2.1 TRAINING DATA ORGANIZATION
For both source-domain pre-training and target-domain fine-tuning, each training mini-batch con-
tains 64 person images of 16 actual or pseudo identities (4 for each identity). Note that the generated
hard pseudo labels for the target-domain fine-tuning are updated after each epoch, so the mini-batch
of target-domain images needs to be re-organized with updated hard pseudo labels after each epoch.
All images are resized to 256× 128 before being fed into the networks.

4.2.2 OPTIMIZATION DETAILS
All the hyper-parameters of the proposed MMT framework are chosen based on a validation set
of the Duke-to-Market task with Mt = 500 pseudo identities. The same hyper-parameters are
then directly applied to the other three domain adaptation tasks. We propose a two-stage training
scheme, where ADAM optimizer is adopted to optimize the networks with a weight decay of 0.0005.
Randomly erasing (Zhong et al., 2017b) is only adopted in target-domain fine-tuning.
Stage 1: Source-domain pre-training. We adopt ResNet-50 (He et al., 2016) or IBN-ResNet-50
(Pan et al., 2018) as the backbone networks, where IBN-ResNet-50 achieves better performances by
integrating both IN and BN modules. Two same networks are initialized with ImageNet (Deng et al.,
2009) pre-trained weights. Given the mini-batch of images, network parameters θ1, θ2 are updated
independently by optimizing equation 3 with λs = 1. The initial learning rate is set to 0.00035 and
is decreased to 1/10 of its previous value on the 40th and 70th epoch in the total 80 epochs.
Stage 2: End-to-end training with MMT. Based on pre-trained weights θ1 and θ2, the two
networks are collaboratively updated by optimizing equation 9 with the loss weights λtid = 0.5,
λttri = 0.8. The temporal ensemble momentum α in equation 4 is set to 0.999. The learning rate
is fixed to 0.00035 for overall 40 training epochs. We utilize k-means clustering algorithm and
the number Mt of pseudo classes is set as 500, 700, 900 for Market-1501 and DukeMTMC-reID,
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Methods Market-to-Duke Duke-to-Market
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

PUL (Fan et al., 2018) (TOMM’18) 16.4 30.0 43.4 48.5 20.5 45.5 60.7 66.7
TJ-AIDL (Wang et al., 2018) (CVPR’18) 23.0 44.3 59.6 65.0 26.5 58.2 74.8 81.1
SPGAN (Deng et al., 2018) (CVPR’18) 22.3 41.1 56.6 63.0 22.8 51.5 70.1 76.8
HHL (Zhong et al., 2018) (ECCV’18) 27.2 46.9 61.0 66.7 31.4 62.2 78.8 84.0
CFSM (Chang et al., 2019) (AAAI’19) 27.3 49.8 - - 28.3 61.2 - -
BUC (Lin et al., 2019) (AAAI’19) 27.5 47.4 62.6 68.4 38.3 66.2 79.6 84.5
ARN (Li et al., 2018) (CVPR’18-WS) 33.4 60.2 73.9 79.5 39.4 70.3 80.4 86.3
UDAP (Song et al., 2018) (Arxiv’18) 49.0 68.4 80.1 83.5 53.7 75.8 89.5 93.2
ENC (Zhong et al., 2019) (CVPR’19) 40.4 63.3 75.8 80.4 43.0 75.1 87.6 91.6
UCDA-CCE (Qi et al., 2019) (ICCV’19) 31.0 47.7 - - 30.9 60.4 - -
PDA-Net (Li et al., 2019) (ICCV’19) 45.1 63.2 77.0 82.5 47.6 75.2 86.3 90.2
PCB-PAST (Zhang et al., 2019b) (ICCV’19) 54.3 72.4 - - 54.6 78.4 - -
SSG (Yang et al., 2019) (ICCV’19) 53.4 73.0 80.6 83.2 58.3 80.0 90.0 92.4
Pre-trained (ResNet-50) 29.6 46.0 61.5 67.2 31.8 61.9 76.4 82.2
Proposed MMT-500 (ResNet-50) 63.1 76.8 88.0 92.2 71.2 87.7 94.9 96.9
Proposed MMT-700 (ResNet-50) 65.1 78.0 88.8 92.5 69.0 86.8 94.6 96.9
Proposed MMT-900 (ResNet-50) 63.1 77.4 88.1 92.5 66.2 86.8 94.9 96.6
Pre-trained (IBN-ResNet-50) 35.4 54.0 67.7 72.9 35.6 65.3 79.7 84.3
Proposed MMT-500 (IBN-ResNet-50) 65.7 79.3 89.1 92.4 76.5 90.9 96.4 97.9
Proposed MMT-700 (IBN-ResNet-50) 68.7 81.8 91.2 93.4 74.5 91.1 96.5 98.2
Proposed MMT-900 (IBN-ResNet-50) 67.3 80.8 90.3 93.0 72.7 91.2 96.3 98.0

Methods Market-to-MSMT Duke-to-MSMT
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

PTGAN (Wei et al., 2018) (CVPR’18) 2.9 10.2 - 24.4 3.3 11.8 - 27.4
ENC (Zhong et al., 2019) (CVPR’19) 8.5 25.3 36.3 42.1 10.2 30.2 41.5 46.8
SSG (Yang et al., 2019) (ICCV’19) 13.2 31.6 - 49.6 13.3 32.2 - 51.2
Pre-trained (ResNet-50) 7.1 19.4 28.9 34.2 9.4 27.0 38.1 43.7
Proposed MMT-500 (ResNet-50) 16.6 37.5 50.6 56.5 17.9 41.3 54.2 59.7
Proposed MMT-1000 (ResNet-50) 21.6 46.1 59.8 66.1 23.5 50.0 63.6 69.2
Pre-trained (IBN-ResNet-50) 9.5 25.3 36.2 41.6 11.9 32.6 44.7 50.4
Proposed MMT-500 (IBN-ResNet-50) 19.6 43.3 56.1 61.6 23.3 50.0 62.8 68.4
Proposed MMT-1000 (IBN-ResNet-50) 26.3 52.5 66.3 71.7 29.7 58.8 71.0 76.1

Table 1: Experimental results of the proposed MMT and state-of-the-art methods on Market-
1501 (Zheng et al., 2015), DukeMTMC-reID (Ristani et al., 2016), and MSMT17 (Wei et al., 2018)
datasets, where MMT-Mt represents the result withMt pseudo classes. Note that none ofMt values
equals the actual number of identities but our method still outperforms all state-of-the-arts.

and 500, 1000 for MSMT17. Note that actual identity numbers in the target-domain training sets are
different fromMt. We test differentMt values that are either smaller or greater than actual numbers.

4.3 COMPARISON WITH STATE-OF-THE-ARTS
We compare our proposed MMT framework with state-of-the-art methods on the four domain adap-
tation tasks, Market-to-Duke, Duke-to-Market, Market-to-MSMT and Duke-to-MSMT. The results
are shown in Table 1. Our MMT framework significantly outperforms all existing approaches with
both ResNet-50 and IBN-ResNet-50 backbones, which verifies the effectiveness of our method.
Moreover, we almost approach fully-supervised learning performances (Sun et al., 2018; Ge et al.,
2018) without any manual annotations on the target domain. No post-processing technique, e.g.
re-ranking (Zhong et al., 2017a) or multi-query fusion (Zheng et al., 2015), is adopted.

Specifically, by adopting the ResNet-50 (He et al., 2016) backbone, we surpass the state-of-the-
art clustering-based SSG (Yang et al., 2019) by considerable margins of 11.7% and 12.9% mAP
on Market-to-Duke and Duke-to-Market tasks with simpler network architectures and lower output
feature dimensions. Furthermore, evident 8.4% and 10.2% mAP gains are achieved on Market-to-
MSMT and Duke-to-MSMT tasks. Recall that Mt is the number of clusters or number of hard
pseudo labels manually specified. More importantly, we achieve state-of-the-art performances on
all tested target datasets with different Mt, which are either fewer or more than the actual number of
identities in the training set of the target domain. Such results prove the necessity and effectiveness
of our proposed pseudo label refinery for hard pseudo labels with inevitable noises.

4.4 ABLATION STUDIES
In this section, we evaluate each component in our proposed framework by conducting ablation
studies on Duke-to-Market and Market-to-Duke tasks with both ResNet-50 (He et al., 2016) and
IBN-ResNet-50 (Pan et al., 2018) backbones. Results are shown in Table 2.
Effectiveness of the soft pseudo label refinery. To investigate the necessity of handling noisy
pseudo labels in clustering-based UDA methods, we create baseline models that utilize only off-line
refined hard pseudo labels, i.e., optimizing equation 9 with λtid = λttri = 0 for the two-step training
strategy in Section 3.1. The baseline model performances are present in Table 2 as “Baseline (only
Ltid & Lttri)”. Considerable drops of 17.7% and 14.9% mAP are observed on ResNet-50 for Duke-
to-Market and Market-to-Duke tasks. Similarly, 13.8% and 10.7% mAP decreases are shown on the
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Duke-to-Market ResNet-50 IBN-ResNet-50
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

Pre-trained (only Ls
id & Ls

tri) 31.8 61.9 76.4 82.2 35.6 65.3 79.7 84.3
Baseline (only Lt

id & Lt
tri) 53.5 76.0 88.1 91.9 62.7 84.4 92.7 95.5

Baseline+MMT-500 (w/o Lt
sid) 62.6 84.0 93.4 95.4 69.6 87.4 95.2 96.7

Baseline+MMT-500 (w/o Lt
stri) 65.9 84.0 93.1 95.5 71.7 88.5 95.1 96.6

Baseline+MMT-500 (w/o θ2) 67.5 86.1 94.3 96.1 72.8 89.1 95.2 97.1
Baseline+MMT-500 (w/oE[θ]) 62.3 80.5 91.3 94.0 72.1 88.7 95.4 97.3
Baseline+MMT-500 71.2 87.7 94.9 96.9 76.5 90.9 96.4 97.9

Market-to-Duke ResNet-50 IBN-ResNet-50
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

Pre-trained (only Ls
id & Ls

tri) 29.6 46.0 61.5 67.2 35.4 54.0 67.7 72.9
Baseline (only Lt

id & Lt
tri) 48.2 66.4 79.8 84.0 55.0 72.3 84.4 88.1

Baseline+MMT-500 (w/o Lt
sid) 58.1 74.9 85.2 89.5 60.3 75.7 86.6 89.9

Baseline+MMT-500 (w/o Lt
stri) 59.5 73.9 85.5 88.8 61.7 77.1 86.5 89.6

Baseline+MMT-500 (w/o θ2) 58.2 74.1 86.0 89.3 62.1 77.6 86.8 89.7
Baseline+MMT-500 (w/oE[θ]) 55.7 70.0 83.6 87.2 61.1 76.3 86.6 89.8
Baseline+MMT-500 63.1 76.8 88.0 92.2 65.7 79.3 89.1 92.4

Table 2: Ablation studies of our proposed MMT on Duke-to-Market and Market-to-Duke tasks with
Mt of 500. Note that the actual numbers of identities are not equal to 500 for both datasets but our
MMT method still shows significant improvements.

IBN-ResNet-50 backbone. Stable increases achieved by the proposed on-line refined soft pseudo
labels on different datasets and backbones demonstrate the necessity of soft pseudo label refinery
and the effectiveness of our proposed MMT framework.
Effectiveness of the soft softmax-triplet loss. We also verify the effectiveness of soft softmax-
triplet loss with softly refined triplet labels in our proposed MMT framework. Experiments of
removing the soft softmax-triplet loss, i.e., λttri = 0 in equation 9, but keeping the hard softmax-
triplet loss (equation 6) are conducted, which are denoted as “Baseline+MMT-500 (w/o Ltstri)”.
All experiments without the supervision of soft triplet loss show distinct drops on Duke-to-Market
and Market-to-Duke tasks, which indicate that the hard pseudo label with hard triplet loss hinders
the feature learning capability because it ignores pseudo label noise by the clustering algorithms.
Specifically, the mAP drops are 5.3% on ResNet-50 and 4.8% on IBN-ResNet-50 when evaluating
on the target dataset Market-1501. As for the Market-to-Duke task, similar mAP drops of 3.6% and
4.0% on the two network structures can be observed. An evident improvement of up to 5.3% mAP
demonstrates the usefulness of our proposed soft softmax-triplet loss.
Effectiveness of Mutual Mean-Teaching. We propose to generate on-line refined soft pseudo labels
for one network with the predictions of the past average model of the other network in our MMT
framework, i.e., the soft labels for network 1 are output from the average model of network 2 and vice
versa. We observe that the soft labels generated in such manner are more reliable due to the better
decoupling between the past temporally average models of the two networks. Such a framework
could effectively avoid bias amplification even when the networks have much erroneous outputs
in the early training epochs. There are two possible simplification our MMT framework with less
de-coupled structures. The first one is to keep only one network in our framework and use its
past temporal average model to generate soft pseudo labels for training itself. Such experiments
are denoted as “Baseline+MMT-500 (w/o θ2)”. The second simplification is to naı̈vely use one
network’s current-iteration predictions as the soft pseudo labels for training the other network and
vice versa, i.e., α = 0 for equation 4. This set of experiments are denoted as “Baseline+MMT-500
(w/o E[θ])”. Significant mAP drops compared to our proposed MMT could be observed in the
two sets of experiments, especially when using the ResNet-50 backbone, e.g. the mAP drops by
8.9% on Duke-to-Market task when removing past average models. This validates the necessity of
employing the proposed mutual mean-teaching scheme for providing more robust soft pseudo labels.
In despite of the large margin of performance declines when removing either the peer network or the
past average model, our proposed MMT outperforms the baseline model significantly, which further
demonstrates the importance of adopting the proposed on-line refined soft pseudo labels.

5 CONCLUSION

In this work, we propose an unsupervised Mutual Mean-Teaching (MMT) framework to tackle the
problem of noisy pseudo labels in clustering-based unsupervised domain adaptation methods for
person re-ID. The key is to conduct pseudo label refinery to better model inter-sample relations in
the target domain by optimizing with the off-line refined hard pseudo labels and on-line refined
soft pseudo labels in a collaborative training manner. Moreover, a novel soft softmax-triplet loss is
proposed to support learning with softly refined triplet labels for optimal performances. Our method
significantly outperforms all existing person re-ID methods on domain adaptation task with up to
18.2% improvements.
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