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ABSTRACT

Variational inference is a fundamental problem in Variational AutoEncoder (VAE).
The optimization with lower bound of marginal log-likelihood results in the dis-
tribution of latent variables approximate to a given prior probability, which is
the dilemma of employing VAE to solve real-world problems. By virtue of high-
dimensional geometry, we propose a very simple algorithm completely different
from existing ones to alleviate the variational inference in VAE. We analyze the
unique characteristics of random variables on spheres in high dimensions and prove
that Wasserstein distance between two arbitrary data sets randomly drawn from a
sphere are nearly identical when the dimension is sufficiently large. Based on our
theory, a novel algorithm for distribution-robust sampling is devised. Moreover,
we reform the latent space of VAE by constraining latent variables on the sphere,
thus freeing VAE from the approximate optimization of posterior probability via
variational inference. The new algorithm is named Spherical AutoEncoder (SAE).
Extensive experiments by sampling and inference tasks validate our theoretical
analysis and the superiority of SAE.

1 INTRODUCTION

Deep generative models, such as variational autoencoder (VAE) (Kingma & Welling, 2013; Rezende
et al., 2014) and generative adversarial network (GAN) (Goodfellow et al., 2014), play more and
more important role in machine learning and computer vision. However, the problem of variational
inference in VAE is still challenging, especially for high-dimensional data like images.

To be formal, let X = {x1, . . . ,xn} denote the set of observable data points and Z = {z1, . . . ,zn}
the set of desired latent vectors, where xi ∈ Rdx and zi ∈ Rdz . Let pg(x|z) denote the likelihood of
generated sample conditioned on latent variable z and p(z) the prior, where g denotes the decoder .
The encoder f in VAE approximates the posterior qf (z|x) in light of the lower bound of the marginal
log-likelihood

log pg(x) = log

∫
pg(x|z)p(z)dz = log

∫
qf (z|x)

qf (z|x)
pg(x|z)p(z)dz (1)

≥ −DKL[qf (z|x)||p(z)] + Eq[log pg(x|z)]. (2)

The first term DKL[qf (z|x)||p(z)] constrains the encoded latent codes to the prior via the KL-
divergence, and the second term Eq[log pg(x|z)] serves to guaranteeing the reconstruction accuracy
of inputs. For a Gaussian pg(x|z) of diagonal covariance matrix, log pg(x|z) reduces to the variance-
weighted squared error (Doersch, 2016).

The lower bound approximation of the log-likelihood yields a feasible solution for VAE. But it also
causes the new problems. For example, the generated sample g(z) deviates from the real distribution
of X when sampling from the given prior due to that the learned qf (z|x) cannot match the prior
distribution precisely. Besides, the reconstruction g(f(x)) is not satisfactory either. For imagery data,
bluriness usually occurs.

In order to manipulate real images for GAN models, we usually need to formulate an encoder via the
framework of VAE. The variational inference also applies in this scenario. The problems of VAE
are the obstacles of putting the GAN encoder in the right way either. There are other methods of
learning an encoder for GAN in the adversarial way such as (Dumoulin et al., 2017; Li et al., 2017;
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(a) The prior z is projected on sphere.

(b) The prior z is not projected on sphere.

Figure 1: Generated faces by StyleGAN with different priors. For (a) and (b), the first row shows
the generated faces with normal distribution and the second row displays the ones with the uniform
distribution. The priors are both normal when training.

Ulyanov et al., 2017; Heljakka et al., 2018). However, the structural precision of reconstruction is
generally inferior to the VAE framework, because high-level semantics of objects outweigh low-level
structures for such methods (Donahue & Simonyan, 2019). Besides, the concise architecture of VAE
is more preferred in this scenario. Therefore, learning precise latent variables z = f(x) is critical to
applications of VAE and GAN.

Using a different theory in this paper, we propose a simple method to circumvent the problem.
Our contributions are summarized as follows. 1) We introduce the volume concentration of high-
dimensional spheres. Based on the concentration property, we point out that projecting on a sphere for
data within the sphere produces little difference from the viewpoint of volume in high-dimensional
spaces. Thus, it is feasible to approximate the probability optimization pertaining to VAE on the
sphere. 2) We further analyze the probability distribution of distances between two sets of random
points on the sphere in high dimensions and illustrate the phenomenon of distance convergence.
Furthermore, we prove that the Wasserstein distance between two arbitrary datasets randomly drawn
from the high-dimensional sphere are nearly identical, meaning that data on the sphere are distribution-
robust for generative models with respect to Wasserstein distance. 3) Based on our theoretical analysis,
we propose a very simple algorithm for sampling generative models. The same principle is also
harnessed to reformulate VAE. We remove the optimization of posterior probability by simply putting
spherical normalization on latent variables. We name this autoencoder the spherical autoencoder
(SAE). 4) We perform extensive experiments to validate our theoretical analysis and claims with
sampling and inference tasks.

2 LATENT VARIABLES ON SPHERE

For latent variables or data points sampled from some priors, the projection on the unit sphere can
can be easily performed by

z ← z/‖z‖. (3)

This spherical normalization for priors fed into generator is employed in StyleGAN that is the
phenomenal algorithm in GANs (Karras et al., 2018b). To test the robustness of StyleGAN against
the diverse distributions, we conduct two groups of experiments with the input z sphere-normalized
and not sphere-normalized when training StyleGAN. As shown in Figure 1, the diversity of generated
faces is good for two different distributions with normalized z, whereas the face modes become
similar for the case of uniform distribution that z is not normalized. This experiment indicates that
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(a) (b)

Figure 2: Volume of spheres in different dimensional spaces. (a) Low-dimensional space. (b) High-
dimensional space. The volume of the sphere in the high-dimensional space is highly concentrated
near the surface. The interior is nearly empty.

StyleGAN with sphere-normalized z is much more robust to the variation of variable modes from
different distributions.

Inspired by this comparison, we interpret the benefit of using random variables on spheres by virtue
of high-dimensional geometry in this section. Based on these theories, a novel algorithm is proposed
for random sampling and latent inference for GAN and VAE.

2.1 VOLUME CONCENTRATION

For high-dimensional spaces, there are many counter-intuitive phenomena that will not happen
in low-dimensional spaces. For convenient analysis, we assume that the center of the sphere Sd
embedded in Rd+1 is at the origin. We first present the concentration property of sphere volume in
Rd+1. One can find the proof in (Blum et al., 2020).
Theorem 1. Let V (r) and V ((1− ε)r) denote the volumes of the two concentric spheres of radius
r and (1− ε)r, respectively, where 0 < ε < 1. Then

V ((1− ε)r)
V (r)

= (1− ε)d. (4)

And if ε = t
d , V ((1−ε)r)

V (r) → e−t when d→∞, where t is a constant.

Theorem 1 says that the volume of d-dimensional sphere of radius (1− ε)r rapidly goes to zero when
d goes large, meaning that the interior of the high-dimensional sphere is empty. In other words, nearly
all the volume of the sphere is contained in the thin annulus of width εr = rt/d. The width becomes
very thin when d grows. For example, the annulus of width that is 0.9% of the radius contains 99%
of all the volume for the sphere in R512. To help understand this counter-intuitive geometric property,
we make a schematic illustration in Figure 2.

The probabilistic manipulations are very beneficial from volume concentration of spheres. Suppose
that we perform probabilistic optimizations pertaining to latent variables contained in a sphere. The
probability mass is also empty due to volume concentration. Therefore, the error is controllable if we
perform it on the sphere, provided that these latent variables lie in high-dimensional spaces. For VAE,
therefore, we can write a feasible approximation

log pg(x) = log

∫
Int(Sd)

pg(x|z)p(z)dz ≈ log

∫
Sd
pg(x|z)p(z)dz, (5)

where Int(Sd) denotes the interior of Sd, ‖z‖ < r, and d is sufficiently large. The spherical
approximation for log pg(x) is an alternative scheme except the lower bound approximation presented
in equation (1). In fact, the distributions defined on the sphere have been already exploited to re-
formulate VAE, such as the von Mises-Fisher distribution (Davidson et al., 2018; Xu & Durrett,
2018). But the algorithms proposed in (Davidson et al., 2018; Xu & Durrett, 2018) still fall into the
category using lower bound approximation of log-likelihood as the vanilla VAE suffers. To eliminate
this constraint, we need more geometric analysis presented in the following section.

2.2 DISTANCE CONVERGENCE

To dig deeper, we examine the pairwise distance between two arbitrary points randomly sampled on
Sd. The following important lemma was proved by (Lord, 1954; Lehnen & Wesenberg, 2002).
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Figure 3: The illustration of average distance between two points randomly sampled on unit spheres
of various dimensions. (a) The average distance (red curve) and standard deviation (gray background).
(b) Schematic illustration of pairwise distances between two arbitrary points in high dimension. They
are nearly identical.

Lemma 1. Let ξ denote the Euclidean distance between two points randomly sampled on the sphere
Sd of radius r. Then the probability distribution of ξ is

ρ(ξ) =
ξd−2

c(d)rd−1

[
1−

(
ξ

2r

)2
] d−3

2

, (6)

where the coefficient c(d) is given by c(d) =
√
πΓ
(
d−1
2

)
/Γ
(
d
2

)
. And the mean distance ξµ and the

standard deviation ξσ are

ξµ =
2d−1r

[
Γ
(
d
2

)]2
√
πΓ
(
d− 1

2

) and ξσ =
√

2r

√
1−

ξ2µ
2r2

, (7)

respectively, where Γ is the Gamma function. Furthermore, ξµ →
√

2r
(
1− 1

8d

)
and ξσ → r√

2d
when d goes large.

Lemma 1 tells that the pairwise distances between two arbitrary points randomly sampled on Sd
approach being mutually identical and converge to the mean ξµ =

√
2r when d grows. The associated

standard deviation ξσ → 0. This result is in some extent surprising compared to the intuition in
low-dimensional spaces. We display the average distance and its std in Figure 3, showing that
the convergence process is fast. Taking R512 for example, we calculate that ξµ = 1.4139 and
ξσ = 0.0313. The standard deviation is only 2.21% of the average distance, meaning that the
distance discrepancy between arbitrary zi and zj is rather small. This surprising phenomenon is
also observed for neighborly polytopes when solving the sparse solution of underdetermined linear
equation (Donoho, 2005) and for nearest neighbor search in high dimensions (Beyer et al., 1999).

With Lemma 1, we can study the property of two different distributions on Sd, which serves to
distribution-free sampling and inference in generative models. To this end, we first introduce
the computational definition of Wasserstein distance. Let P (z) and P ′(z′) signify two different
distributions defined on Sd. Z = {z1, . . . ,zn} and Z′ = {z′1, . . . ,z′n} are random variables drawn
from P (z) and P ′(z′), respectively. Then the 2-Wasserstein distance is defined as

W 2
2 (Z,Z′) = min

ω

n∑
i=1

n∑
j=1

ωij‖zi − z′j‖2 (8)

s.t.
∑n

i=1
ωij =

∑n

j=1
ωij = 1, (9)

where ω is the doubly stochastic matrix. By Lemma 1, it is straightforward to derive the following
Theorem.

Theorem 2. 1 W2(Z,Z′)→
√

2nr with zero standard deviation when d→∞.

1It suffices to note that the case described in Theorem 2 is essentially different from the approximate solution
of Wasserstein distance via Monte Carlo sampling, where the points are sampled from unit sphere for projection.
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Theorem 2 says that despite the diverse distributions, the 2-Wasserstein distance between two arbitrary
sets of random variables on the sphere converges to a constant when the dimension is sufficiently
large. For generative models, this unique characteristic of Wasserstein distance for data sets randomly
sampled from high-dimensional spheres bring great convenience for distribution-robust sampling and
inference. For example, if Z ∼ P (z) obeys the normal distribution, the functional role of Z′ ∼ P ′(z)
nearly coincides with that of Z with respect to Wasserstein distance. The specific distribution of
P ′(z) affects the result negligibly. We will present the specific application of Theorem 2 in the
following section.

In fact, we can obtain the bounds of W2(Z,Z′) using the proven proposition about the nearly-
orthogonal property of two random points on high-dimensional spheres (Cai et al., 2013). But
Theorem 2 is sufficient to solve the problem raised in this paper. So, we bypass this analysis to
simplify the theory for easy readability.

3 ALGORITHM FOR SAMPLING AND INFERENCE

We will detail the distribution-robust algorithms for sampling and inference. A new simplified form
of VAE is given in this section as well.

3.1 SAMPLING

To acquire generative results from VAE and GAN, we need to sample random vectors from a
pre-defined prior. According to Theorem 1 and Theorem 2, however, this prior limitation can be
eliminated if we project these random vectors on the corresponding sphere. To achieve this, we
devise two-step manipulations on the sampled data set, e.g. Z = {z1, . . . ,zn}. The procedure is
detailed in Algorithm 1. The centerization operation transforms Z to nearly be independent and
identically distributed random variables. The spherization is to project these centerized vectors on the
unit sphere. We find that in practice, this simple algorithm works well to reduce the bias caused by
various distributions or data modes for VAE and GAN.

Algorithm 1 Distribution-robust sampling for generative models

1: Sample Z = {z1, . . . ,zn} ∼ P (z) . P (z) is an arbitrary distribution
2: Centerization by zji ← zji − 1

d

∑
j z

j
i for each zi . zji is the j-th entry of zi

3: Spherization by z̃i ← zi/‖zi‖ for each zi
4: Return Z̃ = {z̃1, . . . , z̃n}

3.2 INFERENCE

According to Theorem 2, we may know that sampling is robust to random variables if they are
randomly sampled from the high-dimensional sphere. Theorem 1 guarantees that the error can be
negligible even if they deviate from the sphere, as long as they are contained in the sphere. This
tolerance to various modes of random variables brings us a simple solution to the variational inference
for VAE. To be specific, we only need to constrain the centerized latent variables on the sphere,
as opposed to the conventional way of employing the KL-divergence DKL[qf (z|x)||p(z)] and its
variants with diverse priors. The sequential mappings of VAE under our framework can be shown by

x
f7−→ z︸ ︷︷ ︸

encoder

7−→ (z − ẑ1) 7−→ zi/‖zi‖︸ ︷︷ ︸
spherical constraint in latent space

7−→ z̃
g7−→ x̃︸ ︷︷ ︸

decoder

, (10)

where z̃ = 1
d

∑
j z

j
i and 1 is the all-one vector.

It is clear that we utilize the geometric characteristics of latent variables on sphere rather than some
additional losses to optimize the latent space. Our algorithm is geometric and free from posterior
probability optimization whose performance is usually limited with the approximation dilemma. In
fact, the framework of VAE in (10) reduces to a standard autoencoder with spherical constraint. There
is no variational inference needed here. To highlight this critical difference, we call it Spherical
AutoEncoder (SAE).
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Table 1: Comparison of sampling. The quantitative results are FIDs.

vanilla sampling centerization after sampling
Distribution no spherization spherization no spherization spherization
Normal 6.20 6.16 6.27 6.12
Uniform 33.93 6.16 33.86 6.16
Poisson 23.70 26.85 18.15 6.19
Chi-squared 25.26 27.07 11.34 6.16

4 RELATED WORK

Little attention has been paid on examining geometry of latent space in the field of generative models.
So we find few works directly related to ours. Most relevant ones are the application of von Mises-
Fisher (vMF) distribution as the probability prior instead of normal distribution used in the vanilla
VAE (Davidson et al., 2018; Xu & Durrett, 2018). The vMF distribution is defined on the sphere.
The sampling and variational inference are both performed with latent variables drawn on the sphere.
However, the algorithms proposed in (Davidson et al., 2018; Xu & Durrett, 2018) both rely on the
lower bound approximation of log-likelihood as VAE does with inequality (1). For our algorithm, the
whole framework is deterministic and there is no approximation involved for latent variables.

For sampling, our geometric analysis is directly inspired by ProGAN Karras et al. (2018a) and
StyleGAN (Karras et al., 2018b) that have already applied spherical normalization for sampled inputs.
We study the related theory and extend the case to arbitrary distributions for both GAN and VAE.
Another related method is to sample priors along the great circle when performing interpolation in
the latent space for GAN models (White, 2016). The empirical results show that such sampling yields
more smooth interpolated generation. This algorithm is perfectly compatible with our theory and
algorithm. Therefore, it can also be harnessed in our algorithm when performing interpolation.

5 EXPERIMENT

We conduct the experiments to test our theory and algorithms in this section. Three aspects pertaining
to generative algorithms are taken into account, including sampling GANs, learning variants of
autoencoder, and sampling the decoders.

The FFHQ dataset (Karras et al., 2018b) is a more complex face dataset with large variations of faces
captured in the wild. We test VAE and our SAE algorithm with this benchmark dataset. We use
the image size of 128× 128. This is also more challenging image size than 64× 64 or 32× 32 for
(variational) autoencoders to reconstruct.

5.1 SAMPLING GAN

Our first experiment is to test the sampling effect using four distributions. We employ StyleGAN
trained with random variables sampled from normal distribution. The other three distributions are
opted for testing generation, i.e. uniform, Poisson, and Chi-squared distributions. The shapes of
these three distributions are significantly distinctive from that of normal distribution. Thus, the
generalization capability of the generative model can be effectively unveiled when fed with priors
that are not involved during training. We follow the experimental protocol in (Karras et al., 2018a;b)
that StyleGAN is trained on FFHQ face dataset and Fréchet inception distance (FID) (Borji, 2018) is
used as the quality metrics of generative results.

From Table 1 we can see that the generative results by normal distribution is significantly better than
the others when tested with the original samples. The uniform distribution is as good as normal
distribution when projected on the sphere. This is because the values for each random vector are
overall symmetrically distributed according to the origin. They obey Theorem 2 after spherical
projection. The accuracy of Poisson and Chi-squared distributions are considerably improved after
centerization, even better than the vanilla uniform distribution. But the accuracy difference between
all the compared distributions is rather negligible after centerization and spherization, empirically
validating the theory presented in Theorem 2.

6



Under review as a conference paper at ICLR 2020

FFHQ faces

VAE

SAE (ours)

Figure 4: Reconstructed faces by VAEs with different priors on latent spaces. Our SAE algorithm
only uses spherical constraint in (10) instead of probability priors.

Table 2: Quantitative comparison of face reconstruction.

Metric FID SWD MSE
VAE 134.22 77.68 0.091
SAE (ours) 91.02 56.58 0.063

5.2 AUTOENCODERS

We compare the vanilla VAE with normal distribution (Kingma & Welling, 2013) with our spherical
autoencoder (SAE) for reconstruction and sampling tasks2.

From Figure 9, we can see that the face quality of SAE outperforms that of VAE. The imagery details
like semantic structures are preserved more better for SAE. For example, the sunglasses in the sixth
image is successfully recovered by SAE, whereas VAE distorts the face due to this occlusion. It
is worth emphasizing that the blurriness for images reconstructed by SAE is much less than that
by VAE, meaning that SAE ameliorates the difficulty in VAE by spherical constraint. The SAE’s
superiority for reconstruction indicate that the latent feature inferred by the encoder corresponding
to the input is more precise than that derived with the variational inference in VAE. The different
accuracy measurements in Table 2 also indicate the consistently better performance of SAE. To test
the generative capability of the models, we also perform the experiment of sampling the decoders as
done in section 5.1. Prior samples are drawn from the normal, uniform, Poisson, and Chi-squared
distributions, respectively, and then fed into the decoders to generate faces. Figure 5 illustrates the
generated faces of significantly different quality with respect to four types of samplings. The style of
generated faces by SAE keeps consistent, meaning that SAE is rather robust to different probability
priors. This also empirically verifies the correctness of Theorem 2. As a comparison, the quality of
generated faces by VAE varies with probability priors. In other word, VAE is sensitive to the outputs
of the encoder with variational inference, which might be the underlying reason of the difficulty of
training VAE in many sophisticated architectures.

6 CONCLUSION

In this paper, we attempt to address the issues of the variational inference in VAE and the limitation
of prior-sensitive sampling in GAN. By analyzing the geometry of volume concentration and distance
convergence on the high-dimensional sphere, we prove that the Wasserstein distance converges to be
a constant for two datasets randomly sampled from the sphere when the dimension goes large. Based
on this unique characteristic, we propose a very simple algorithm for sampling and inference. The
sampled data from priors are first centerized and then projected onto the unit sphere before they are

2We fail to train a convergent model for the spherical VAE (S-VAE) with von Mises-Fisher distribution on
FFHQ dataset. So this algorithm is not compared.
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VAE SAE (ours)

Normal distribution

Uniform distribution

Poisson

Chi-squared distribution

Figure 5: Generated faces with inputs of different priors. With pre-trained decoders of three
autoencoders, faces are generated with random vectors sampled from the four probability priors.

fed into the decoder (or generator). Such random variables on the sphere are robust to the diverse
prior distributions. With our algorithm, the vanilla VAE reduces to a standard autoencoder with
spherical constraint on the latent space. In other words, the conventional variational inference in VAE
is replaced by the simple operations of centerization and spherization. The new autoencoder is named
Spherical AutoEncoder (SAE). The experiments on FFHQ face data verify that our new algorithm for
sampling and inference is feasible. It is worth mentioning that the applications of our theory and the
novel algorithm are not limited for VAE and GAN. Interested readers may explore in their scenarios.
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A APPENDIX

A.1 RECONSTRUCTION ON FFHQ

FFHQ faces

VAE

SAE (ours)

FFHQ faces

VAE

SAE (ours)

FFHQ faces

VAE

SAE (ours)

Figure 6: Reconstructed faces by VAEs with different priors on latent spaces. Our SAE algorithm
only uses spherical constraint in (10) instead of probability priors.
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A.2 SAMPLING ON VAE AND SAE

VAE SAE (ours)

Normal distribution

Uniform distribution

Poisson

Chi-squared distribution

Figure 7: Generated faces with inputs of different priors. With pre-trained decoders of three
autoencoders, faces are generated with random vectors sampled from the four probability priors.
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VAE SAE (ours)

Normal distribution

Uniform distribution

Poisson

Chi-squared distribution

Figure 8: Generated faces with inputs of different priors. With pre-trained decoders of three
autoencoders, faces are generated with random vectors sampled from the four probability priors.
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A.3 RECONSTRUCTION ON MNIST

MNIST letters

VAE

SAE (ours)

Figure 9: Reconstructed letters by VAEs with different priors on latent spaces. Our SAE algorithm
only uses spherical constraint in (10) instead of probability priors.
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A.4 SAMPLING VAE AND SAE ON MNIST

VAE SAE (ours)

Normal distribution

Uniform distribution

Poisson

Chi-squared distribution

Figure 10: Generated letters with inputs of different priors. With pre-trained decoders of three
autoencoders, faces are generated with random vectors sampled from the four probability priors.
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