
Under review as a conference paper at ICLR 2020

LATTICE REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the notion of lattice representation learning, in which the representa-
tion for some object of interest (e.g. a sentence or an image) is a lattice point in
an Euclidean space. Our main contribution is a result for replacing an objective
function which employs lattice quantization with an objective function in which
quantization is absent, thus allowing optimization techniques based on gradient
descent to apply; we call the resulting algorithms dithered stochastic gradient
descent algorithms as they are designed explicitly to allow for an optimization
procedure where only local information is employed. We also argue that a tech-
nique commonly used in Variational Auto-Encoders (Gaussian priors and Gaussian
approximate posteriors) is tightly connected with the idea of lattice representations,
as the quantization error in good high dimensional lattices can be modeled as a
Gaussian distribution. We use a traditional encoder/decoder architecture to explore
the idea of latticed valued representations, and provide experimental evidence
of the potential of using lattice representations by modifying the OpenNMT-py
generic seq2seq architecture so that it can implement not only Gaussian dither-
ing of representations, but also the well known straight-through estimator and its
application to vector quantization.

1 PRELIMINARIES

With a few notable exceptions, the majority of the practical research in representation learning
assumes that the representation of the objects of interest (sentences, images, audio signals, etc.)
are vectors of real numbers, as this allows us to use powerful optimization algorithms such as
variants of gradient descent in the training of computational networks which encode objects into
such representations and then use those representations in downstream tasks. Yet, the idea of of
representing objects using discrete structures (for example, through categorical variables or through
the use of quantization of otherwise real valued representations) is rather enticing: sometimes we
might inherently believe discrete representations to be the right way to model objects, or may want
to use such representations in settings such as reinforcement learning and planning, where discrete
actions are important; in another line of thinking. A classical result by Lindsay (1983) for maximum
likelihood learning of mixture models tells us that the optimal mixing distribution can be chosen to
be discrete (and in fact, the discrete set need not be larger than the amount of training data); this
result implies also that the optimal associated “approximate posterior” (when seen as a variational
inference problem) in fact can be chosen so that it produces discrete representations. The main
difficulty associated with discrete representations is that it is not straightforward to train networks
that produce and use them because either there is no meaningful sense in which differentiation can be
used directly (e.g. in the case of categorical variables), or in the case of quantization, the associated
gradient is zero almost everywhere. In spite of these difficulties, notable progress has been made. For
example, for categorical variables, Jang et al. (2017), and Maddison et al. (2017) proposed essentially
the same idea, under the names of Gumbel-Softmax and the Concrete Distribution, respectively. This
idea, further improved by Tucker et al., uses a continuous approximation to a “one-hot” encoded
categorical distribution which can be learned by appropriately setting a parameter controlling the
fidelity of the approximation. For the setting where a continuous representation is quantized to obtain
the discrete one, an important development is the idea of straight-through estimation (Bengio et al.,
2013), in which quantization is applied in the “forward” direction, but replaces quantization with
the identity operator when performing the “backwards” differentiation step - see also recent work
attempting to provide theoretical justification of straight-through estimation (Yin et al., 2017).

1

Under review as a conference paper at ICLR 2020

P0

P0

Figure 1: Two examples of two dimensional lattices. In the left, a cubic lattice with basis vectors
b1 = (0,∆), b2 = (∆, 0). In the right, a hexagonal lattice with basis vectors b1 = (0, 2),
b2 = (

√
3, 1). Also shown for each lattice is the fundamental cell P0, containing the origin. The

parameter of the cubic lattice ∆ has been set so that the areas of both lattice cells are identical.

In this article, we study the possibility of using lattices for object representations by borrowing from
theoretical developments in information and coding theory (Zamir et al., 2014), in particular as they
apply to lossy source coding problems (Shannon, 1959). In our article, a lattice is defined as the set
of all integral linear mixtures of a given set of basis vectors for an Euclidean space. Lattices have
been long studied in information theory as they provide powerful means for building structured codes
which are analytically tractable and have good space packing and covering properties, which are
useful in channel coding and lossy source coding applications, respectively (Zamir et al., 2014). We
note that it has long been known that machine learning and lossy compression are related to each
other; for example, we refer the reader to the classical work on the information bottleneck (Tishby
et al., 1999; Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Slonim & Weiss, 2002), the
connection between maximum likelihood estimation and rate distortion explored by Banerjee et al.
(2004), Lastras-Montaño (2019), and implicitly, Rose (1998), Neal & Hinton (1998) and a line of
research on autoencoders Giraldo & Príncipe (2013), Alemi et al. (2018), Higgins et al. (2017). Our
work adds to this general line of research by adopting more specific structures - in this case, lattices -
from the information theory field and applying them to machine learning problems.

Our intention in this article is to explore lattices in the context of representation learning. Our
primary contribution will be to provide the necessary theory to train computational networks that
employ lattices and dithered quantization, leading to a class of algorithms which we call dithered
stochastic gradient descent algorithms. The main tool that we use is a fundamental result in the
study of lattices in information theory called the “Crypto-Lemma” (see Zamir & Feder (1996),
G. D. Forney (2004)) which to our knowledge, had not been used before to optimize, with gradient
techniques, computational networks that employ quantization in a provably correct way. We will
additionally use high resolution analysis techniques to illustrate why “better” lattices could lead to
better representations, and we will connect the task of lattice representation learning with a well
known technique in generative modeling using variational autoencoders; specifically, Gaussian
approximate posteriors (Kingma & Welling, 2014).

To make our work concrete, we will illustrate it in the context of a standard encoder/decoder
architecture; for a given object d ∈ D (whereD is the space of all possible objects), it’s representation
is produced using an encoder:

f(d)

which is then decoded using a decoder:

g(f(d)).

We pause to remark that there is a subtle difference between the way in which the information theory
and machine learning communities use the words “encoder” and “decoder”; the reader needs to be

2

Under review as a conference paper at ICLR 2020

aware of this difference so as to not get lost in this article. In information theory, an encoder/decoder
is almost always a means to represent and retrieve information digitally, in particular, there is a
significant emphasis on the efficiency of such representations. In machine learning, an encoder’s
output is generally thought of as a continuous vector (of course, as we stated earlier, there are notable
exceptions to this); the fact that such a continuous vector is represented digitally (in the form of
a computer representation of a floating point number) is in a sense an afterthought. Significantly
more important in machine learning is the capability of learning parameters for an encoder and
decoder through training examples, in which case the assumption of continuity, and more generally,
differentiability is much more important.

Our work lies in the middle of the two fields. We are interested in a machine learning application, but
want to emphasize the representation cost for the objects being encoded as a first class metric to be
optimized for. In our work, the representations are discrete, this is for any d ∈ D, f(d) belongs to a
discrete space, which we denote as X . To each element x ∈ X we assign a probability p(x), so that
we can talk about a code for the representation space X . In this setting, a code is a mechanism for
mapping x ∈ X to l(x) bits (where l(x) stands for the code bit length) so that x can be recovered,
without loss, from the code for x of length l(x). It is well known that for any given code one can
construct a probability distribution using the equation p(x) = 2−l(x). It is also known that for a
given distribution {p(x)}, the ideal choice for l(x) (in units of bits) is − log2 p(x), in the sense of
minimizing the number of expected bits under the assumption that the x are being generated with
a distribution {p(x)}. It is also known that such ideal code length in general can only be achieved
with block codes which compress multiple elements of X simultaneously. In our work, we will
be indifferent to this - we will simply use l(x) = − log p(x) for the code length; in fact for our
theoretical development we will be using the unit of nats (natural logarithms) as it is more convenient.

Assume that D is a random quantity uniformly distributed over the training data {d1, · · · , dn}. Then
the average representation cost for the training data is

−ED log p(f(D)) (1)
This is one of the metrics in our work. The other metric is free to be specified by the designer of the
architecture. Typically, this will be of the form

ED [`(D, g(f(D)))] (2)
where ` is some loss function. This covers both unsupervised and supervised settings; in the latter,
we assume that the loss function also includes the label for D.

One way to create discrete representations f(D) is to quantize an otherwise continuous representation
fc:

f(D) = K(fc(D))

where K denotes a quantization operation; for example, K could use the uniform quantizer with
spacing ∆ applied to every one of the m dimensions. The encoder f(), the decoder g() and the
representation code − log p() all participate in the end-to-end objective function

ED [`(D, g(K(fc(D))))] + λED

[
log

1

p(K(fc(D)))

]
(3)

where λ > 0 is a parameter that controls the importance of the representation cost for the overall
optimization process.

One may want to have ∆ > 0 be very small, so as to prevent the quantization from harming the
decoder’s performance on (first term in Equation (3)) but that leads to a larger reconstruction cost
(second term). We thus turn to the question of whether it is possible to create a better quantizer K.
Ideally, we would want a quantizer K that requires as few distinct quantization cells as possible
to cover the range of fc() (which helps reduce the representation cost), for a given acceptable
quantization error, as measured, for example, by the L2 distance (which helps to control the end-to-
end system performance as measured through the objective function).

A branch of the theory of lattices deals with an abstract form of this covering problem. We refer the
reader to Figure 1, where we illustrate cubic and hexagonal lattices, with their lattice cells having
exactly the same area. The hexagonal lattice is more efficient than the cubic lattice for a given
average quantization error measured using the L2 distance. In general, as one increases the number
of dimensions on which one is constructing a lattice, one can build better lattices used for space
covering purposes.

3

Under review as a conference paper at ICLR 2020

2 DITHERED STOCHASTIC GRADIENT DESCENT

2.1 MATHEMATICAL PRELIMINARIES

The principles behind the use of lattices in information theory can be found in the excellent book of
Zamir et al. (2014) . We borrow from this exposition in here in order to make this work self contained.
Let b1, · · · , bm be a basis for Rm, this is, m linearly independent column vectors in Rm, and define
B to be the matrix obtained using these basis vectors as its columns: B = [b1|b2| · · · |bm]. The lattice
Λ(B) is defined as the set of all integral linear combinations of the {b1, · · · , bm}:

Λ(B) = {B · i : i ∈ Zm} .
where Zm = {· · · ,−2,−1, 0, 1, 2, · · · }m. When clear from the context, we will use Λ to refer to a
lattice.

A fundamental cell P0(Λ) of the lattice Λ is defined to be a bounded subset of Rm that when shifted
by all the lattice points, generates a partition of Rm. The Voronoi cell associated with the origin is
defined to be the set of all points in Rm whose closest lattice point is the origin, where the notion of
closeness is given by any specified metric; this is called the fundamental Voronoi cell.

Given x ∈ Rm, we define KΛ(x) to be the operator (the “quantizer”) that takes x and maps it to the
closest element of the lattice Λ:

KΛ(x) = arg min
p∈Λ

‖x− p‖2 (4)

One of the main reasons we are interested in lattices is because of a mathematical tool that can be
used in their analysis, which in information theory is colloquially referred to as the “Crypto-Lemma”
(Zamir & Feder, 1996), (G. D. Forney, 2004):
Lemma 1 (Crypto-Lemma). For a given m dimensional lattice Λ, let U be a uniformly distributed
over P0(Λ). For any x ∈ Rm, the distribution of the random vector KΛ(x+ U)− U is identical to
the distribution of x− U .

The Crypto-Lemma will give us the main mechanism for training a computational network using
gradient descent algorithms and using such network (during inference) with an explicit quantization
step, with a firm theoretical guarantee of equivalence.

A few additional mathematical preliminaries are needed. When taking expectations we will explicitly
state the probability law being used in the expectation by placing a random quantity (most of the time,
a random vector) as a subindex of the expectation. If two random vectors A, B are independent, we
will write A ⊥⊥ B. If these random vectors are independent conditional on a third random vector C,
we will write (A ⊥⊥ B|C). We will use an upper case P to denote a probability measure, this is, a
function that assigns a probability to an event passed as argument. We will use the notation PA(a) as
a summary form of P ([A = a]); we sometimes will use a random vector as an argument, thus, for
example, −EA logPÂ(A) can be interpreted as the average cost, in nats, of using a code designed
for Â on the random vector A, which is drawn using a (generally) different probability law. We will
use the notation fA to denote density of a continuous random vector A. We will use the notation
PA|B and fA|B to denote conditional versions of the objects described above. In a slight overload of
notation, recall we use f and fc to denote encoders; the correct usage should be clear from context. If
P1 and P2 are two probability measures, we say that P1 � P2 (in words, P1 is absolutely continuous
with respect to P2) if for any event A such that P2(A) = 0 then we have P1(A) = 0.

2.2 THE MAIN RESULT

Our main contribution will be centered on the following new result:
Theorem 1 (representation cost for dithered SGD). Let Λ be any lattice. Let X be a random Rm
vector distributed according to PX , and X̂ be a random Rm vector distributed according to PX̂ ,
where we assume that PX � PX̂ . Assume U is uniformly distributed over P0, and assume that
U ⊥⊥ X and U ⊥⊥ X̂ . Define

Z = KΛ(X + U) (5)

Ẑ = KΛ(X̂ + U) (6)

4

Under review as a conference paper at ICLR 2020

U −1

D
fc KΛ

logPẐ|U (Z|U) `(D|g(·))

X Z

U

−1

D
fc log fU (U)

fX̂−U (X−U)

`(D|g(·))

X

Figure 2: Pre/post dithered quantization in the context of lattice representation learning. The system
in the left is used during inference time, the one in the right during training time.

Then

EX,U

[
log

1

PẐ|U (Z|U)

]
= EX,U

[
log

fU (U)

fX̂−U (X − U)

]
. (7)

The proof of this result is based on a dual application of the Crypto-Lemma, and can be found in
the Appendix. In the application of result, PX will be associated with the empirical statistics of the
encoding of training data (prior to quantization), and PX̂ will be associated with a prior belief on the
statistics of the encodings of any data, prior to quantization.

Notice that the right hand side of Equation (7) has no quantization involved. Notice also that the
expression in the expectation does not use directly any global statistics about X; instead it relies
on fX̂−U , which is a density that the designer can specify when the statistics of X̂ are specified
and when the lattice Λ is designed. By avoiding the explicit quantization we eliminate the problem
resulting from the gradient of a quantized signal being zero almost everywhere, and by ensuring that
the expression being optimized does not directly depend on global statistics about X , we ensure that
stochastic gradient descent is feasible, since it requires that you update parameters based on gradients
computed on small batches of training data. For these reasons, we shall call the machine learning
algorithms that one derives from Theorem 1 dithered stochastic gradient descent algorithms.

Now examine the left hand side of Equation (7), and notice that it does involve explicitly quantization:
in fact, Z will become the discrete lattice representation of our work. Notice the conditioning in
PẐ|U on the dither value U . This means that the discrete representation not only depends on the
dither U , but also is being encoded using a code that depends U as well. Notice also that − logPẐ|U
may not be the very best code one could be using which is − logPZ|U , in fact

EX,U

[
log

1

PẐ|U (Z|U)

]
= EX,U

[
log

1

PZ|U (Z|U)

]
+DKL

(
Z‖Ẑ|U

)
where the former is the “true” best possible representation cost (for a given encoder) and the latter
term (a conditional KL divergence which is known to be nonnegative) denotes the excess cost. Thus
the representation cost may not be, in a certain sense, “optimum”, which is what we pay to make
stochastic gradient descent feasible by avoiding having to compute global statistics at every step of
the optimization. Having said this, our anecdotal experience is that this is not a significant problem if
one allows the parameters of the encoder to also be trained, as then the encoder “adapts” so as to
produce representations that approximate the prior that we have set.

A reader knowledgable in the literature of lattices in lossy compression theory may be wondering
what is the connection between Theorem 1 and the information theoretic result linking entropy coded
dithered quantization and mutual information (Zamir & Feder, 1996). The answer is that Theorem
1 generalizes this result to a setting where we aren’t necessarily using the optimum code, which
happens to be particularly useful in stochastic gradient descent algorithms.

We now construct the system that we intend to study. We refer the reader to Figure 2, where we
illustrate an encoder/decoder architecture coupled to a loss function. In the left hand side, we have a

5

Under review as a conference paper at ICLR 2020

network that employs pre/post dithered quantization of a representation quantized using a lattice Λ;
in the right, there is subtractive dithering but no quantization.

Following Figure 2, define

X = fc(D).

With this definition, we can see that in the left hand side of Figure 2, the quantized representation Z
matches the definition in Equation (5) of Theorem 1:

Z = KΛ(X + U)

Now in reference to the optimization objective in Equation (3), note that one of the things we need to
do is to define a code that will be used to encode Z. For this purpose, we will use a code constructed
using a distribution PẐ|U . The way we will construct this conditional distribution is also given by the
equations in Theorem 1. In particular, the designer will be free to specify any distribution PX̂ of their
choice, and then construct the random vectors X̂, U so that they are independent random vectors
distributed according to PX̂ and PU , respectively. Next, as in Equation (6) we define

Ẑ = KΛ(X̂ + U)

The distribution PẐ|U is the one associated with this definition. Encoding Z, the lattice representation
of D, using the code implied by PẐ|U incurs on the cost

log
1

PẐ|U (Z|U)

Continuing our analysis of the optimization objective in Equation (3), the designer specified loss
function value is

`(D, g(Z − U))

so that the total objective function is transformed to

`(D, g(Z − U)) + λ log
1

PẐ|U (Z|U)
(8)

The difficulty in optimizing this objective function is that Z is the result of quantization operation;
this affects both terms. To deal with the term in the left, we observe that Lemma 1 implies that

PX,Z−U = PX,X−U

Now observe that (Z − U ⊥⊥ D|X) and (X − U ⊥⊥ D|X); and as a consequence

PD,Z−U = PD,S−U

as well. This means that

ED,Z−U [`(D, g(Z − U))] = ED,X−U [`(D, g(Z − U))] = ED,U [`(D, g(fc(D)− U))]

This demonstrates how we get rid of the quantization by replacing it with subtractive dithering for the
first term in (8). For the second term (the representation cost), we use Theorem 1 to obtain

ED,U

[
log

1

PẐ|U (Z|U)

]
= ED,U

[
log

fU (U)

fX̂−U (X − U)

]
.

so that the new optimization objective is now

ED,U [`(D, g(fc(D)− U))] + λED,U

[
log

fU (U)

fX̂−U (fc(D)− U)

]
. (9)

As indicated earlier, stochastic gradient descent is possible because fX̂−U does not use any global
information about the training dataD. The way we propose this objective function be optimized is sim-
ilar to the optimization algorithms used in Variational Autoencoders (the so called “re-parametrization
trick”); in particular, we propose to sample for every D, one dither U and then performing gradient
descent regarding the sampled U regarded as a constant in the computational network.

6

Under review as a conference paper at ICLR 2020

2.3 THE CONNECTION TO VARIATIONAL AUTOENCODERS

Assume that the role of the decoder g is to output a distribution over the data space D, this is,

g(Z − U) = Q(·|Z − U)

where Q is a distribution over D. Assume that that we choose for the loss function

`(D,Q(·|Z − U)) = − logQ(D|Z − U).

In this setting, the loss function is quantifying the likelihood of the data d given the dithered lattice
representation Z −U . From an information theoretic coding perspective, this likelihood is the cost in
bits needed to represent the data d, given Z − U . In information theory, U is regarded as common
randomness shared between the encoder and decoder, and therefore there is no cost in transmitting it
(in practice, pseudo random numbers with a shared seed can be used to implement this, for example).
Thus to complete the cost needed to represent the data D, we need the cost of representing Z, which
is in our work is given by − logPẐ|U (Z|U). As per our earlier development, we can substitute both
of these likelihoods instead with ones which do not employ quantization, arriving to

log
1

Q(D|fc(D)− U)
+ λ log

fU (U)

fX̂−U (fc(D)− U)

Those versed in the literature of variational autoencoders, might recognize the famous Evidence
Lower BOund (ELBO) (for λ = 1) in the expression above. The term in the right-hand side is
associated with the KL term (prior to taking expectation). One way to see is by noticing that
fU (U) = fX̂−U |X̂(fc(D)−U |fc(D)) which is the "approximate posterior" and fX̂−U is the “prior”

(which explains why we are giving the designer full control over the distribution of X̂). The term on
the left, on the other hand, is associated with the “decoder” in the VAE.

The connection can be made even stronger. A very common practice in VAEs is to model the prior
and the approximate posterior as Gaussians. It turns out that there is a sense in which the distribution
of U approximates that of independently identically distributed (i.i.d.) Gaussian noise. Suppose for
now that X̂ is chosen also to be i.i.d. Gaussian, then assuming U is also i.i.d. Gaussian, then fX̂−U
is nothing but a the distribution of another i.i.d. Gaussian. Let us assume that the parameters of X̂
and U are such that X̂ − U has unit variance then the expression above becomes

log
1

Q(D|fc(D)− U)
+ λ

1

2

(
‖fc(D)− U‖22 −

1

σ2
Λ

‖U‖22 −m log σ2
Λ

)
where σ2

Λ is called the normalized second moment of the lattice (which maps to the variance of the
Gaussian approximation that we are making here). At this point, the expression is identical to one
that one might derive from VAE theory. One important point is to note that in VAEs, the approximate
posterior can have general parameters that depend on the encoder output in complex forms; for
example, in the case of a Gaussian approximate posterior both the mean and the correlation matrix in
the approximate posterior could depend on the encoder output. In the case in which we use lattice
representations, only the mean of the approximate posterior can have dependencies on the encoder
output.

The significance of the observation in this subsection is that many of the results (with relatively minor
modifications) that the VAE community has obtained likely can be re-interpreted as results involving
(discrete) lattice quantized representations together with pre/post quantized dithering.

We stress that the general concept introduced in this article extends well beyond VAE theory, in
the sense that it addresses the problem of discrete representations for all kinds of machine learning
problems, not only latent variable generative modeling problems. At the same time, in our work, the
use of lattices enforces a particular set of assumptions on the approximate posterior and priors that
one can use and therefore in that sense VAE theory is more general.

2.4 A HIGH RESOLUTION ANALYSIS

The hexagonal lattice in Figure 1 is a better lattice than the uniform lattice in the same Figure, in
the sense that if one holds the area of the cell constant, the average quantization error is lower in

7

Under review as a conference paper at ICLR 2020

the hexagonal lattice. This is a desirable property in quantized representations: one wants to use the
fewest possible number of lattice points to fill some portion of the Euclidean space where we believe
the encoder will produce data representations, yet one wants to control the quantization error so that
the performance of the decoder is not hurt. In this subsection we provide one perspective on the value
of better lattices for representation learning. Specifically, we analyze the “high resolution” regime
where the lattice points are closer to each other.

The volume, second moment and and normalized second moment of the lattice cell are defined as

VΛ =

∫
P0(Λ)

du, σ2
Λ =

1

VΛ

1

m

∫
P0(Λ)

‖u‖22du, G(Λ) =
σ2

Λ

V
2/m
Λ

respectively. The smallest possible second moment for any lattice on dimension m is defined as
Gm; we shall call any such lattice optimal. The normalized second moment of an m-dimensional
hyper-sphere is denoted by G∗m. It is known that

Gm > G∗m >
1

2πe
, lim

m→∞
G∗m =

1

2πe
A classical result in the theory of lattices is that the normalized second moment of an m dimensional
optimal lattice converges to the same quantity

lim
m→∞

Gm =
1

2πe
;

in other words, there exist lattices whose normalized second order moment approaches that of a
hyper-sphere as the lattice dimension m grows to infinity.

Let Im denote the m×m identity matrix. The following Lemma, which we prove in the Appendix,
describes how the second moment of a lattice whose dither is “white” controls the quantization error
as observed through an arbitrary function:
Lemma 2 (approximation error due to lattice quantization). For a given dimension m ≥ 1, let
η : Rm → R be a twice differentiable function. Assume that U is a column vector uniformly
distributed over the cell P0(Λ) of a lattice Λ, and assume that EU [UUT] = σ2

ΛIm for some σ2
Λ. If

tr(Hη(x)) 6= 0 and if σ2
Λ is sufficiently small, then

EU [η(x+ U)]− η(x) ≈ σ2
Λ

2
Tr(Hη(x))

where Hη denotes the Hessian (the matrix of second order derivatives) of η.

Lattices that achieve Gm have white dithers. This is a result by Poltyrev and can be found in (Zamir
& Feder, 1996):
Lemma 3. For any m ≥ 1, if a lattice Λ that achieves Gm and U is uniformly distributed over
P0(Λ), then E[UUT] is proportional to Im.

If one keeps constant the volume V 2/m
Λ of the lattice cell then by definition,

σ2
Λ = V

2/m
Λ G(Λ) ≥

V
2/m
Λ

2πe

We consider two lattices: a lattice spanned by a matrix proportional to Im, and a lattice with a
normalized second moment equal to Gm. From the previous discussion, it is easy to see that both
lattices have white dithers, and therefore Lemma 2 applies. We also note that the normalized second
moment of lattice spanned by a matrix proportional to Im is G1 = 1/12. Applying Lemma 2 twice,
the difference between the two approximations (one for each lattice) can be estimated by

1

2
(G1 −Gm)|Tr(Hη(x))| ≤ 1

2

(
1

12
− 1

2πe

)
|Tr(Hη(x))| ≈ 0.0124|Tr(Hη(x))|

The above is an absolute estimate. In relative terms, the size of the error by using the best lattice with
dimension m relative to the size of the error incurred by the cubic lattice. This is then given by

Gm
G1
≥ 6

πe
≈ 0.7

In the above, η was a generic function but in our case, we would like to identify it with `. Thus, we
can improve the quantization error in the designer’s choice of a loss function by up to 30% by using a
better lattice, all at a constant representation cost.

8

Under review as a conference paper at ICLR 2020

3 EXPERIMENTAL RESULTS

The purpose of our experiments is to draw a comparison between two techniques for quantized
representation learning. Both techniques will be using stochastic gradient descent, which implies
that we need to guarantee that the “backwards” computational network (the one used to compute
the gradient of the objective functional with respect to all parameters) needs to be associated with a
meaningful gradient, this is, one that can be used to iteratively improve the loss function.

The first technique is a network trained with scalar or vector quantization in the forward direction.
Because quantization has a zero derivative almost everywhere, it is not “meaningful” in the sense
of the paragraph above. Therefore, in the backward direction we use straight-through estimation in
order to create a fully differentiable backwards computational network (Bengio et al., 2013; van den
Oord et al.). The second technique is an estimate of how a very good lattice in high dimensions will
perform, using non-data dependent Gaussian dithering to approximate a uniform distribution over
this lattice. The justification for using Gaussian dithers is partly contained in the high resolution
analysis done in Subsection 2.4.

For the experimental setting, we have chosen a seq2seq (Sutskever et al., 2014) autoencoder as
implemented in OpenNMT-py (Klein et al., 2017; 2018). This open source package implements
a generic seq2seq architecture that encodes a variety of input types (text, audio, images) into a
vector valued representation, and then decodes this representation into text. For our experiments, we
have chosen a strict autoencoder experiment where we encode text into a representation and where
we expect that exactly the same text be produced by the decoder from this representation.

We modified this open source package (the source code will be released) by intercepting the com-
munication between the encoder and decoder in order to apply the various quantization techniques
that we are proposing to evaluate. In a seq2seq setup like the one being described in here, the loss
function is the average word negative log likelihood at the output of the decoder. We will maintain
the same loss function verbatim. In addition, we computed the representation cost of the quantized
vector communicated from the encoder to the decoder, normalized also on a per word basis. There is
a tradeoff between these two quantities - the higher the allowed representation cost, in principle the
better loss function we can obtain.

For the specifics of the architecture, we chose a 2 layer bidirectional GRU (Cho et al., 2014) recurrent
neural network for both the encoder and decoder, with each direction having 250 dimensions in
its internal state and in the GRU’s output vector (so that the total communication pipe between
encoder and decoder is 500 dimensions). The OpenNMT-py package implements an optional global
attention which creates additional communication paths between encoder and decoder. We disabled
this, as it presents additional complications that are not important for the purposes of this article.
We use Adam with an initial learning rate of 1e-4, which decays by a factor of 0.75 every 50k steps
after an initial 100k steps where it is kept constant. The total number of training steps is 500k. The
parameter λ which weights the representation cost in the total objective function is slowly annealed
from a value close to 0 to its (asymptotic) value of 1.0; the value of 0.5 is achieved at 100k steps.

When performing quantization and straight-through estimation, the 250 dimensions of each direction
of the bi-directional GRU can be quantized in several ways, depending on how we partition the 250
dimensions. One family of such possibilities is to use N = 250 scalar quantizers each using M
levels, for various values of M . Another example we demonstrate is N = 125 quantizers, each with
M = 4 two dimensional code vectors. In any of the experiments, each quantizer is independent of
the other quantizer, in the sense that its M levels are parameters of the model which are optimized
using gradient descent. Each of the N codes is associated with a code (a distribution over its M
levels), which can also be optimized using gradient descent. The average code length obtain as the
representations are encoded with this code is the representation cost.

For the experiments using Gaussian dithering, the output of the encoder is first linearly transformed
using a linear operator with free parameters, and then it is dithered using an uncorrelated zero mean
Gaussian with a diagonal correlation matrix that is also a set of free parameters. The dithered signal
is then passed through another linear operator. The representation cost for Gaussian dithering using
techniques from Variational Autoencoders; in essence we assume an isotropic unit variance Gaussian
as a prior over the representation space and then estimate the KL divergence between the dithered
representation conditional on the encoder output and the Gaussian prior.

9

Under review as a conference paper at ICLR 2020

Figure 3: Comparison of the performance of a hypothetical high dimensional lattice, approximated
using Gaussian dithering, and several quantizers trained using straight-through estimation. The
x-axis is the average word negative log likelihood in bits. The y-axis is the representation cost of the
quantized representation vector, averaged per word. Lower is better for both. All numbers plotted are
for the test data.

The specific data that we use for the text autoencoding experiment is a set of over 4 mil-
lion english sentences prepared using scripts that are available in Google’s NMT tutorial
(https://github.com/tensorflow/nmt, in particular the wmt16_en_de.sh script) for
a German/English translation system; as this is an autoencoding setup, we only use the English sen-
tences. For the test data, we use 3003 sentences also typically used in translation experiments for test-
ing (newstest2014). This data set was then processed using OpenNMT-py preprocess.py
tool. We only report results for the test data.

The results can be seen in Figure 3. In the lower left hand side we see the tradeoff between the
representation cost and the average word negative log likelihood. We can see that the projected
performance of a good lattice is significantly better than the performance of the specific quantizers,
trained with straight-through estimation that we tested. The reader may be wondering whether the
high dimensional assumption that we make on the gaussian dithering approximation to good lattices
implies that the projected performance may be unrealistic; we do not know with certainty at this point
however we believe that a good lattice in 250 dimensions will likely be very well approximated with
a Gaussian.

4 CONCLUSIONS

The present work is inspired by a belief that information theory, and in particular lossy compression
theory can be very effective in serving as a theoretical foundation for problems in representation
learning, including the design and analysis of highly performant practical algorithms. We have
introduced lattices as a possible way to create discrete representations, and proved a fundamental
result which allows us to train computational networks that use lattice quantized dithering using an
equivalent (in an expected sense) computational network which replaces quantization with dithering,
thus allowing gradient descent to apply. This result also allows us to use only local information
during the optimization, thus additionally enabling stochastic gradient descent. We also established a
fundamental connection between the use of good high dimensional lattices and the idea of Gaussian
dithering, which is common in generative modeling settings such as Variational Autoencoders. Finally,
we provided initial experimental evidence of the potential of using lattices in an autoencoder setting.
Our immediate intention for the future is to collect additional evidence for the value of lattice based
algorithms in a more diverse set of seq2seq tasks, including actual finite dimension lattice based
algorithm performance in addition to the Gaussian dithering setting.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Alexander A. Alemi, Ben Poole, Ian Fischer, Joshua V. Dillon, Rif A. Saurous, and Kevin Murphy.
Fixing a broken elbo. In Proceedings of the 35th International Conference on Machine Learning.
2018.

Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, and Srujana Merugu. An information theoretic
analysis of maximum likelihood mixture estimation for exponential families. In Proceedings of the
Twenty-first International Conference on Machine Learning, ICML ’04, pp. 8–, New York, NY,
USA, 2004. ACM. ISBN 1-58113-838-5.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013. URL
http://arxiv.org/abs/1308.3432.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association
for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL https://www.aclweb.
org/anthology/D14-1179.

Jr. G. D. Forney. Shannon meets wiener ii: On mmse estimation in successive decoding schemes. In
In Proceedings of 42st Annual Allerton Conference on Communication, Control, and Computing,
2004.

Luis Gonzalo Sánchez Giraldo and José C. Príncipe. Rate-distortion auto-encoders. CoRR,
abs/1312.7381, 2013. URL http://arxiv.org/abs/1312.7381.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner.
Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. In The
International Conference on Learning Representations (ICLR), Toulon. 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumbel-softmax. In 5th
International Conference on Learning Representations (ICLR 2017). 2017.

D.P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In The International Conference on
Learning Representations (ICLR), Banff. 2014.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. OpenNMT: Open-
source toolkit for neural machine translation. In Proceedings of ACL 2017, System Demonstrations,
pp. 67–72, Vancouver, Canada, July 2017. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P17-4012.

Guillaume Klein, Yoon Kim, Yuntian Deng, Vincent Nguyen, Jean Senellart, and Alexander Rush.
OpenNMT: Neural machine translation toolkit. In Proceedings of the 13th Conference of the
Association for Machine Translation in the Americas (Volume 1: Research Papers), pp. 177–
184, Boston, MA, March 2018. Association for Machine Translation in the Americas. URL
https://www.aclweb.org/anthology/W18-1817.

Luis A. Lastras-Montaño. Information theoretic lower bounds on negative log likelihood. In The
International Conference on Learning Representations (ICLR), Toulon. 2019.

Bruce G. Lindsay. The geometry of mixture likelihoods: A general theory. Ann. Statist., 11(1):86–94,
03 1983.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relax-
ation of discrete random variables. In 5th International Conference on Learning Representations
(ICLR 2017). 2017.

Radford M. Neal and Geoffrey E. Hinton. A View of the Em Algorithm that Justifies Incremental,
Sparse, and other Variants, pp. 355–368. Springer Netherlands, Dordrecht, 1998.

11

http://arxiv.org/abs/1308.3432
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
http://arxiv.org/abs/1312.7381
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/W18-1817

Under review as a conference paper at ICLR 2020

Kenneth Rose. Deterministic annealing for clustering, compression, classification, regression, and
related optimization problems. Proceedings of the IEEE, (11):2210–2239, November 1998.

C. E. Shannon. Coding theorems for a discrete source with a fidelity criterion. In IRE Nat. Conv.
Rec., Pt. 4, pp. 142–163. 1959.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
CoRR, abs/1703.00810, 2017. URL http://arxiv.org/abs/1703.00810.

Noam Slonim and Yair Weiss. Maximum likelihood and the information bottleneck. In Proceedings
of the 15th International Conference on Neural Information Processing Systems, NIPS’02, pp.
351–358, Cambridge, MA, USA, 2002. MIT Press.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
In NIPS, 2014.

N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In Proceedings of the 37-th
Annual Allerton Conference on Communication, Control and Computing, pp. 368–377. 1999.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015
IEEE Information Theory Workshop. 2015.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. Rebar:
Low-variance, unbiased gradient estimates for discrete latent variable models. In Advances in
Neural Information Processing Systems 30.

Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete representation learning.
In Advances in Neural Information Processing Systems 30.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley J. Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. In The International
Conference on Learning Representations (ICLR), Toulon. 2017.

Ram Zamir and Meir Feder. On lattice quantization noise. IEEE Trans. Inform. Theory, 42:1152–1159,
1996.

Ram Zamir, Bobak Nazer, Yuval Kochman, and Ilai Bistritz. Lattice Coding for Signals and Networks:
A Structured Coding Approach to Quantization, Modulation and Multiuser Information Theory.
Cambridge University Press, 2014. doi: 10.1017/CBO9781139045520.

A APPENDIX

A.1 PROOF OF THEOREM 1 - CORE RESULT ON DITHERED SGD

For reference purposes, we restate the statement of the theorem:

Theorem 1 (representation cost for dithered SGD). Let Λ be any lattice. Let X be a random Rm
vector distributed according to PX , X̂ be a random Rm vector distributed according to PX̂ , where
we assume that PX � PX̂ . Assume U is uniformly distributed over P0, and assume that U ⊥⊥ X

and U ⊥⊥ X̂ . Define

Z = KΛ(X + U) (10)

Ẑ = KΛ(X̂ + U) (11)

Then

EX,U

[
log

1

PẐ|U (Z|U)

]
= EX,U

[
log

fU (U)

fX̂−U (X − U)

]
. (12)

To prove this result, we will rely on this Lemma:

12

http://arxiv.org/abs/1703.00810

Under review as a conference paper at ICLR 2020

Lemma 4. Let X,U,Z be Rm valued random vectors such that (X ⊥⊥ U |Z − U) and X ⊥⊥ U ,
with U continuous and Z discrete. Then

PZ|XU (z|xu)

PZ|U (z|u)
=
fZ−U |X(z − u|x)

fZ−U (z − u)

Proof of Lemma 4. We assume in this proof that X is continuous and has a density; the case where
X is discrete can be proved similarly. The proof proceeds as follows:

PZ|XU (z|xu)

PZ|U (z|u)

(a)
=

fX|Z,U (x|z, u)

fX|U (x|u)

(b)
=

fX|Z,U (x|z, u)

fX(x)

(c)
=

fX|Z−U,U (x|z − u, u)

fX(x)

(d)
=

fX|Z−U (x|z − u)

fX(x)

=
fX|Z−U (x|z − u)fZ−U (z − u)

fX(x)fZ−U (z − u)

(e)
=

fZ−U |X(z − u|x)

fZ−U (z − u)

where (a) follows from Bayes’ rule for mixed continuous/discrete variables, (b) follows from the
assumption that X ⊥⊥ U , (c) follows from the fact that these two events are identical

[Z = z, U = u] = [Z − U = z − u, U = u].

Finally, (d) follows from the assumption that (X ⊥⊥ U |Z − U) and (e) follows from the use of
Bayes’ rule.

Proof of Theorem 1. A fundamental fact in probability theory is that if A and B are random vectors
where B = η(C) for some function η, then A and B are independent given C. We now use the
classical argument employed in the analysis of lattices in quantization, which is that because by
definition U ∈ P0(Λ),

KΛ(Ẑ − U) = Ẑ

and therefore KΛ(Ẑ −U)− (Ẑ −U) = U . This shows that U can be obtained as function of Ẑ −U .
Therefore (X̂ ⊥⊥ U |Ẑ − U) and since by construction X̂ ⊥⊥ U , we will be able to apply Lemma 4.

13

Under review as a conference paper at ICLR 2020

The proof thus proceeds as follows:

EX,U

[
log

1

PẐ|U (Z|U)

]
(a)
= EX,U

[
log

PẐ|U,X̂(K(X + U)|U,X)

PẐ|U (Z|U)

]
(b)
= EX,U

[
log

PẐ|U,X̂(Z|U,X)

PẐ|U (Z|U)

]
(c)
= EX,U

[
log

fẐ−U |X̂(Z − U |X)

fẐ−U (Z − U)

]
(d)
= EX,Z−U

[
log

fẐ−U |X̂(Z − U |X)

fẐ−U (Z − U)

]
(e)
= EX,X−U

[
log

fẐ−U |X̂(X − U |X)

fẐ−U (X − U)

]
(f)
= EX,U

[
log

fẐ−U |X̂(X − U |X)

fẐ−U (X − U)

]
(g)
= EX,U

[
log

fX̂−U |X̂(X − U |X)

fX̂−U (X − U)

]

= EX,U

[
log

fU (U)

fX̂−U (X − U)

]

where (a) follows from the definition of Ẑ which implies that for all x and all u,

PẐ|U,X̂(KΛ(x+ u)|u, x) = 1,

(b) follows from the definition of Z, (c) follows from an application of Lemma 4, (d) is a change of
variables which is feasible since X and Z −U are the only random vectors under the expectation, (e)
follows from an application of the Crypto Lemma, (f) is another change of variables, (g) follows
from another application of the Crypto Lemma, but this time applied to the joint distribution of
X̂, Ẑ − U .

A.2 PROOF OF LEMMA 2 - HIGH RESOLUTION ANALYSIS

For reference purposes, we restate the statement of the lemma:

Lemma 2 (approximation error due to lattice quantization). For a given dimension m ≥ 1, let
η : Rm → R be a twice differentiable function. Assume that U is a column vector uniformly
distributed over the cell P0(Λ) of a lattice Λ, and assume that EU [UUT] = σ2

ΛIm for some σ2
Λ. If

tr(Hη(x)) 6= 0 and if σ2
Λ is sufficiently small, then

EUη(x+ U)− η(x) ≈ σ2
Λ

2
Tr(Hη(x))

where Hη denotes the Hessian (the matrix of second order derivatives) of η.

Proof. It is easy to see that if u ∈ P0(Λ), then −u ∈ P0(Λ). Due to this property, the first moment
of a lattice is zero:

EU [U] = 0.

14

Under review as a conference paper at ICLR 2020

Let Λscaled = 1
σΛ

Λ be a scaled version of Λ. Define V = 1
σΛ
U , then clearly EV [V V T] = Im.

Using a Taylor series expansion, assuming σΛ is small,

EU [η(x+ U)] = EV [η(x+ σΛV)] ≈ η(x) + EV

[
σ2

Λ

2
V THηV

]

= η(x) +
σ2

Λ

2

∑
i,j

[Hη]i,jEV [ViVj]

= η(x) +

σ2
Λ

2
Tr(Hη).

15

