
Disentangled Contrastive Learning on Graphs
(Supplementary Material)

Haoyang Li1, Xin Wang1, Ziwei Zhang1, Zehuan Yuan2, Hang Li2, Wenwu Zhu1

1Tsinghua University, 2Bytedance
lihy18@mails.tsinghua.edu.cn, {xin_wang, zwzhang}@tsinghua.edu.cn,

{yuanzehuan, lihang.lh}@bytedance.com, wwzhu@tsinghua.edu.cn

A Training Details

A.1 Hardware and Software Configurations

We conduct the experiments with:

• Operating System: Ubuntu 18.04.1 LTS
• CPU: Intel(R) Xeon(R) CPU E5-2699 v4@2.20GHz
• GPU: NVIDIA GeForce GTX TITAN X
• Software: Python 3.6.5; NumPy 1.18.0; PyTorch 1.7.0; PyTorch Geometric 1.6.1 [1].

A.2 Datasets

The statistics of the datasets are in Table 1.

We adopt four bioinformatics datasets in the experiment. MUTAG dataset contains mutagenic
aromatic and heteroaromatic nitro compounds. PTC dataset contains chemical compounds reported
for carcinogenicity of rats. PROTEINS is a dataset where nodes are secondary structure elements,
and there is a connection between two nodes if they are neighbors in the amino-acid sequence or in
3D space. NCI1 is a subset of balanced datasets of chemical compounds released by the National
Cancer Institute (NCI).

We also conduct the experiment on five social network datasets. IMDB contains movies information,
in which the nodes represent actors/actresses and the two nodes have connections if they have acted
in the same movie. IMDB-BINARY consists of two genres of movies, while IMDB-MULTI contains
movies from Comedy, Romance and Sci-Fi genres. Reddit datasets were created using threads
in different subreddits, where nodes are users who responded to that particular thread and edges
represent that one user responds to another user’s comment. REDDIT-BINARY labels each graph as
2 labels and REDDIT-MULTI-5K labels graphs into 5 labels. COLLAB dataset is derived from 3
public collaboration datasets, i.e., High Energy Physics, Condensed Matter Physics and Astro Physics.
Each graph corresponds to an ego-network of different researchers from each field. The labels denote
the fields the corresponding researchers belong to.

Note that the node features are not provided for the five social network datasets. Therefore, we follow
previous works [2, 3] to use a constant vector as the node features for REDDIT-BINARY and a
one-hot encoding of node degrees as node features for the other datasets.

In addition, we use a larger graph dataset ogbg-molhiv from Open Graph Benchmark (OGB). Each
graph in ogbg-molhiv represents a molecule, where nodes are atoms, and edges are chemical bonds.
The input features of nodes are 9-dimensional, containing atomic number and chirality, as well as
other additional atom features such as formal charge and whether the atom is in the ring or not.

The datasets are publicly available.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Table 1: The statistics of the datasets.

MUTAG PTC-MR PROTEINS NCI1 IMDB-B IMDB-M RDT-B RDT-M5K COLLAB OGBG-MOLHIV
graphs 188 344 1,113 4,110 1,000 1,500 2,000 4,999 5,000 41,127
classes 2 2 2 2 2 3 2 5 3 2

Avg # nodes 17.9 14.3 39.1 29.9 19.8 13.0 429.6 508.5 74.5 25.5
Avg # edges 19.8 14.7 72.8 32.3 96.5 65.9 497.8 594.9 2457.8 27.5

1 2 3 4 5 6 7 8 9 1086.0

88.0

90.0

92.0

Ac
cu

ra
cy

 (%
) MUTAG

(a) Number of channels
K.

1 2 3 4 586.0

88.0

90.0

92.0

Ac
cu

ra
cy

 (%
) MUTAG

(b) Number of layers L.

32 64 128 256 51286.0

88.0

90.0

92.0

Ac
cu

ra
cy

 (%
) MUTAG

(c) Dimensionality d.

32 64 128 256 51286.0

88.0

90.0

92.0

Ac
cu

ra
cy

 (%
) MUTAG

(d) Batch size B.

Figure 1: Impact of different hyper-parameters on MUTAG dataset.

1 2 3 4 5 6 7 8 9 1070.0

72.0

74.0

76.0

Ac
cu

ra
cy

 (%
) IMDB-B

(a) Number of channels
K.

1 2 3 4 570.0

72.0

74.0

76.0

Ac
cu

ra
cy

 (%
) IMDB-B

(b) Number of layers L.

32 64 128 256 51270.0

72.0

74.0

76.0

Ac
cu

ra
cy

 (%
) IMDB-B

(c) Dimensionality d.

32 64 128 256 51270.0

72.0

74.0

76.0

Ac
cu

ra
cy

 (%
) IMDB-B

(d) Batch size B.

Figure 2: Impact of different hyper-parameters on IMDB-B dataset.

• ogbg-molhiv: https://ogb.stanford.edu/docs/graphprop/ with MIT License
• The other nine graph datasets: https://chrsmrrs.github.io/datasets/docs/
datasets/ with license unspecified

A.3 Graph Augmentation

The data augmentation is critical to contrastive learning methods. For a fair comparison, we follow
the previous work GraphCL [4] and randomly perform one type of data augmentations for graphs as
follows:

• Node dropping. Given the input graph, it will randomly discard 20% nodes along with
their edges, implying that the missing nodes do not affect the model predictions much.

• Edge perturbation. Given the input graph, it will randomly add or cut a certain portion
of connections between nodes with the probability of 0.2. This augmentation can prompt
robustness of the graph encoder to the edge connectivity pattern variances.

• Attribute masking. It will set the feature of 20% nodes in the graph to Gaussian noises
with mean and standard deviation is 0.5. The underlying prior is that missing part of the
features do not affect the semantic information of the whole graph.

• Subgraph sampling. It will sample a subgraph, including 20% nodes from the input graph,
using random walk. The assumption is that the semantic information of the whole graph can
be reflected by its partial structure.

A.4 Implementation Details

We implement our model in PyTorch. We adopt the Adam [5] optimizer, which is a variant of
Stochastic Gradient Descent (SGD) with adaptive moment estimation. For a fair comparison, we
follow the default setting in [4]. We use GIN [2] as the message-passing layers since it is shown to
be one of the most expressive message-passing GNNs. Note that the ground-truth number of the
latent factors is unknown, so we search the number of channels K from 1 to 10. For the unsupervised
setting, we use SVM as the downstream classifier. We adopt the 10-fold cross validation accuracy, and
report the mean accuracy (%) with standard variation after five repeated runs. For the semi-supervised
setting, we perform experiments with 1% , 10%, and 20% label rate.

2

https://ogb.stanford.edu/docs/graphprop/
https://chrsmrrs.github.io/datasets/docs/datasets/
https://chrsmrrs.github.io/datasets/docs/datasets/

Algorithm 1 The training procedure of our method (DGCL).

Input: A graph dataset G = {Gi}Ni=1

Output: The disentangled representations Z = {zi}Ni=1 for G

1: function DISENTANGLEDENCODER(Gi)
2: for l← 1 to L do
3: Hl = GNNl(Hl−1, A)
4: end for
5: for k ← 1 to K do . separate K channels
6: HL+1

k = GNNk(H
L, A)

7: zi,k = MLPk(READOUTk({HL+1
k }))

8: end for
9: return zi . disentangled graph representation

10: end function
11: for sampled minibatch B = {Gi}|B|i=1 do
12: for Gi ∈ B do . disentangled graph encoding
13: zi = DISENTANGLEDENCODER(Gi)
14: G′i = GRAPHAUGMENTATION(Gi) . augmentation
15: z′i = DISENTANGLEDENCODER(G′i)
16: Calculate pθ(k|Gi) by Eq. (4)
17: end for
18: for k ← 1 to K do . factor-wise contrastive learning
19: for i← 1 to |B| and j ← 1 to |B| do
20: s

(k)
i,j = φ(zi,k, z

′
j,k) . similarity under kth factor

21: end for
22: Calculate p̂θ(yi|Gi, k) = exp s

(k)
i,i /

∑|B|
j=1,j 6=i exp s

(k)
i,j

23: end for
24: for Gi ∈ B do . optimization objective
25: Calculate qθ(k|Gi, yi) by Eq. (9)
26: Calculate ELBO L(θ, i)
27: end for
28: Calculate ELBO over a minibatch L(θ,B)
29: Update θ to maximize L(θ,B), using the gradient ∇θL(θ,B)
30: end for
31: Z = {zi}Ni=1, where zi = DISENTANGLEDENCODER(Gi), Gi ∈ G

We list the detailed training procedure of our method in Algorithm 1.

B Hyper-parameter Sensitivity

We investigate the sensitivity of hyper-parameters of our method: the number of channels K, the
number of message-passing layers L, the dimensionality of the embeddings d, and the batch size B.
Among them, the number of channels K is the most important hyper-parameter. For simplicity, we
only report the results on the MUTAG (Figure 1) and IMDB-B (Figure 2) datasets, while the results
on other datasets show similar patterns. From Figures 1 and 2, we can observe that the performance
increases at first with a larger K and drops after reaching a peak, showing that a proper number of
channels K matching the real latent factors behind the observed data can lead to better results. Then,
the number of message-passing layers L is also important because the graph model with a small L has
the limited model capacity and may not be able to fuse enough information from neighbors, and a very
large L could also lead to the over-smoothing problem [6]. In addition, the optimal dimensionality of
embeddings d for MUTAG is relatively smaller than that for IMDB-B, since the former dataset only
consists of 188 graphs but the latter contains 1,000 graphs with more nodes and edges. A too large
d may induce over-fitting and hurt the performance. Finally, we find that our method benefits from
larger batch sizes, which is consistent with the common phenomenon in contrastive learning [7].

3

C Evidence Lower Bound (ELBO)

Theorem 1. The log likelihood function of each graph log pθ(yi|Gi) is lower bounded by the ELBO:
L(θ, i) = Eqθ(k|Gi,yi)[log pθ(yi|Gi, k)]−DKL(qθ(k|Gi, yi) ‖ pθ(k|Gi)).

Proof.

log pθ(yi|Gi)
= Eqθ(k|Gi,yi) [log pθ(yi|Gi)]

= Eqθ(k|Gi,yi)
[
log

pθ(yi, k|Gi)
pθ(k|Gi, yi)

]
= Eqθ(k|Gi,yi)

[
log

pθ(yi, k|Gi)
qθ(k|Gi, yi)

qθ(k|Gi, yi)
pθ(k|Gi, yi)

]
= Eqθ(k|Gi,yi)

[
log

pθ(yi, k|Gi)
qθ(k|Gi, yi)

]
+ Eqθ(k|Gi,yi)

[
log

qθ(k|Gi, yi)
pθ(k|Gi, yi)

]
= Eqθ(k|Gi,yi)

[
log

pθ(yi, k|Gi)
qθ(k|Gi, yi)

]
+DKL(qθ(k|Gi, yi) ‖ pθ(k|Gi, yi))

≥ Eqθ(k|Gi,yi)
[
log

pθ(yi, k|Gi)
qθ(k|Gi, yi)

]
= Eqθ(k|Gi,yi)

[
log pθ(yi|Gi, k)

pθ(k|Gi)
qθ(k|Gi, yi)

]
= Eqθ(k|Gi,yi) [log pθ(yi|Gi, k)]−DKL (qθ (k|Gi, yi) ‖ pθ (k|Gi))
= L(θ, i).

(1)

The equality holds when DKL(qθ(k|Gi, yi) ‖ pθ(k|Gi, yi)) = 0. Note that in the third-to-last line
above, we have used pθ(yi, k|Gi) = pθ(k|Gi)pθ(yi|Gi, k).

D Complexity Analysis

The time complexity of our method is O(M), where M denotes the number of edges in the graphs.
Specifically, DGCL adopts GIN as the message-passing layers so the time complexity of the disen-
tangled graph encoder is O(M). As for the factor-wise contrastive learning, the positive and negative
samples are drawn from graph data augmentations and graphs from the same minibatch respectively,
which will not induce a higher computational cost. The time complexity of self-supervised learning
baselines (e.g., GraphCL, MVGRL, etc.) in the experiments is also O(M). Therefore, the time
complexity of our proposed DGCL is on par with these baselines. Notice that GVAE, one of the
unsupervised baselines, has O(N2) time complexity due to the adjacency matrix reconstruction in
the VAE framework, where N denotes the number of nodes in the graphs. Since O(M)� O(N2)
for sparse graphs, our proposed method is much more scalable than GVAE.

E Number of Parameters

For our method, the number of parameters is O(Ld2 +K ∗ (d/K)), i.e., O(Ld2), where K is the
number of channels, L is the number of message-passing layers of disentangled graph encoder, and
d is the dimensionality of the embeddings. Specifically, because we adopt GIN as the message
passing layers, the number of parameters of the disentangled graph encoder is O(Ld2). The number
of parameters of K latent factor prototypes is (K ∗ (d/K)). For the baselines using Graph Neural
Network (i.e., GCN or GIN) as the graph encoder, including GVAE, InfoGraph, GCC, MVGRL, and
GraphCL, the number of parameters is O(Ld2). Therefore, the number of parameters of the proposed
method and the baselines are comparable.

4

F Future Direction

In this work, we focus on the disentangled graph contrastive learning for graph-level representations.
So the proposed method cannot be directly applied to the node-level representation tasks. Nevertheless,
we think a similar methodology of our method could be extended to node-level tasks in the future.

References
[1] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In

ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[2] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[3] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, pages 4116–4126. PMLR, 2020.

[4] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Neural Information Processing Systems, 2020.

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference for Learning Representations, 2015.

[6] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR, 2020.

5

	Training Details
	Hardware and Software Configurations
	Datasets
	Graph Augmentation
	Implementation Details

	Hyper-parameter Sensitivity
	Evidence Lower Bound (ELBO)
	Complexity Analysis
	Number of Parameters
	Future Direction

