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ABSTRACT

In this paper, we propose a novel technique for improving the stochastic gradient
descent (SGD) method to train deep networks, which we term PowerSGD. The
proposed PowerSGD method simply raises the stochastic gradient to a certain
power ¥ € [0,1] during iterations and introduces only one additional parameter,
namely, the power exponent ¥ (when y = 1, PowerSGD reduces to SGD). We
further propose PowerSGD with momentum, which we term PowerSGDM, and
provide convergence rate analysis on both PowerSGD and PowerSGDM meth-
ods. Experiments are conducted on popular deep learning models and benchmark
datasets. Empirical results show that the proposed PowerSGD and PowerSGDM
obtain faster initial training speed than adaptive gradient methods, comparable
generalization ability with SGD, and improved robustness to hyper-parameter se-
lection and vanishing gradients. PowerSGD is essentially a gradient modifier via a
nonlinear transformation. As such, it is orthogonal and complementary to other
techniques for accelerating gradient-based optimization.

1 INTRODUCTION

Stochastic optimization as an essential part of deep learning has received much attention from both
the research and industry communities. High-dimensional parameter spaces and stochastic objective
functions make the training of deep neural network (DNN) extremely challenging. Stochastic gradient
descent (SGD) (Robbins & Monro, [1951) is the first widely used method in this field. It iteratively
updates the parameters of a model by moving them in the direction of the negative gradient of the
objective evaluated on a mini-batch. Based on SGD, other stochastic optimization algorithms, e.g.,
SGD with Momentum (SGDM) (Qian, |1999), AdaGrad (Duchi et al.|[2011), RMSProp (Tieleman &
Hinton, |2012), Adam (Kingma & Bal 2015) are proposed to train DNN more efficiently.

Despite the popularity of Adam, its generalization performance as an adaptive method has been
demonstrated to be worse than the non-adaptive ones. Adaptive methods (like AdaGrad, RMSProp
and Adam) often obtain faster convergence rates in the initial iterations of training process. Their
performance, however, quickly plateaus on the testing data (Wilson et al. |2017). In|Redd: et al.
(2018)), the authors provided a convex optimization example to demonstrate that the exponential
moving average technique can cause non-convergence in the RMSProp and Adam, and they proposed
a variant of Adam called AMSGrad, hoping to solve this problem. The authors provide a theoretical
guarantee of convergence but only illustrate its better performance on training data. However,
the generalization ability of AMSGrad on test data is found to be similar to that of Adam, and a
considerable performance gap still exists between AMSGrad and SGD (Keskar & Socher, 2017
Chen et al., [2018)). Indeed, the optimizer is chosen as SGD (or with Momentum) in several recent
state-of-the-art works in natural language processing and computer vision (Luo et al., [2018; Wu &
Hel 2018)), where in these instances SGD does perform better than adaptive methods. Despite the
practical success of SGD, obtaining sharp convergence results in the non-convex setting for SGD to
efficiently escape saddle points (i.e., convergence to second-order stationary points) remains a topic
of active research (Jin et al.,2019; |[Fang et al.,|2019).

Related Works: SGD, as the first efficient stochastic optimizer for training deep networks, iteratively
updates the parameters of a model by moving them in the direction of the negative gradient of the
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objective function evaluated on a mini-batch. SGDM brings a Momentum term from the physical
perspective, which obtains faster convergence speed than SGD. The Momentum idea can be seen
as a particular case of exponential moving average (EMA). Then the adaptive learning rate (ALR)
technique is widely adopted but also disputed in deep learning, which is first introduced by AdaGrad.
Contrast to the SGD, AdaGrad updates the parameters according to the square roots of the sum of
squared coordinates in all the past gradients. AdaGrad can potentially lead to huge gains in terms of
convergence (Duchi et al.| 2011)) when the gradients are sparse. However, it will also lead to rapid
learning rate decay when the gradients are dense. RMSProp, which first appeared in an unpublished
work (Tieleman & Hinton| [2012), was proposed to handle the aggressive, rapidly decreasing learning
rate in AdaGrad. It computes the exponential moving average of the past squared gradients, instead
of computing the sum of the squares of all the past gradients in AdaGrad. The idea of AdaGrad and
RMSProp propelled another representative algorithm: Adam, which updates the weights according to
the mean divided by the root mean square of recent gradients, and has achieved enormous success.
Recently, research to link discrete gradient-based optimization to continuous dynamic system theory
has received much attention (Yuan et al., 2016; Mazumdar & Ratliff, |2018)). While the proposed
optimizer excels at improving initial training, it is completely complementary to the use of learning
rate schedules (Smith & Topin, [2019; |Loshchilov & Hutter, [2016). We will explore how to combine
learning rate schedules with the PowerSGD optimizer in future work.

We summarize some popular stochastic optimizers as well as our proposed optimizers in Table[T]
We emphasize that, while other popular techniques focus on modifying the learning rates and/or
adopting momentum terms in the iterations, we propose to modify the gradient terms via a nonlinear
function called the Powerball function by the authors of [Yuan et al.|(2016)). In|Yuan et al.|(2016), the
authors presented the basic idea of applying the Powerball function in gradient descent methods. In
this paper, we 1) systematically present the methods for stochastic optimization with and without
momentum; 2) provide convergence proofs; 3) include experiments using popular deep learning
models and benchmark datasets. Another related work was presented in [Bernstein et al.| (2018)),
where the authors presented a version of stochastic gradient descent which uses only the signs of
gradients. This essentially corresponds to the special case of PowerSGD (or PowerSGDM) when
the power exponential y is set to 0. We also point out that despite the name resemblance, the power
PowerSign optimizer proposed inBello et al.|(2017) is a conditional scaling of the gradient, whereas
the proposed PowerSGD optimizer applies a component-wise trasformation to the gradient.

Table 1: An overview of some popular and our proposed first-order stochastic optimization methods,
where (-) g denotes the EMA with timescale 8 and g the stochastic gradient and 6 (-) is the Powerball
function applied to the stochastic gradient.

SGD SGDM  AdaGrad  RMSProp Adam PowerSGD  PowerSGDM

g (@  &/VE(E) &/\/(&¥p (8)p/1/ (&%) oy(g) (oy(8))p

Contributions: Inspired by the Powerball method in|Yuan et al.| (2016), this paper uses Powerball-
based stochastic optimizers for the training of deep networks. In particular, we make the following
major contributions:

1. We propose the PowerSGD, which is the first systematic application of the Powerball func-
tion technique in stochastic optimization. PowerSGD simply applies the Powerball function
(with only one additional parameter ) on the stochastic gradient term in SGD. Hence, it is
easy to implement and requires no extra memory. We also propose the PowerSGDM as a
variant of PowerSGD with momentum to further improve its convergence and generalization
abilities.

2. We have proved the convergence rates of the proposed PowerSGD and PowerSGDM. It has
been shown that both the proposed PowerSGD and PowerSGDM attain the best known rates
of convergence for SGD and SGDM on non-convex functions. In fact, to the knowledge
of the authors, the bounds we proved for SGD and SGDM (as special cases of PowerSGD
and PowerSGDM when y = 1) provide the currently best convergence bounds for SGD and
SGDM in the non-convex setting in terms of both the constants and rates of convergence
(see, e.g. |Yan et al.[(2018))).
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3. Experimental studies are conducted on multiple popular deep learning tasks and benchmark
datasets. The results empirically demonstrate that our methods gain faster convergence
rate especially in the early train process compared with the adaptive gradient methods.
Meanwhile, the proposed methods show comparable generalization ability compared with
SGD and SGDM.

QOutline: The remainder of the paper is organized as below. Section [2| proposes the PowerSGD
and PowerSGDM algorithms. Section [3| provides convergence results of the proposed algorithms
for non-convex optimization. Section [ gives the experiment results of the proposed algorithms on
a variety of models and datasets to empirically demonstrate their superiority to other optimizers.
Finally, conclusions are drawn in section 5}

Notation: Given a vector a € R", we denote its i-th coordinate by a;; we use ||a|| to denote its 2-norm
(Euclidean norm) and |||, to denote its p-norm for p > 1. Given two vectors a,b € R", we use
a- b to denote their inner product. We denote by E[] the expectation with respect to the underlying
probability space.

2  ALGORITHMS

In this section, we present the main algorithms proposed in this paper: PowerSGD and PowerSGDM.
PowerSGD combines the Powerball function technique with stochastic gradient descent, and Pow-
erSGDM is an extension of PowerSGD to include a momentum term. We shall prove in Section[3|
that both methods converge and attain at least the best known rates of convergence for SGD and
SGDM on non-convex functions, and demonstrate in Section | the advantages of using PowerSGD
and PowerSGDM compared to other popular stochastic optimizers for train deep networks.

2.1 POWERSGD

Train a DNN with n free parameters can be formulated as an unconstrained optimization problem

min f(x), (1)

xeRn

where f(-) : R” — R is a function bounded from below. SGD proved itself an efficient and effective
solution for high-dimensional optimization problems. It optimizes f by iteratively updating the
parameter vector x, € R” at step ¢, in the opposite direction of a stochastic gradient g(x;,&;) (where
& denotes a random vector), which is calculated on z-th mini-batch of train dataset. The update rule
of SGD for solving problem (T is

Xt+1 ZXt_%g(xhgt), (2)
starting from an arbitrary initial point x|, where oy is known as the learning rate at step ¢. In the rest
of the article, let g; = g(x;, &) for the sake of notation. We then introduce a nonlinear transformation
oy(z) = sign(z)|z|” named as the Powerball function where sign(z) returns the sign of z, or 0 if z = 0.
For any vector z = (z1,...,2,)", the Powerball function oy(z) is applied to all elements of z. A
parameter ¥ € R is introduced to adjust the mechanism and intensity of the Powerball function.

Applying the Powerball function to the stochastic gradient term in the update rule (2)) gives the
proposed PowerSGD algorithm:

Xt4+1 = X — atc}’(gt)v 3
where ¥ € [0,1] is an additional parameter that can be tuned. Clearly, when y = 1, we obtain the
vanilla SGD (2). The detailed pseudo-code of the proposed PowerSGD is presented in Algorithm 1.

2.2 POWERSGDM

The momentum trick inspired by physical processes |Polyak| (1964); |[Nesterov| (1983) has been
successfully combined with SGD to give SGDM, which almost always gives better convergence
rates on train deep networks. We hereby follow this line to propose the PowerSGD with Momentum
(PowerSGDM), whose update rule is

{Vt+l =Bvi —a0(g),

X1 = X¢ +Vi41-

4)
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Algorithm 1 PowerSGD Algorithm 2 PowerSGDM
1: Input: x1, {0t }_,, y€[0,1] 1: Input: x1, vy, {og}L |, B € (0,1), 7€ [0,1]
2: fortr=1to T do 2: fortr=1to T do
3: 8t :g(xz,éz) 3: Vigl :ﬁv,—o&,dy(gt)
4: X1 =X — 04 Oy(81) 4 Xe41 = Xt + Vi1
5: end for 5: end for

Clearly, when 8§ = 0, PowerSDGM (4) reduces to PowerSGD (3)). Pseudo-code of the proposed
PowerSGDM is detailed in Algorithm 2.

3 CONVERGENCE ANALYSIS

In this section, we present convergence results of PowerGD and PowerSGDM in the non-convex
setting. We start with some standard technical assumptions. First, we assume that the gradient of the
objective function f is L-Lipschitz.

Assumption 3.1 There exists some L > 0 such that |V f(x) —Vf(y)| < L|x—y

, forall x,y e R".

We then assume that a stochastic first-order black-box oracle is accessible as a noisy estimate of the
gradient of f at any point x € R", and the variance of the noise is bounded.

Assumption 3.2 The stochastic gradient oracle gives independent and unbiased estimate of the
gradient and satisfies:

Elg(x,§)]=Vf(x), Ellg(x.&)-Vf(0|*]<6% vxeR", (5)
where 6 > 0 is a constant.

We will be working with a mini-batch size in the proposed PowerSGD and PowerSGDM. Let n,
be the mini-batch size at the 7-th iteration and the corresponding mini-batch stochastic gradient be
given by the average of n, calls to the above oracle. Then by Assumption [3.2] we can show that
E[||lg; — Vf(x)||?] < &%/n, for all £ > 1. In other words, we can reduce variance by choosing a larger
mini-batch size (see Supplementary Material [A.7).

3.1 CONVERGENCE ANALYSIS OF POWERSGD

We now state the main convergence result for the proposed PowerSGD.

Theorem 3.1 Suppose that Assumptions and hold. Let T be the number of iterations.
PowerSGD (3) with an adaptive learning rate and mini-batch size B, = T (independent of a particular

step t) can lead to
I v 2| [Lf(x1) = S7) 6’
T Y ||g;||%+7] < £ +
k=1

E
- T l—¢ 2e(1—¢) |’

where € € (0,1), p= %’:forany Y€ [0,1) and p = oo for y=1.
The proof of Theorem [3.1]can be found in the Supplementary Material [A.7]

Remark 3.1 The proposed PowerSGD and PowerSGDM have the potential to outperform popular
stochastic optimizers by allowing the additional parameter Y that can be tuned for different training
cases, and they always reduce to other optimizers when setting y = 1.

Remark 3.2 We leave € € (0,1) to be a free parameter in the bound to provide trade-offs between
bounds given by the curvature L and stochasticity 6. If 6 = 0, we can choose € — 0 and recover the
convergence bound for PowerGD (see Supplementary Material [A.]).

Remark 3.3 The above theorem provides a sharp estimate of the convergence of PowerSGD in the
following sense. When y = 1, the convergence bound reduces to the best known convergence rate for
SGD. When 6 =0 (i.e., exact gradients are used and B, = 1), PowerSGD can attain convergence in
the order O(1/T), which is consistent with the convergence rate of gradient descent.
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3.2 CONVERGENCE ANALYSIS OF POWERSGDM

We now present convergence analysis for PowerSGDM. The proof is again included in the Supple-
mentary Material [B.2]due to the space limit.

Theorem 3.2 Suppose that Assumptions[3.1|and[3.2|hold. Let T be the number of iterations. For any
B €10,1), PowerSGDM (4)) with an adaptive learning rate and mini-batch size B, = T (independent
of a particular step t) can lead to

LY Jals ]<2“1llp {L(f(xl)—f*>1+/3+ 5
T /= !

E
v =T l—-¢ 1-B 2e(1—¢)|’

where € € (0,1), p= %forany y€1[0,1) and p = o for y= 1.

Remark 3.4 Convergence analysis of stochastic momentum methods for non-convex optimization is
an important but under-explored topic|Yan et al.|(2018)). The authors of|Yan et al.|(2018) recently
provided a unified framework in which convergence of stochastic heavyball and Nesterov’s accelerated
gradient can be analyzed. However, their results are somewhat conservative in several aspects: 1)
in order to attenuate noise, their choice of learning rate is of the order 1/\/t. Hence, even in the
absence of noise (or in the case of small variance &), their convergence rate cannot be improved to
the order of O(1/T); 2) when B = 0, their convergence result does not reduce to that of standard
SGD; 3) they assume that the objective function has bounded gradient (which is not satisfied even
for quadratic functions). Our result provides a sharp estimate of the convergence of PowerSGDM
that continuously interpolates the convergence rate for y varying in [0,1] and B varying in [0, 1).
Even in the special case of Y = 1, Theorem [3.2) provides the currently best known bounds (to the best
knowledge of the authors) of convergence rates for SGDM (compared with, e.g., the recent results in
Yan et al.|(2018)). Clearly, when B =0, Theoremexactly reduces to Theorem We point out
that a large mini-batch (B, = T) is required for the convergence results to hold. This is consistent
with the convergence analysis in|Bernstein et al.|(2018)), the results in which essentially correspond
to the special case of PowerSGD (or PowerSGDM) when the power exponential 7y is set to 0.

4 EXPERIMENTS

The propose of this section is to demonstrate the efficiency and effectiveness of the proposed
PowerSGD and PowerSGDM algorithms. We conduct experiments of different model architectures
on datasets in comparison with widely used optimization methods including the non-adaptive method
SGDM and three popular adaptive methods: AdaGrad, RMSprop and Adam. This section is mainly
composed of two parts: (1) the convergence and generalization experiments and (2) the Powerball
feature experiments. The setup for each experiment is detailed in Tablem In the first part, we present
empirical study of different deep neural network architectures to see how the proposed methods
behave in terms of convergence speed and generalization. In the second part, the experiments are
conducted to explore the potential features of PowerSGD and PowerSGDM.

To ensure stability and reproducibility, we conduct each experiment at least 5 times from randomly
initializations. The settings of hyper-parameters of a specific optimization method that can achieve
the best performance on the test set are chosen for comparisons. When two settings achieve similar
test performance, the setting which converges faster is adopted.

We can have the following findings from our experiments: (1) The proposed PowerSGD and Pow-
erSGDM methods exhibit better convergence rate than other adaptive methods such as Adam and
RMSprop. (2) Our proposed methods achieve better generalization performance than adaptive meth-
ods although slightly worse than SGDM. (3) The Powerball function can help relieve the gradient
vanishing phenomenon.

I Architectures in generalization and convergence experiments can be found at the following
links: (1) ResNet-50 and DenseNet-121 on CIFAR-10: https://github.com/kuangliu/
pytorch—-cifar; (2) ResNext-29 and WideResNet on CIFAR-100: https://github.com/
junyuseu/pytorch-cifar-models; (3) ResNet50 on ImageNet: https://github.com/
pytorch/examples/tree/master/imagenet


https://github.com/kuangliu/pytorch-cifar
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https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
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Experiments Datasets Architecture

ResNet-50 He et al.|(2016)
DenseNet-121|Huang et al.|(2017)

CIFAR-10|Krizhevsky & Hinton|(2009)

Convergence and Generalization = ]
N - - - ResNext-29 (16x64d) Xie et al.|(2017)
Experiments CIFAR-100|Krizhevsky & Hinton|(2009) WideResNet (depth=26, K=T0) Zagoruyko & Komodakis|(2016)
ImageNet |Russakovsky et al.|(2015) ResNet-50(He et al.|(2016)
Powerball Feature Experiments ~ MNIST [LeCun et al.|(1998) 13-Layer Fully-Connected Neural Network

Table 2: Summaries of the models and datasets in our experiments.

4.1 HYPER-PARAMETER TUNING

Since the initial learning rate has a large impact on the performances of optimizers, we implement a
logarithmically-spaced grid search strategy around the default learning rate for each optimization
method, and leave the other hyper-parameters to their default settings.

SGDM: The default learning rate for SGDM is 0.01. We tune the learning rate on a logarithmic scale
from {1,0.1,0.01,0.001,0.0001}. The momentum value in all experiments is set to default value 0.9.

PowerSGD, PowerSGDM: The learning rates for PowerSGD and PowerSGDM are chosen from the
same range {1,0.1,0.01,0.001,0.0001} as SGDM. The momentum value for PowerSGDM is also
0.9. Note that Yy = 1 in Powerball function corresponds to the SGD or SGDM. Based on extensive
experiments, we empirically tune 7y from {0.5,0.6,0.7,0.8,0.9}.

AdaGrad: The learning rates for AdaGrad are {le-1,5¢-2,1e-2,5¢-3, 1e-3} and we choose O for the
initial accumulator value.

RMSprop, Adam: Both have the default learning rate 1e-3 and their learning rates are searched from
{le-2,5¢-3,1e-3,5¢-4, 1e-4}. The parameters P, B, and the perturbation value € are set to default.

As previous findings [Wilson et al.|(2017) show, adaptive methods generalize worse than non-adaptive
methods and carefully tuning the initial learning rate yields significant improvements for them. To
better compare with adaptive methods, once we have found the value that was best performing
in adaptive methods, we would try the learning rate between the best learning rate and its closest
neighbor. For example, if we tried learning rates {le-2,5¢-3, 1e-3,5¢-4, le-4} and le-4 was best
performing, we would try the learning rate 2e-4 to see if performance was improved. We iteratively
update the learning rate until performance could not be improved any more. For all experiments, we
used a mini-batch size of 128.

4.2 EXPERIMENTS: CONVERGENCE AND GENERALIZATION

Fig. [1|shows the learning curves of three experiments we have conducted to observe the performance
of PowerSGD and PowerSGDM in comparison with other widely-used optimization methods.

ResNet-50 on CIFAR-10: We trained a ResNet-50 model on CIFAR-10 and our results are shown
in Fig. [I(a) and Fig. [[(b). We ran each experiment for a fixed budget of 160 epochs and reduced the
learning rate by a factor of 10 after every 60 epochs Wilson et al.| (2017).

As the figure shows, the adaptive methods converged fast and appeared to be performing better than
the non-adaptive method SGDM as expected. As for our proposed PowerSGD and PowerSGDM,
we observed the same tendency in convergence rate as AdaGrad, which outperformed Adam and
RMSprop. For the test performance, adaptive methods and our proposed methods still outperform
SGDM in the early stage. SGDM achieved a final best overall test accuracy of 94.75%. The
PowerSGD and PowerSGDM achieved test accuracies of 94.17% and 94.13% respectively, which are
slightly worse than SGDM. The best adaptive method, Adam, achieved a test accuracy of 93.38%.

WideResNet on CIFAR-100: Next, we conducted experiments on the CIFAR-100 dataset using
WideResNet model. The fixed budget here is 120 epochs and the learning rate reduces by a factor of
10 after every 60 epochs. The results are shown in Fig. [[[e) and Fig. [I}f).

The performance of the PowerSGD and PowerSGDM are still promising in both the train set and test
set. PowerSGD, PowerSGDM and AdaGrad had the fastest initial progress. In the test set, PowerSGD
and PowerSGDM had much better test accuracy than all other adaptive methods. SGDM surpassed
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Figure 1: Train and test accuracy for different models and datasets. The annotations indicate the best

overall test accuracy for each optimization method.
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PowerSGD and PowerSGDM by epoch 60 when the learning rate decayed. SGDM had the best
test accuracy of 76.78%, while PowerSGD and PowerSGDM achieved accuracies of 76.29% and
76.10%, respectively, with approximately 0.5% gap in test performance compared with SGDM. The
best adaptive methods, still Adam, achieved test accuracy of 74.35% and had much larger gap of
2.5% in performance compared to SGDM.

ResNet-50 on ImageNet: Finally, we conducted experiments on the ImageNet dataset using ResNet-
50 model. The fixed budget here is 120 epochs and the learning rate reduces by a factor of 10 after
every 30 epochs. The results are shown in Fig. [T{i) and Fig. [I}j). We observed that PowerSGD and
PowerSGDM gave better convergence rates than adaptive methods while AdaGrad quickly plateaus
due to too many parameter updates. For test set, we can notice that although SGDM achieved the
best test accuracy of 76.27%, PowerSGD and PowerSGDM gave the results of 73.71% and 73.96%,
which were better than those of adaptive methods.

Additional experiments (DenseNet-121 on CIFAR-10 and ResNeXt on CIFAR100) are shown
in Fig. c)(d)(g)(h). We observed similar results as in the other experiments.

4.3 EXPERIMENTS: FEATURES OF POWERSGD

0
—SGD
90 |—PowerSGD

— SGD
—— PowerSGD

Train Accuracy %
3
1-Norm of Gradients in the First Layer

0 5 10 15 2 25 0 5 10 15 20 25
Epoch Epoch
(a) Train Accuracy of SGD and PowerSGD (b) The 1-Norm of Gradients of SGD and PowerSGD in the First Layer

Figure 2: (a) Train accuracy comparison between SGD (learning rate = 0.1) and PowerSGD (learning
rate = 0.1, ¥ = 0.4) on the 13-layer fully-connected neural network. The arrows annotate the
accuracy values of both methods after 20 epochs. (b) The 1-norm of stochastic gradients of SGD and
PowerSGD in the first layer of the fully-connected neural network at every epoch.

Gradient Vanishing: In deep learning, the phenomenon of gradient vanishing poses difficulties in
training very deep neural networks by SGD. During the training process, the stochastic gradients
in early layers can be extremely small due to the chain rule, and this can even completely stop the
networks from being trained. Our proposed PowerSGD method can relieve the phenomenon of
gradient vanishing by effectively rescaling the stochastic gradient vectors.

To validate this, we conduct experiments on the MNIST dataset by using a 13-layer fully-connected
neural network with ReLU activation functions. The SGD and proposed PowerSGD are compared in
terms of train accuracy and 1-norm of gradient vector. As can be observed in Fig. 2} SGD completely
cannot train such a deep network and its train accuracy remained below 11.24%. By contrast, the train
accuracy of PowerSGD grows quickly to 98.91% after few epochs. We further compare the 1-norm of
stochastic gradient vector in the first layer for both SGD and PowerSGD. It is clear that the Powerball
function amplifies the stochastic gradients and helps relieve the gradient vanishing phenomenon. We
have included more experimental results on gradient vanishing in the Supplementary Material [C|

5 CONCLUSION

In this paper, a Powerball function is introduced as a basic technique to improve SGD and SGDM
for deep neural network training. Their convergence rates have been proved in the non-convex opti-
mization settings. We discussed the choice of an important hyper-parameter ¥ in the Supplementary
Material |[Effrom an empirical point of view. The experiments on different neural network models and
benchmark datasets have demonstrated that the proposed PowerSGD and PowerSGDM empirically
obtain faster training speed than adaptive gradient methods and good if not better generalization
ability compared with SGD. We also show that PowerSGD can help alleviate gradient vanishing.
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SUPPLEMENTARY MATERIAL

A CONVERGENCE ANALYSIS OF POWERSGD AND POWERSGDM

A.1 CONVERGENCE OF POWERGD

The authors of [Yuan et al.|(2016) proposed the so-called Powerball accelerated gradient descent
algorithm, which was updated as follows,

X1 =X — 040(Vf(x)). (6)

The authors of [Yuan et al.|(2016) then provided insights from finite convergence properties of ODEs
models for Powerball variants of gradient descent algorithms and presented empirical observations of
convergence acceleration of Powerball methods. Nonetheless, they did not provide any convergence
results for their algorithms. In fact, they highlighted the convergence analysis of their algorithms as
open theoretical questions. In this paper, we are going to analyze stochastic variants of Powerball
methods in the non-convex setting. We start with the analysis of PowerGD (powered gradient descent)

in (6).

Theorem A.1 Suppose that Assumption[3.1| holds. The PowerGD scheme ((6)) can lead to
1 & 2L||1
7 L IVFEIly < =5 (Fn) = ),

=1

where T is the number of iterations and p = %for any Y€ [0,1) and p = oo for y=1.

Proof: Denote by x* the minimizer and f* = f(x*). Then, by the L-Lipschitz continuity of V f and

’

L
flar) < fla) +VF0a): (pr —x) + §||xt+1 *xt”z

L
= f(a)=aVf(x) o(Vfx))+ Eaf”o(Vf(xt)) [ (7
Let o = % > 0 (this holds if x, # x*). Then
(Vf(x)-0(Vf ()
flatr) <) = e ®)

1+V 1ty

By Holder’s inequality, for y € (0, 1) and with p = and g = >}, we have

n n n 1

lo(VrEIP = Y IV < ( Z Z (V)ilx) )7
i=1 i=1 i=1

I Z X)),

IN

It follows that
(V) o(VF(x)))?
2L (V)|
(T, (V)i |72
2L\\1||p< (V) <x,>\1+y>%
= 700~ g (L))

i=

A

f(xt+1) < fla)—

IN

fx) =

1 2
f(xt)—m\\vf(xz)ﬂm,

which, by a telescoping sum, gives
2L||1 211
2190 < L ) tor) < 2 ) ),

where 1 is vector w1th entries all given by 1. It is easy to see that the estimate is also valid for y =1
with p = o and for Y = 0. The proof is complete. ]
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A.2 CONVERGENCE OF POWERSGD (PROOF OF THEOREM [3.1))

To analyze the convergence of PowerSGD, we need some preliminary on the relation between
mini-batch size and variance reduction of SGD.

VARIANCE REDUCTION BY A LARGER MINI-BATCH SIZE

Let Vf(x) be the gradient of f at x € R". Suppose that we use the average of m calls to the stochastic
gradient oracle, denoted by g(x,&;) (i=1,---,m), to estimate V f(x). By Assumption[3.2] we have

VARYLE: oty ’
B ([EREE) )| | = L | L $ et - 00
mo | miis
1 & S 11, 87
[ NI fmn]—mmw6>—m,
where in the second equality we used the fact that g(x,&;) (i =1,--- ,m) are drawn independently and

all give unbiased estimate of V f(x) (provided by Assumption .
Now we are ready to present the proof of Theorem [3.1]

PROOF OF THEOREM [3.1]

Proof: By the L-Lipschitz continuity of V f and (6},
L
fas) < fOa) + V) (i —x) + §||x,+1 —x |’

= /)~ V() olg) + 502 g P

F0) ~ g 0 (81) + 5 07 020+ en g~V (x)) - o (s:)

Let of = ‘(’@)'”2 > 0. Then
flon) = f) - U0 4 (g - V() 0 (a1). ©)
Fix any iteration number 7 > 1 and let € € (0, 1) to be chosen. We can estimate
eV 0(e) = T8 (g - V1) ole)
< BT e - Vs llo(e]
= o~ vl
< o (B8 g —vrre).

where the last inequality followed from the elementary mequahty 2ab < €a® + 1 b2 for any positive
real number € and real numbers a, b. Substituting this into (9 gives

flosr) < fla)— 5 (“ﬁtc?(g)tﬁg + 51z |lge = V£ () || (10)
By the same argument in the proof for Theorem[A.1] we can derive

fOan) < ) = g el ey + are g = VAP
Taking conditional expectation from both sizes gives

ELf (1) — £(x) | ] || Elllg 1) + k07

< - H ngt||l+y]+m’
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where o7 is the variance of the z-th stochastic gradient approximation computed using the chosen

mini-batch size B; = T, which therefore satisfies 6,2 < "7 Taking expectation from both sides and
performing a telescoping sum give

N

Z gzllwl < 2 (F) = 1)+ 7l 6.

The proof is complete. ]

B CONVERGENCE ANALYSIS OF POWERSGDM

B.1 CONVERGENCE OF POWERGDM

We first analyze the deterministic version of PowerSGDM (denoted by PowerGDM). The update rule
for PowerGDM is
{Vt+1 = Bvi — 040 (Vf(x)),

Xe41 = Xt +Vit1,

where 8 € [0, 1) is a momentum constant and vy = 0. Clearly, when 8 = 0, the scheme also reduces
to PowerGD.

(1)

Theorem B.1 Suppose that Assumptionholds. Forany B € (0,1), the PowerGDM scheme
with an adaptive learning rate can lead to

LIl < 2 ) - ),

where T is the number of iterations and p = %for any Y€ [0,1) and p = oo for y=1.

Proof: Let z; = x; + %vt. It can be verified that the PowerGDM scheme satisfies

l—lB G(Vf(xt))? (12)

Vip1 = By — a6 (Vf(x)).
By the L-Lipschitz continuity of V f and (12),

) 1)+ 91 o =2 + Sl —al?

L+l =2 —

IN

2
= fl) = 2V 0V )+ g e (V)
= fla) = g V) 0(VF ) — g (V) = V() -0V ()
2
g le (VI (13)

‘We can estimate

1 1
1?13 (VF(z) = Vf(x)) o(VF(x)) < 20-B) ElIVf(z) = Vf(x)I* + EO‘tZHG(Vf(Xt))HZ , (14)
where € > 0 is to be chosen. By the L-Lipschitz continuity of V f,
2
1910 =9 £GP < 2l =l =221 2 = 22 B (15)
Lemma B.1 For T > 1, we have
Z [vel|? < 1-pr Z ot | o (V£ (x))1%.
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Proof: 1t is easy to show by induction that, for # > 1,

Zﬁ’ oo (Vf(x).

]
Indeed, we have vi =0 and v; = — o 6(Vf(x1)). Suppose that the above holds for ¢ > 1. Then

t—

1
vier=PBvi—Boyo(Vf(x))=p <— ), ﬁ’ilaiG(Vf(Xi))> —BouyVf(x)=—

i=1

BT oo (V(xi)).

-

I
-

Hence

t—1

=Y B oo (V)]

i=1

t—1 2
<; B e cf(Vf(xz))H)

[
Mﬂ

S 2
Y vl
r=1

N
Il

IN
M~

-
Il
—
-
|
—

IN
M’ﬂ

B IZﬁ‘ Moo (V)

N
I

T —
< %Zzﬁ’ oo (V1 (x))]*
1 ﬁt:ll:
1 I T '
-~ g Llasr@)E ¥ p
i=1 t=i+1
< 0o ! 2za,ucw<x,>>||2

By Lemma [B.1] inequalities @, (T3], and a telescoping sum on (I3)), we get
ff=fla)<— Z aVf(x) o(Vf(x))

&‘Lzﬁ2 1 L T ) .
st sea=p)  3apy BN

2
It is clear that € = (125 I would minimize the bound on the right-hand side (among different choices
of € > 0) and give

£ fla) < g R a0 a0s0) + [ o b s | ot
- 1-B5 (1-p) 200-B)*| S
For any f € [0, 1), we can choose o, = V{H();’g ((Zr’;”;) (111%)2 so that the bound reduces to
- 1-B v (V) -o(Vi(x)))
IS p A TevreE

which immediately gives the bound in the theorem by noting z; = x;.

B.2 CONVERGENCE OF POWERSGDM (PROOF OF THEOREM [3.2)

Proof: The proof is built on that for Theorem E With z; = x; + %vt, it can be verified that the
PowerSGDM scheme satisfies

—a- -2 6(g)
2+1 =2t lfﬁ 8t), (16)

Vg1 = By — 040 (gr)-
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By the L-Lipschitz continuity of V £ and (@),

L
flay) < fla)+ V@) (2 —z)+ 5 21—z

o L o
= f(Zt)_va(zt)'o'(gt)"‘EWHG(&)”Z
Fla) = 1280 (8 — 7= g (Vo) = Vi) -0 e
2
o e = V) 0(e) + 5 gl o) a7

Similar to the proof of Theorem[B.T] we can estimate

o
litﬂ(Vf(z,)—Vf(x,))-G(g,) S2(1 —B) [£1||Vf(z;) Vf(xt)Hz—i—;—loc,QHG(g,ﬂﬂ, (18)
where € > 0 is to be chosen. By the L-Lipschitz continuity of V£,
2 72 22 B 22 B 2
IVF (@) = V)" < L]z —xl|” = L ||1_ﬁvt\| =L (1_ﬁ)2llwll : (19)

Similar to Lemma[B.1] we obtain

ZWW (g0l (20)
We can also bound
VI 0l < 5 [L;(l‘fﬁ)g V)P Lo B adlotel| . e
where € > 0. By inequalities (I8)-(ZI)), and a telescoping sum on (I7), we get
f-f@) < -rpEliag o)+ |85+ oy + o + SR I @Pllo (eI

+m%%zﬂM—wmw.

Setting €, = % and choosing a; = Lﬂ’;(;(‘(”)ﬁz U - +%) lead to

f*_f(Zl) S_ 2L 1+[3 Zt 1 g‘,";cg;g,“g +2L£ 1+ﬁ Zt 1||gt Vf(xf)Hz'

which, by taking expectation from both sides and by the same argument in the proof for Theorem

[AT] leads to
( 62(1— B
which immediately gives the bound in the theorem by noting z; = xi. ]

Remark B.1 Clearly, Theoremexactly reduces to Theoremwhen 6 =0and € — 0. Moreover,
when 8 =0, Theorem reduces exactly to Theorem This in a sense shows that our estimates
are sharp.

B.3 ESTIMATES OF TRUE GRADIENTS VS ESTIMATES OF STOCHASTIC GRADIENTS

A careful reader will notice that in Theorems [3.1] and 3.2} our estimates of convergence rates for
PowerSGD and PowerSGDM, respectively, are in terms of the stochastic gradients g;. We now show
that this is without loss of generality in view of Assumption[3.2]

When y =1, we have
ElllgrlIt+y) = Elllgel13] = Elllg — V. () + V£ () 3] = Elllgr — V£ (o) 13] +E[[ V. (1) 13],
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where in the last equality, we used Assumption [3.2] This would imply
E[|Vf(x)lI2) < ElllgellF ) — Ellgr — V.f () 3] < Elllge 1T 4,)-
When y € [0, 1), by the equivalence of norm in R”", there exist positive constants Cy and Dy such that
Cyllxllz < IIxl134, < Dyllxll3,
for all x € R". Hence

Elllg:F 15 = CyE[llg:l13] = CyE[lg: = V.f (x0) + V. () |3]
= CyElllg: — V£ (x0) 1] + C/E[|IV.f (x1) 3]

C
> CyE[|lg = V£ (x)3] + D*ZE[IIVf(Xz)IIﬂyL

which implies that

D
E[|Vf(x)[iy) < éE[l\gtll%+y}-

In other words, the estimates are equivalent (modulo a constant factor). We prefer the versions in
Theorems [3.1]and because the bounds are more elegant.

C POWERSGD HELPS ALLEVIATE THE VANISHING GRADIENT PROBLEM

The vanishing gradient problem is quite common when training deep neural networks using gradient-
based methods and backpropagation. The gradients can become too small for updating the weight
values. Eventually, this may stop the networks from further training. The Powerball function can help
amplify the gradients especially when they approach zero. We visualized the amplification effects
of Powerball function in Fig. [3] Thus, the attributes of PowerSGD can help alleviate the vanishing
gradient problem to some extent. We investigated the actual performance of PowerSGD and SGD
when dealing with very deep networks.

We trained deep networks on the MNIST dataset using PowerSGD with 7y chosen from
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0} and learning rate 1 chosen from {1.0,0.1,0.01,0.001}.
When y = 1.0, the PowerSGD becomes the vanilla SGD. The architecture of network depth which
ranges from 12 to 15 with ReLU as the activation function is shown in Table[3] The results are
visualized using heatmaps in Fig. 4]

Hidden neurons
Input layer 784 ->256
Hidde layers (x 10/ 11/12/13) | 256 ->256
Output layer 256 ->10

Table 3: The architecture of MLP in vanishing gradient experiments.

As we can observe in the visualisation, when the network depth is more than 13 layers, increasing or
decreasing the learning rate of SGD could not solve the vanishing gradient problem. For PowerSGD,
the usage of the Powerball function enables it to amplify the gradients and thus allows to further train
deep networks with proper 7 settings. This confirms our hypothesis that PowerSGD helps alleviate
the vanishing gradient problem to some extent. We also note that, when the network increases to 15
layers, both SGD and PowerSGD could not train the network further. We speculate that this is due to
the ratio of amplified gradients to the original gradients becomes too large (see Fig. [3) and a much
smaller learning rate is needed (this is also consistent with the change of theoretical learning rates
suggested in the convergence proofs as the gradient size decreases). Since PowerSGD is essentially
a gradient modifier, it would also be interesting to see how to combine it with other techniques for
dealing with the vanishing gradient problem. Since PowerSGD also reduces the gradient when the
gradient size is large, it may also help alleviate the exploding gradient problem. This gives another
interesting direction for future research.
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—y=1.0
—7 =08

10*

o4(9t)/ gt

102

10°

1078 10 107 10° 10°

Figure 3: The amplification effects of Powerball function with different y and different gradient sizes.
The amplification ratio is larger when the gradient size is closer to 0.

12-Layer MLP 13-Layer MLP
y=1.0 - y=1.0
y=0.3 - y=0.3
y=0.2 - y=0.2
y=0.1 - y=0.1
n=1.0 n=0.1 n=0.01 n=0.001 n=1.0 n=0.1 n=0.01 n=0.001
14-Layer MLP 15-Layer MLP
y=1.0 y=1.0
y=0.9 y=0.9
y=0.7 - y=0.7
y=05 y=05
y=0.4 y=0.4
y=0.3 y=0.3
y=0.2 y=02
y=01 y=01
y=0 y=0
n=1.0 n=0.1 n=0.01 n=0.001 n=1.0 n=0.1 n=0.01 n=0.001

Figure 4: We trained deep networks using PowerSGD with different hyper-parameter settings. A
dark block indicates that PowerSGD with a specific setting succeeded in training the network within
25 epochs, while a light block indicates that PowerSGD (or SGD) failed to train. It is clear that by
tuning the hyper-parameter ¥, PowerSGD can train networks deeper than that by SGD.
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D IMPROVED ROBUSTNESS TO HYPER-PARAMETER SELECTION

The Powerball function is a nonlinear function with a tunable hyper-parameter 7y applied to gradients,
which is introduced to accelerate optimization. To test the robustness of different y, we trained
ResNet-50 and DenseNet-121 on the CIFAR-10 dataset with PowerSGD and SGDM. The parameter
y is chosen from {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} and the learning rate is chosen from
{1.0,0.1,0.01,0.001}. The PowerSGD becomes the vanilla SGD when y = 1. The maximum test
accuracy is recorded and the results are visualized in Fig. [}

Although the 7y that gets the best test accuracy depends on the choice of learning rates, we can
observe that y can be selected within a wide range from 0.5 to 1.0 without much loss in test accuracy.
Moreover, the Powerball function with a hyper-parameter y could help regularize the test performance
while the learning rate decreases. For example, when 11 = 0.001 and y = 0.6, PowerSGD get the best
test accuracy of 90.06% compared with 79.87% accuracy of SGD.

We also compare the convergence performance of different y choice in Fig. [6] The training loss is
recorded when training ResNet-50 on CIFAR-10 dataset. As the initial learning rate decreases, the
range from which the hyper-parameter y can be selected to accelerate training becomes wider. As a
practical guide, Y = 0.8 seems a proper setting in most cases. It is again observed that the choice of y
in the range of 0.4—0.8 seems to provide improved robustness to the change of learning rates.

CIFAR-10 and ResNet-50 CIFAR-10 and DenseNet-121

y=0 10.00 [EEERCE] 89.35 91.95 | 90 y=0 10.00 ¥RV 90.04 | 93.22 00

y=01 10.00 y=01 10.00
- |EERE
- a5 - a5

94.89 | 94.16 | 90.67 - o
SOl RV 04.96 | 94.27 | 90.77 15 SeblVl 68.25 | 95.13 | 94.73 | 91.42 s

0.1 n=0.01  n=0.001 0.1 n=0.01  n=0.001

-30

Figure 5: Effects of different ¥ on test accuracy. We show the best Top-1 accuracy on CIFAR-10
dataset of ResNet-50 and DenseNet121 trained with PowerSGD. Although the best choice of y
depends on learning rates, the selections can be quite robust considering the test accuracy.

E COMBINING POWERSGD WITH LEARNING RATE SCHEDULES

In the main part of the paper, we demonstrated through multiple experiments that PowerSGD can
achieve faster initial training. In this section we demonstrate that PowerSGD as a gradient modifier is
orthogonal and complementary to other techniques for improved learning.

The learning rate is the most important hyper-parameter to tune for deep neural networks. Motivated
by recent advancement in designing learning rate schedules such as CLR policies (Smith, [2015) and
SGDR (Loshchilov & Hutter, [2016)), we conducted some preliminary experiments on combining
learning rate schedules with PowerSGD to improve its performance. The results are shown in Fig.

The selected learning rate schedule is warm restarts introduced in (Loshchilov & Hutter, [2016)), which
reset the learning rate to the initial value after a cycle of decaying the learning rate with a cosine
annealing for each batch. In Fig. [/{ SGD with momentum combined with warm restarts policy is
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(a) Train Loss of PowerSGD (n = 0.1) (b) Train Loss of PowerSGD (n = 0.01)

Train Loss
Train Loss

¥ =1.0

0 50 100 150 0 50 100 150
Epoch Epoch

Figure 6: Effects of different y on convergence. We show the best train loss on CIFAR-10 dataset of
ResNet-50 trained with PowerSGD. While the ¥ which achieves the best convergence performance
is closely related to the choice of learning rates, a ¥ chosen in the range of 0.4-0.6 seem to provide
better robustness to change of learning rates.

named as SGDR. Similarly, PowerSGDR indicates PowerSGD combined with a warm restarts policy.
The hyper-parameter setting is 7o = 10 and 7},,,,;; = 2 for warm restarts. We test their performance on
CIFAR-10 dataset with ResNet-50.

The results showed that the learning rate policy can improve both the convergence and test accuracy of
PowerSGD. Indeed, PowerSGDR achieved the lowest training error compared with SGDM and SGDR.
The test accuracy for PowerSGDR was also improved from the 94.12% accuracy of PowerSGD
to 94.64%. The results demonstrate that the nonlinear transformation of gradients given by the
Powerball function is orthogonal and complementary to existing methods. As such, its combination
with other techniques could potentially further improve the performance.

(a) Train Loss Comparisons
T T T T

Train Loss

10%F —SGDM

—— PowerSGD

SGDR

— PowerSGDR

10'4 L 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160
Epoch
(b) Test Accuracy Comparisons

951 PowerSGD' 94.12 ‘ ‘ ‘

90 L/V
285 B
8
§ 80 - —SGDM T
< 5k PowerSGDR: 94.64 |—— PowerSGD |
Z SGDR
B o SGDM: 94.96 LGDR: 94.95 — PowerSGDR .

65— -

60 1 1 1 1 1 1 1

20 40 60 80 100 120 140 160

Epoch

Figure 7: Train loss and test accuracy for SGDR and PowerSGDR. Learning rate schedules also help
accelerate training of PowerSGD and improve the test performance.
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