
Under review as a conference paper at ICLR 2020

DIFFERENTIABLE BAYESIAN NEURAL NETWORK
INFERENCE FOR DATA STREAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

While deep neural networks (NNs) do not provide the confidence of its prediction,
Bayesian neural network (BNN) can estimate the uncertainty of the prediction.
However, BNNs have not been widely used in practice due to the computational
cost of predictive inference. This prohibitive computational cost is a hindrance
especially when processing stream data with low-latency. To address this problem,
we propose a novel model which approximate BNNs for data streams. Instead
of generating separate prediction for each data sample independently, this model
estimates the increments of prediction for a new data sample from the previous
predictions. The computational cost of this model is almost the same as that of non-
Bayesian deep NNs. Experiments including semantic segmentation on real-world
data show that this model performs significantly faster than BNNs, estimating
uncertainty comparable to the results of BNNs.

1 INTRODUCTION

While deterministic neural networks (DNNs) surpass human capability in some area in terms of
prediction accuracy (He et al., 2015; Silver et al., 2016; Ardila et al., 2019), it has been unable to
estimate the uncertainty of the predictions until recently. Since the prediction can not be perfect and
the misprediction might result in fatal consequences in areas such as medical analysis and autonomous
vehicles control, estimating uncertainty as well as predictions will be crucial for the safer application
of machine learning based systems.

Bayesian neural network (BNN), a neural network (NN) that uses probability distributions as weights,
estimates not only predictive results but also uncertainties. This allows computer systems to make
better decisions by combining uncertainty with prediction. Moreover, BNN can achieve high per-
formance in a variety of fields, e.g. image recognition (Kendall et al., 2015; Kendall & Gal, 2017),
language modeling (Fortunato et al., 2017), reinforcement learning (Kahn et al., 2017; Osband et al.,
2018), meta-learning (Yoon et al., 2018; Finn et al., 2018), and multi-task learning (Kendall et al.,
2018), by exploiting uncertainty.

Although BNNs have these theoretical advantages, they have not been used as a practical tool. The
predictive inference speed has detained BNNs from wide applications. BNN executes NN inference
for dozens of samples from weight distributions. Since sampling and multiple NN executions are
difficult to be parallelized, the inference execution takes an order of magnitude more time. Particularly,
this is a significant barrier for processing data streams with low-latency.

Most time-varying data streams change continuously, and so do the predictions of BNNs. Thus,
we estimate prediction by calculating the increments between two consecutive results, instead
of calculating the separate prediction for each input data. This is equivalent to calculating the
differentiation of the BNN’s prediction for arbitrary data, because the difference of prediction for the
new data is the line integration of the gradient of prediction over the new data.

In this work, we propose a differentiable BNN (DBNN) inference with respect to an input data.
The prediction of the DBNN is given by a Monte Carlo (MC) estimator for the distribution of data
streams and weights. We speed up the inference by approximating the distribution using histogram
and calculating the gradient for this MC estimator. We show that the time complexity of this model is
nearly the same as that of deep DNNs. We evaluate DBNN with semantic segmentation using road
scene video sequences and the results show that DBNN has almost no degradation in computational

1



Under review as a conference paper at ICLR 2020

performance compared to deep DNNs. The uncertainty predicted by DBNN is comparable to that of
BNN in various situations.

The main contributions of this work are as follows.

• We propose online codevector histogram that estimates the probability of a high-dimensional
data stream. Then, we show that this histogram can be used to obtain the MC gradient
estimation.

• We propose differentiable Bayesian neural network inference with respect to input data as
an approximation of Bayesian neural network inference for data streams. This model is
nonparametric and applied to trained BNN without significant modifications.

• We theoretically and empirically show that the computational performance of DBNN is
almost the same as that of deep DNNs.

2 BACKGROUND AND RELATED WORK

BNNs are a state-of-the-art method to estimate predictive uncertainty while DNNs based approaches
have been developed recently (Lakshminarayanan et al., 2017; Guo et al., 2017). BNNs with proba-
bility distributions as weights produce probabilistic results. To make prediction, BNNs sample from
the weight probabilities and performs DNN for each sample. In this section, we describe the details
and challenges of BNNs inference process.

2.1 BAYESIAN NEURAL NETWORK INFERENCE

Suppose that p(x1) is posterior probability of NN weights x1 and p(y|x0,x1) is the BNN model for
input data x0. Then, the inference result of BNN is a predictive distribution:

p(y|x0
?) =

∫
p(y|x0

?,x
1)p(x1)dx1 (1)

where x0
? is observed input data vector and y is output vector. For simplicity, BNNs are usually

modeled to have a probability distribution with the mean of the prediction of DNN, e.g. in Hernández-
Lobato & Adams (2015); Gal & Ghahramani (2016):

p(y|x0
?,x

1) = N (y|NN(x0
?,x

1), τ−1) (2)

where NN(·) is prediction of DNN and τ is a given parameter. (1) can be approximated using MC
estimator:

1

Nx1
?

∑
x1
?

p(y|x0
?,x

1
?) (3)

where x1
? ∼ p(x1) and Nx1

?
is the number of samples. The expected value of the obtained predictive

distribution is the predictive result of BNN and the variance is the predictive uncertainty. The process
of calculating the equation consists of two steps: sampling weights from p(x1), e.g. using Markov
chain Monte Carlo (MCMC) (Neal et al., 2011; Hoffman & Gelman, 2014), and executing the DNN
for each weight sample. Since real-world data is large and practical NNs are deep, the repetitive
computation of NNs is difficult to be fully parallelized due to various problems, such as memory
limitations of the GPU (Kendall & Gal, 2017), and the iterative computation of DNNs results in
the decrease of computation speed. MCMCs are slow and, despite recent achievements (Tran et al.,
2018), it is challenging to achieve linearly scaling performance for multi-GPU MCMC. In addition, it
is difficult to check for the convergence of MCMCs. To mitigate these problems, we approximate the
difference in the prediction for one new data as one NN calculation, and sample the weights from the
posterior before testing.

2.2 BAYESIAN NEURAL NETWORK GRADIENT ESTIMATION

It is standard to use a gradient of MC estimator to optimize the loss function of BNN, e.g. evidence
lower bound (ELBO). Several direct and indirect methods are used to obtain the MC gradient
estimation: reparametrization trick (Kingma & Welling, 2013; Blundell et al., 2015; Fortunato et al.,

2



Under review as a conference paper at ICLR 2020

2017), score function (Kleijnen & Rubinstein, 1996; Williams, 1992; Glynn, 1990), dropout (Gal
& Ghahramani, 2016; McClure & Kriegeskorte, 2016), batch normalization (Teye et al., 2018),
expectation propagation (Hernández-Lobato & Adams, 2015), and smooth transformation for samples
(Liu & Wang, 2016; Burda et al., 2015; Maddison et al., 2017; Naesseth et al., 2017; Le et al., 2017;
van den Oord et al., 2017).

However, it is not appropriate to use these techniques to calculate a gradient of MC estimator
L = Ep(x)

[
f(x)

]
for arbitrary functions f(·) when a data stream is non-stationary and p(x), the

distribution of the data stream, is time-variant. For example, the reparameterization trick, one of
the most widely used methods for MC gradient estimation, separates the probability p(x) into a
deterministic function h(·) and an invariant probability p(ε), i.e., x = h(ε) and ∂xp(ε) = 0. Then,
the L is expectation over the invariant distribution, i.e., L = Ep(ε)

[
f(x)

]
, and the approximated L

becomes differentiable, i.e., ∂xL = Ep(ε)
[
∂xf(x)

]
. To use this technique, we need to adapt h(·)

to the non-stationary data stream. If h(·) is modeled in an NN, we may need to continuously train
this NN on the data stream; this leads to a decrease in computational performance. To alleviate this
problem, we use histogram to estimate probability with nearest neighbor search, instead of using
an NN-based generative model. In addition, the histogram is a linear sum of disjoint bins that is
analytically useful while simplifying calculations.

3 ONLINE CODEVECTOR HISTOGRAM

Vector quantization was introduced in Gersho (1982); Gray (1984) in order to compress a probability
distribution to a dozens of samples called codevectors. Kotani et al. (2002) showed that the histogram
of codevectors (codevectors augmented with counts) can effectively represent the features of face
image dataset. We introduce online codevector histogram (OCH) to estimate the probability distribu-
tion of non-stationary data stream as well as dataset. OCH can add a new codevector and delete old
ones, while counting the matches of each codevector for the past data stream. OCH maps the input
vector to the codevector using nearest neighbor search. It is a high-dimensional histogram where the
Voronoi diagram is the boundary and a codevector represents the corresponding bin. DBNN uses
OCH to approximate the probability distributions of input and output vector data streams.

Algorithm 1 shows how OCH operates in three steps. (a) Given a new input vector, OCH finds the
nearest codevector and increases its count. Then, it divides the corresponding bin by inserting the
input vector as a new codevector with probability proportional to the count. (b) OCH decrease all
counts by the same rate to reduce the contribution of old data. (c) To keep the number of codevectors
small, OCH deletes codevectors with probability in inverse proportion to its counts.

Algorithm 1: Update OCH
input : input vector x?, count of input vector n?, OCH = {(ci, ni)} where ci is codevector and ni

is its count, hyperparameters K, λ, and φ
output :updated OCH

1 ci ← Search the nearest codevector to x? in OCH
2 ni ← ni + n? where ni is count of ci
3 p ∼ Bernoulli

(
σ(πi − π̄ + φ)

)
where σ(·) is sigmoid, N =

∑
i ni, πi = ni/N , and π̄ = 1/K

4 if p = 1 then
5 OCH← OCH ∪ {(x?, (1− γ) · ni)} where γ = e−

λ/N

6 ni ← γ · ni
7 forall (cj , nj) ∈ OCH do
8 nj ← γ · nj
9 forall (ck, nk) ∈ OCH do

10 q ∼ Bernoulli
(
σ(π̄ − πk + φ) · π̄

)
11 if q = 1 then
12 OCH← OCH \ {(ck, nk)}

3



Under review as a conference paper at ICLR 2020

predictive result

uncertainty

mean

variance

DNN OCHY

predictions

⋮

OCHX

⋮
data NN weights

x1
(1)

x1
(2)

x1
(3)

input data

Figure 1: DBNN Inference. OCHs are added to the DNN to estimate the probabilities of input and
output vector streams. Given a new data, OCHX adjusts the weight (arrows) of the nearest codevector
of OCHX representing the input vector stream. DBNN adjusts weights of the codevectors of the
OCHY representing the predictive distribution based on the results of the inner DNN. DBNN derives
predictive result and uncertainty from the weighted ensemble of the codevectors of OCHY .

OCH takes three hyperparameters: K, λ, and φ. K is the number of codevectors kept in OCH on
average. λ determines how fast OCH depreciates old counts with the rate of γ. φ with counts of each
bin regulates the probability of adding and deleting codevectors.

Nearest neighbor search is the most computationally intensive step in alg. 1. To lower the computa-
tional complexity, we use locality-sensitive hashing with stable distribution, h = b(a · x? + b)/wc for a
vector a and scalars b and w. It requires up to logK hashes for precise search. The upper bound of the
computational complexity is O(dim(x) logK). This is faster than continuous training of NN-based
generative models for the data stream changing over time.

Meanwhile, OCH approximates probability distribution p(x) as:

p(x) '
∑
i

πiV(x|ci) (4)

where N =
∑
i ni, πi = ni/N , and V(x|c) is the bin or neighborhood of c with

∫
V(x|c)dx = 1.

The right-hand-side of (4) is clearly differentiable with respect to πj , while a set of random samples
from p(x) is not differentiable. Given a new input data, OCH changes only one count of the nearest
codevector. Therefore, if n? � N , the difference of OCH for a new input vector is approximately:

δp(x) '
∑
i

δπiV(x|ci) (5)

' αV(x|c?) (6)

where c? is the nearest codevector to the input vector, α = δn/N, and δn is the difference of the
count of c?. When OCH creates a new codevector, δn is n?. Here, we used the fact that codevectors
are invariant for input data, so V(x|ci) is also invariant. This property is useful when the linear
operator g(·) is applied to p(x). By definition of linear operator, g(p(x)) =

∑
i πig(V(x|ci)), then

its difference is δg(p(x)) =
∑
i δπig(V(x|ci)) = αg(V(x|c?)).

4 DIFFERENTIABLE BAYESIAN NEURAL NETWORK INFERENCE

When a data stream S = {. . . ,x0
?} is given, where each subsequent data sample changes continuously,

the prediction of a NN for S also changes continuously, i.e., p(y)→ p(y) + δp(y), because a NN
(with continuous activation) is a homeomorphism. We show that δp(y) is approximately proportional
to the prediction of a NN augmented with OCH to the input and output for the recent data x0

?. Figure 1
shows the structure of DBNN, where DNN is augmented with OCHs as distribution estimator units
of input and output stream. DBNN calculates predictive uncertainty as well as the predictive result
using the weighted ensemble of output codevectors.

4



Under review as a conference paper at ICLR 2020

4.1 DIFFERENTIATION OF BAYESIAN NEURAL NETWORK INFERENCE AS DIFFERENCE OF
PREDICTION

It is challenging to calculate the difference of (1) for a new data x0
? from S. The differentiation of

p(y|x0
?,x

1) with respect to x0
? is analytically intractable, because the samples from the probability

of the data stream p(x0|S) are discrete, although p(x0|S) varies continuously. In other words,
∂x0

?
p(y|x0

?,x
1) =

∫
p(y|x0,x1)∂x0

?
δ(x0 − x0

?)dx
0 where δ(·) is the delta function, and the delta

function is not differentiable. To address this issue, DBNN smoothens the delta function of the data
sample δ(x0 − x0

?) to the probability of the data stream p(x0|S) as follows:

p(y|S) =

∫
p(y|x0,x1)p(x0|S)p(x1)dx0dx1 (7)

=

∫
p(y|x)p(x|S)dx (8)

where x = (x0,x1) and p(x|S) = p(x0|S)p(x1). p(x0|S) is separately learned with respect to the
data stream S by another model and is called data uncertainty. p(x1) is the posterior distribution
obtained from BNN training and is called model uncertainty. DBNN inference decouples data (stream)
from the model. Instead, it joins the probability of data and the probability of the NN weights. When
the most recent data sample is considered instead of the data stream, i.e., p(x0|S) = δ(x0 − x0

?),
DBNN inference is reduced to BNN inference as mentioned before.

To calculate (8), we use OCH and (4) to represent p(x|S), and call it OCHX :

p(y|S) '
∑
i

πi

∫
p(y|x)V(x|ci)dx (9)

where πi is weight of codevector ci and proportional to the count of the codevector. V(x|ci) is
neighborhood of ci. Then, δp(y|S) can be approximated by changing the weight of the codevector
nearest to x0

? as:

δp(y|S) '
∑
i

δπi

∫
p(y|x)V(x|ci)dx (10)

' α
∫
p(y|x)V(x|c?)dx (11)

according to the (6). This means that
∫
p(y|x)V(x|ci)dx is invariant with respect to the change of

S, i.e., δ
[ ∫

p(y|x)V(x|ci)dx
]

= 0, since histogram only changes its counts, not the codevectors.
We approximate V(x|c?) as delta-function distribution at c?, i.e., V(x|c?) ' δ(x− c?):

δp(y|S) ' αp(y|c?) (12)

It is safe to assume that p(y|c?) is dominantly distributed near NN(c?), i.e., p(y|c?) '
V
(
y|NN(c?)

)
, because the expected value of y should be equal to NN(c?):

δp(y|S) ' αV
(
y|NN(c?)

)
(13)

where NN(c?) is prediction of DNN for c?. This result is equal to the changes of OCH when we update
OCH for data, as (6) expresses. In conclusion, the difference of the DBNN prediction contributes only
to the neighborhood of the DNN prediction for the codevector in OCHX approximately. Thus, given
the OCHY representing p(y|S), p(y|S) + δp(y|S) can be approximated by updating the OCHY for
the prediction of DNN.

4.2 IMPLEMENTATION OF DIFFERENTIABLE BAYESIAN NEURAL NETWORK INFERENCE

DBNN is composed of three stages and Algorithm 2 describes the DBNN inference process in detail
as follows: (a) First, to estimate the probability of the input data stream, the algorithm updates OCHX

for x? = (x0
?,x

1
?) where x1

? is a random sample from given approximated posterior distribution
OCHX1 which represents the given p(x1). OCHX1 consists of weights sampled from trained p(x1)
using MCMC. (b) Second, if OCHX generated a new codevector in OCHX , DBNN generates the
prediction for the new codevector using DNN and keeps the prediction in a cache table. As a result,

5



Under review as a conference paper at ICLR 2020

Algorithm 2: DBNN Inference
input : input data vector x0

?, deterministic neural network NN(·), posterior distribution OCHX1 ,
distribution of input vector OCHX , distribution of output vector OCHY , cache table T
initialized to empty set

output :updated distribution of input vector OCHX , updated distribution of output vector OCHY

1 x1
? ∼ OCHX1

2 x? ← (x0
?,x

1
?)

3 OCHX ← Update OCHX for x?
4 if new codevector ci exists in OCHX then
5 yi = NN(ci)
6 T ← T ∪ {ci 7→ yi}
7 c? ← Search the nearest neighbor codevector to x0

? in OCHX

8 y? ← T (c?)
9 OCHY ← Update OCHY for y? with count α

the cache table contains the results of DNN corresponding to all codevectors in OCHX . (c) Third,
DBNN finds the nearest neighbor codevector to x0

? in OCHX , looks up the corresponding prediction
in the cache table and update OCHY for the prediction for the codevector. In conclusion, OCHY

estimates the probability of the output data stream.

DBNN calculates the difference of prediction for a new data sample from the previous predictions. In
the process, it executes DNN once if necessary, which is computationally expensive, in contrast to
BNNs’ repetitive execution DNNs. Furthermore, DBNN sometimes does not execute DNN, but only
updates OCHX and OCHY for the input and output vectors, by updating the counts and estimates
prediction and uncertainty based on cached results. The dominant part of the computational cost
of updating OCHX is the inner product of a given input vector, i.e., a · x, for nearest neighbor
search. Given x = (x0,x1) and a = (a0,a1), a · x = a0 · x0 + a1 · x1 holds. The codevector
samples x1 from OCHX1 is fixed and finite, and DBNN caches all a1 · x1. Therefore, the average
computational cost on a1 ·x1 is minuscule, when updating OCHX . In conclusion, the upper bound of
the computational complexity of DBNN inference isO(dim(x0) logKX +NN(·)+dim(y) logKY )
where O(NN(·)) is computational complexity of NN and KX and KY are hyperparameters K of
OCHX and OCHY , respectively. Modern deep NN performs vector operations dozens of times, if
not hundreds, so the computation time of OCH is very small compared to DNN execution.

DBNN uses the flexible parametric probability estimator OCH to represent the distributions of input
and output vector streams. Unlike the most BNNs that depend on a parameterized model described
in (2), DBNN does not depend on the specific model. OCH represents both continuous and discrete
vector spaces, and so does DBNN. If DNN and posterior are given, we can easily convert them to
DBNN without significant modifications: just add OCH to the input and output of a DNN to estimate
the probability of the input and output vector streams.

5 EXPERIMENTS

Although DBNN uses assumptions that seem reasonable, it is necessary to measure empirical
performances to show that this assumption works for real-world problems. This section evaluates the
performance of DBNN in three set of experiments. The first experiment visualizes the characteristics
of DBNN by performing simple linear regression on synthetic data. The second experiment classifies
various real-world multivariate datasets using shallow and narrow NNs. This experiment shows the
difference between computational and predictive performance of BNN and DBNN under various
conditions when converting BNN to DBNN using small NN. The third experiment performs semantic
segmentation on real-world video sequences. This experiment compares the performances of DBNN
with other baselines when using a deep and wide modern NNs in practical situation.

We use the following four models as baselines:

6



Under review as a conference paper at ICLR 2020

2 0 2
x0

0.9

1.0

1.1

x1 a

2 0 2
x0

2

1

0

1

2

y

(a) DNN

2 0 2
x0

0.9

1.0

1.1

x1 a
2 0 2

x0
2

1

0

1

2

y

(b) MU

2 0 2
x0

0.9

1.0

1.1

x1 a

2 0 2
x0

2

1

0

1

2

y

(c) DU

2 0 2
x0

0.9

1.0

1.1

x1 a

2 0 2
x0

2

1

0

1

2

y

(d) DBNN

0 2 4 6
t

0.0

0.6

1.2

1.8

[y
]

DNN
MU
DU
DBNN

0 2 4 6
t

0.2

0.4

0.6

0.8

st
d[

y]

DNN
MU
DU
DBNN

(e) v = 0.3

0 20 40 60
t

0.0

0.6

1.2

1.8

[y
]

DNN
MU
DU
DBNN

0 20 40 60
t

0.2

0.4

0.6

0.8

st
d[

y]

DNN
MU
DU
DBNN

(f) v = 0.03

Figure 2: Simple linear regression on synthetic dataset. In figs. 2a to 2d, the top is the approximated
input probability OCHX (x1b is not displayed) and the bottom is the approximated output probability
OCHY (with x0) at t = 0 with v = 0.3. The sizes of the circles represents the importance weights of
each codevector. figs. 2e to 2f are the expected values and standard deviations of y depending on the
timestamp for different v. The black dotted lines represent true values. The error is 90% confidence
interval.

• DNN. Let Softmax(z) be probability of NN where z is DNN logits. It is easy to implement,
but it differs from the actual classification probability when the NN is deepened, broadened,
and regularized well (Guo et al., 2017).

• Model Uncertainty (MU). BNN is referred to as MU in this section since it introduces
model uncertainty to NN. MU have to calculate (3) to predict the result. It is difficult
to analytically determine the number of samples that the prediction converges. Instead,
we experimentally set the number of samples to 30 so that the accuracy and the negative
log-likelihood (NLL) converge.

• Data Uncertainty (DU). DU is a model that assigns only data uncertainty to DNN by
adding OCHs to input and output of trained DNN. In other words, this model uses one
weight instead of weight distribution in the DBNN, i.e., (8) with p(x1) = δ(x1 − x1

?).
This model shows the effect of OCH on prediction when it is applied to the NN. Also, it
shows that DNNs modified using OCH can achieve higher uncertainty than vanilla DNNs in
semantic segmentation experiment.

• DBNN. DBNN takes both data uncertainty and model uncertainty. DBNN adds OCH to the
input and output of trained BNN. The approximated posterior distribution of this model
OCHX1 consists of 30 samples from the BNN’s posterior.

5.1 SIMPLE LINEAR REGRESSION

A neural network with a linear activation function is a linear regression model y = x1ax
0 + x1b .

The posterior is given by p(x1a) = N (1.0, 0.022) and p(x1b) = N (0.0, 0.22). The distribution of
time-varying input data streams is given by p(x0|t) = δ(x0 + vt) where t is integer timestamp from
t = −10. v is 0.3 and 0.03.

The top of figs. 2a to 2d are distributions of input samples p(x0, x1a) approximated by OCHs and
bottom are approximated distributions of output samples with data p(x0, y). x1b is omitted from x1

in these figures, but it behaves like x1a. As shown in these figures, The input distributions of DNN,
MU, and DU are degenerated with respect to x0 and/or x1, while that of DBNN is non-degenerated.
DBNN without distribution of x0 is equivalent to MU, and DBNN without distribution of x1 is
equivalent to DU.

The figs. 2e to 2f show expected value and standard deviation of DBNN prediction on time. First,
as shown in top of fig. 2e, the result of DBNN lags behind since DBNN smoothens its prediction
with respect to time.1 Second, unlike MU uses dozens of samples, DBNN uses a small number of

1The delay of the expected value of y over time does not mean that the regression result is biased. DBNN
estimates the correct value on average since x is also delayed just as y is delayed.

7



Under review as a conference paper at ICLR 2020

Table 1: Predictive performance of MU and DBNN for classification on multivariate datasets.

Dataset RMSE RMSE-90 NLL Cov-90

MU DBNN MU DBNN MU DBNN MU DBNN

Localization 0.230 0.229 0.137 0.130 1.89 2.30 3.50 9.90
EMG 0.374 0.375 0.293 0.330 1.21 1.49 1.98 8.83
Occupancy 0.209 0.234 0.109 0.176 0.38 0.41 95.0 91.9

samples, so the error is relatively large. Third, as shown in bottom of fig. 2e, the DBNN prediction
is under-confident because DBNN considers not only MU but also DU. Fourth, as shown in the
comparison of fig. 2e and fig. 2f, DBNN converges to BNN and DU converges to DNN as the input
data stream changes more slowly.

5.2 CLASSIFICATION ON MULTIVARIATE DATASETS

A classification experiment is designed to compare computational and predictive performance changes
when converting BNNs to DBNNs using shallow and narrow NNs in various situations. In this
experiment, we use three time-series real-world datasets with input dimensions between 4 and 8.
Localization and EMG dataset have relatively large number of classes, eleven and eight respectively
while Occupancy dataset has only two classes. The NNs consist of 2 fully-connected hidden layers
with 50 units. The distributions of weights are optimized using variational inference. See appendix A
for more information about experimental settings and datasets.

Computational Performance. Execution times for one batch of MU and DBNN are 26.7±10.6ms
and 19.5±10.0ms, respectively. MU parallelizes execution by using a batch size of 30. This result
shows that DBNN is 37% faster than MU even though MU is parallelized and DBNN uses additional
OCHs. DBNN improves the computational performance of DBNN by sampling the weights from
the posterior before testing. As NN gets deeper and larger, the execution time of the DBNN will be
reduced compared to the MU, because the larger the NN, the greater the burden of sampling weights.2

Predictive Performance. As shown in Table 1, we compared DU and DBNN in terms of the root-
mean-square error (RMSE), RMSE for predictive results with confidence above 90% (RMSE-90),
negative log-likelihood (NLL), and the percentage of predictive results with confidence above 90%
(Cov-90) of the MU and DBNN for three datasets. DBNN provides the predictive performance
comparable with DU for both confident results (RMSE-90) and all results (RMSE). Higher NLL of
DBNN shows that DBNN is relatively inaccurate for uncertain predictions. Since DBNN uses a small
number of samples compared to MU, the errors of expected values and that of variances are larger,
which is consistent with the results of simple linear regression.

5.3 SEMANTIC SEGMENTATION

Semantic segmentation experiment shows the computational and predictive performance of DBNN
with a modern deep NN in practical situation. We use CamVid dataset (Brostow et al., 2009)
consisting of real-world day and dusk road scenes with 480×360 resized 30 frame-per-second (fps)
video sequence. We use the U-Net (Ronneberger et al., 2015) as the backbone architecture. In this
experiment, similar to Kendall et al. (2015), BNN contains six MC dropout (Gal & Ghahramani,
2016) layers behind the layers that receives the smallest input vector sizes. Therefore, the overhead of
sampling weights is negligible and DBNN always uses a new dropout every time it predicts a result.
For more information about experimental settings, see appendix A.

Computational Performance. The throughput column of table 2 shows the number of video
frames processed by each model per second. This table shows that DNN takes 124±17ms on average

2Execution times of MU and DBNN with 10 fully-connected hidden layer NN are 98.9±20.1ms and
49.0±23.6ms, respectively. In this case, DBNN is 2.02× faster than MU. See appendix B for more information
about the relationship between NN depth and execution time.

8



Under review as a conference paper at ICLR 2020

Table 2: Computational and predictive performance with semantic segmentation for each model.

Model Throughput (fps) Acc Acc-90 IoU IoU-90 Cov-90

DNN 8.04 82.9 85.1 45.7 48.6 94.8
MU 0.595 84.2 91.0 49.8 60.0 83.9
DU 7.14 82.9 88.6 44.9 52.0 85.3
DBNN 7.03 83.7 91.0 47.7 56.7 81.1

to process one frame. In comparison, DBNN takes 142±60ms on average to process one frame, which
is only 15% higher than DNN. According to the difference between the execution time of DNN and
DU, the average execution time of one OCH is 8ms, which is only 6% of the total. Besides, due to
GPU memory limitations, the batch size of MU is limited to 3 or less. Thus, the MU predicts results
for 10 batches of size 3. In conclusion, the execution time of MU is 1680±50ms, which is 14× higher
than that of DNN, and 12× higher than that of DBNN.3 Moreover, DBNN can increase throughput at
the expense of accuracy by adjusting a hyperparameter. See appendix C for more information.

Predictive Performance. The Acc to Cov-90 columns of the table 2 show the quantitative com-
parison of the predictive performance for each model. We measured global pixel accuracy (Acc)
and mean intersection over unit (IoU). At the same time, similar to section 5.2, we selected only
those pixels with confidence greater than 90% and measure the accuracy and IoU, called Acc-90 and
IoU-90. We also measured the percentage of pixels with a confidence of 90% or more, called Cov-90.

MU, DU, and DBNN show 1.6%, -0.066%, and 0.97% higher accuracy than DNN, for all pixels,
respectively. For pixels with ninety-percent or higher certainty, DNN, MU, DU, and DBNN predicts
with 2.6%, 8.1%, 6.9%, and 8.7% higher accuracy, respectively, compared to the accuracy for all
pixels. MU and DBNN improves the accuracy more than DNN and DU for confident pixels, which
means that MU and DBNN estimates high uncertainty for misclassified region. IoUs for certain pixels
increase by 6.3%, 20%, 16%, 19%, respectively, compared to the IoUs for all pixels, which shows
the same trend as in accuracy.

As shown in this results, DNN is the most improper way to distinguish uncertain pixels because it has
the least performance improvement compared to other methods for pixels with high confidence. On
the other hand, MU has the highest performance improvement compared to DNN when considering all
pixels, and it also has the highest performance improvement for certain pixels. DBNN has improved
performance compared to DNN for all pixels, and has improved performance for certain pixels, similar
to MU. The predictive performance of DU for all pixels is similar to the predictive performance of
DNN, but for certain pixels, the performance is much better than that of DNN. See appendix D for a
qualitative evaluation of predictive results.

6 CONCLUSION

We present a differentiable BNN (DBNN) inference with respect to input data, which is a novel
approximation of BNN inference, to improve the computational performance of BNN inference for
data streams. The derivative of DBNN predictive inference with respect to input data derives the
increment of prediction when one data is newly given from the data stream. However, the inference
of vanilla BNN cannot be differentiated with respect to data. To address this issue, DBNN introduce
a new term that is the probability of data streams in the BNN inference. Then, it approximate its
prediction with a histogram for high-dimensional vector streams. Consequently, the DBNN inference
executes DNN only once to calculate the prediction changed by a new data from data streams. This
results in an order of magnitude times improvement in computational performance compared to deep
BNN. Experiments with semantic segmentation using real-world datasets show that the computational
performance of DBNN is almost the same as that of DNN, and uncertainty is comparable to that of
BNN.

3If the batch size is 1 because of memory limitations, the execution time of the MU is 4180±130ms, which
means that the MU is 34× and 29× slower than DNN and DBNN, respectively.

9



Under review as a conference paper at ICLR 2020

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Diego Ardila, Atilla P Kiraly, Sujeeth Bharadwaj, Bokyung Choi, Joshua J Reicher, Lily Peng, Daniel
Tse, Mozziyar Etemadi, Wenxing Ye, Greg Corrado, David P Naidich, and Shravya Shetty. End-
to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed
tomography. Nature Medicine, 2019.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty in
Neural Networks. arXiv.org, May 2015.

Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes in video: A
high-definition ground truth database. Pattern Recognition Letters, 30(2):88–97, 2009.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

Luis M Candanedo and Véronique Feldheim. Accurate occupancy detection of an office room from
light, temperature, humidity and co2 measurements using statistical learning models. Energy and
Buildings, 112:28–39, 2016.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In
Advances in Neural Information Processing Systems, pp. 9516–9527, 2018.

Meire Fortunato, Charles Blundell, and Oriol Vinyals. Bayesian recurrent neural networks. arXiv
preprint arXiv:1704.02798, 2017.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation - Representing Model
Uncertainty in Deep Learning. ICML, 2016.

Allen Gersho. On the structure of vector quantizers. IEEE Transactions on Information Theory, 28
(2):157–166, 1982.

Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications of the
ACM, 33(10):75–84, 1990.

R Gray. Vector quantization. IEEE ASSP Magazine, 1(2):4–29, 1984.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 1321–1330. JMLR. org, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In The IEEE International Conference on
Computer Vision (ICCV), December 2015.

José Miguel Hernández-Lobato and Ryan P Adams. Probabilistic Backpropagation for Scalable
Learning of Bayesian Neural Networks. NIPS, stat.ML, 2015.

Matthew D Hoffman and Andrew Gelman. The no-u-turn sampler: adaptively setting path lengths in
hamiltonian monte carlo. Journal of Machine Learning Research, 15(1):1593–1623, 2014.

Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine. Uncertainty-aware
reinforcement learning for collision avoidance. arXiv preprint arXiv:1702.01182, 2017.

Boštjan Kaluža, Violeta Mirchevska, Erik Dovgan, Mitja Luštrek, and Matjaž Gams. An agent-based
approach to care in independent living. In International joint conference on ambient intelligence,
pp. 177–186. Springer, 2010.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in neural information processing systems, pp. 5574–5584, 2017.

10



Under review as a conference paper at ICLR 2020

Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian segnet: Model uncertainty
in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint
arXiv:1511.02680, 2015.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 7482–7491, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Jack PC Kleijnen and Reuven Y Rubinstein. Optimization and sensitivity analysis of computer
simulation models by the score function method. European Journal of Operational Research, 88
(3):413–427, 1996.

Koji Kotani, Chen Qiu, and Tadahiro Ohmi. Face recognition using vector quantization histogram
method. In Proceedings. International Conference on Image Processing, volume 2, pp. II–II. IEEE,
2002.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, pp. 6402–6413, 2017.

Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, and Frank Wood. Auto-encoding sequential
monte carlo. arXiv preprint arXiv:1705.10306, 2017.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. In Advances In Neural Information Processing Systems, pp. 2378–2386, 2016.

Sergey Lobov, Nadia Krilova, Innokentiy Kastalskiy, Victor Kazantsev, and Valeri Makarov. Latent
factors limiting the performance of semg-interfaces. Sensors, 18(4):1122, 2018.

Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih,
Arnaud Doucet, and Yee Teh. Filtering variational objectives. In Advances in Neural Information
Processing Systems, pp. 6573–6583, 2017.

Patrick McClure and Nikolaus Kriegeskorte. Representing inferential uncertainty in deep neural
networks through sampling. 2016.

Christian A Naesseth, Scott W Linderman, Rajesh Ranganath, and David M Blei. Variational
sequential monte carlo. arXiv preprint arXiv:1705.11140, 2017.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 8617–8629, 2018.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian uncertainty estimation for batch
normalized deep networks. arXiv preprint arXiv:1802.06455, 2018.

Dustin Tran, Matthew W Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, and Alexey
Radul. Simple, distributed, and accelerated probabilistic programming. In Advances in Neural
Information Processing Systems, pp. 7598–7609, 2018.

Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In Advances in
Neural Information Processing Systems, pp. 6306–6315, 2017.

11



Under review as a conference paper at ICLR 2020

Table 3: Input dimensionalities (dim (x0)), output dimensionalities (dim (y)), and number of training
sets (N ) of dataset used in the experiments.

Dataset dim (x0) dim (y) N

Localization 4 11 148373
Occupancy 5 2 8143
EMG 8 8 3793345

CamVid 360×480 32 421

Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient pseudo-
independent weight perturbations on mini-batches. arXiv preprint arXiv:1803.04386, 2018.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. In Advances in Neural Information Processing Systems,
pp. 7332–7342, 2018.

A EXPERIMENTAL SETUP AND DATASETS

We conducted all the experiments with the Intel Xeon W-2123 Processor, 32GB memory, and a single
GeForce RTX 2080 Ti. NN models are implemented in TensorFlow (Abadi et al., 2016).4 We trained
NNs with Adam with a constant learning rate of 0.001. The BNN used in section 5.2 consists of
fully-connected layers with Flipout estimator (Wen et al., 2018). DNN and BNN are trained using
categorical cross-entropy loss and ELBO, respectively. When training NNs in section 5.2, we set the
batch size to 3, which gives the most accurate results in our experiences. In section 5.3, batch size is
limited to 3 because of memory limitations. We used the following time-sequential real-world dataset
for classification in section 5.2: Localization Data for Person Activity Dataset (Kaluža et al., 2010),
Occupancy Detection Dataset (Candanedo & Feldheim, 2016), and EMG Data for Gestures Dataset
(Lobov et al., 2018). If there are no distinction between the test set and the training set, NNs use 90%
of the dataset for training and the rest for testing. NNs test the datasets in time-sequential order. See
table 3 for more information about datasets. In section 5.2, to optimize the predictive performances,
we set hyperparameters K, λ, and σ(φ) to 10, 0.01, and 1.0, respectively, in all OCHs of DBNN.
In section 5.3, to optimize the predictive performances, we set hyperparameters K, λ, and σ(φ) to
5, 5.0, and 1.0, respectively, in all OCHs of DBNN. See appendix C for the change in IoU with
hyperparameters.

B COMPUTATIONAL PERFORMANCE FOR NEURAL NETWORK DEPTH

Figure 3 shows a trend that the execution time of MU and DBNN increases as hidden layers get deeper
without changing the input and output dimensions. In this case, as in section 5.2, NN consists of 50
units of fully-connected hidden layers, with input and output dimensions of 4 and 11, respectively.
MU and DBNN use batches of size 30 and 1, respectively, but execution time is the same even if MU
uses batch size of 1. According to this figure, when the number of hidden layers is 0, the execution
time of DBNN is 15.1±6.7ms, which is 4.6ms slower than MU. This is because DBNN uses two
additional OCHs compared to MU. However, unlike MU, DBNN does not sample the weight in the
posterior when it predicts the result. Therefore, the increase of execution time of DBNN per layer is
lower than that of MU. As a result, the execution time of the MU increases by 8.6ms while that of
DBNN increases by 3.5ms when one layer is added. When the number of hidden layers is 10, the
execution time of MU and DBNN is 98.9±20.1ms and 49.0±23.6ms, respectively—DBNN is 2.02×
faster than MU.

4Code available at https://anonymous.4open.science/r/dbnn/

12

https://anonymous.4open.science/r/dbnn/


Under review as a conference paper at ICLR 2020

0 5 10
Hidden layer

0

25

50

75

100

E
xe

cu
tio

n 
tim

e 
(m

s)

MU
DBNN

Figure 3: Prediction execution time of MU and DBNN for the number of hidden layers. The execution
times increase linearly as the layer increases. If the number of hidden layers is 0, DBNN is slower
than MU, but as the number of hidden layers increases, DBNN is faster than MU. The increase rates
of execution times of MU and DBNN are 8.6ms/layer and 3.5ms/layer, respectively.

Confidence  0 % Confidence  70 % Confidence  90 %

10 20
k

45

50

55

Io
U

10 20
45

50

55

Io
U

0.5 1.0
( )

45

50

55

Io
U

10 20
Throughput (fps)

45

50

55

Io
U

Figure 4: IoU for hyperparameters of OCHY , K, λ, and σ(φ) and IoU for throughput (from left). In
the fourth figure, the IoU and throughput of the DNN are represented as horizontal and vertical dotted
lines, respectively. The higher the value of K and λ, the higher the IoU until 5 and 5.0 respectively,
and then the higher the value of K and λ, the lower the IoU. Meanwhile, as σ(φ) increases, IoU
decreases but throughput increases. DBNN can trade off IoU against throughput by changing σ(φ).

C PREDICTIVE PERFORMANCE FOR HYPERPARAMETERS

DBNN takes three hyperparameters, i.e., K, λ, and σ(φ), in the input and output OCHs. The first
to third figures in fig. 4 shows the IoUs for the hyperparameters of the output OCH in semantic
segmentation. In this figure, the higher the value of K and λ, the higher the value of IoU until 5 and
5.0 respectively, and then the higher the value of K and λ, the lower the value of IoU. The higher the
σ(φ), the higher the IoU.

If K and λ are larger, DBNN maintains more codevectors—recent frames in video sequence. In this
case, DBNN obtains more accurate model uncertainty using more codevectors. However, the data
uncertainty is too high to estimate results. As a result, at low K and λ, IoU is low because model
uncertainty is not precise. At high K and λ, IoU is low again because the data uncertainty increases
and the assumption of DBNN is no longer held. IoU is maximized when model uncertainty and data
uncertainty are balanced. On the other hand, if σ(φ) is low, DBNN mostly adjusts the weights of
codevectors and occasionally adds new codevectors. This results in the DBNN becoming inaccurate,
but the calculation is faster. K and λ of input OCH did not affect the predictive performance. The
effect of σ(φ) of the input OCH is the same as that of the output OCH.

Accuracy Throughput Trade-off. If σ(φ) is less than 1.0, DBNN occasionally adds a new code-
vector to the input OCH and executes NN, at the rate of σ(φ) on average. Since NN occupies the
most of the execution time of DBNN, throughput decreases when σ(φ) decreases. The fourth figure
in fig. 4 shows the changes in throughput and IoU as σ(φ) changes. According to this figure, DBNN
can increase throughput up to 12fps when it achieves same IoU as DNN. In this case, DBNN is 50%
faster than DNN. If the confidence is more than 90%, the throughput of DBNN is increased up to
23fps, which is 2.8× higher than that of DNN. Conversely, DBNN can update a batch of two or more

13



Under review as a conference paper at ICLR 2020

(a) Input image (b) Ground truth

(c) DNN (d) MU (e) DU (f) DBNN

Figure 5: Qualitative results on the CamVid dataset for each model. In figs. 5c to 5f, the top is the
predictive results and the bottom is the predictive uncertainty. A darker background corresponds
to higher uncertainty. The areas indicated by the upper left and lower left arrows show different
predictive uncertainty for misclassified region of each model.

sizes instead of one. In this case, throughput of DBNN decreases but IoU increases (not shown in this
figure).

D QUALITATIVE RESULTS OF SEMANTIC SEGMENTATION

Figure 5 shows the qualitative comparison of the predictions for each model. According to this figure,
DNN is overconfident, i.e., uncertainty is generally low, and is mostly distributed at the boundaries
of the classified chunks. Even when DNN generates wrong prediction, arrowed in the result figure,
the confidence level is very high. MU predicts a similar predictive result to ground truth than DNN.
The uncertainty is distributed on the boundaries as in the case of the softmax probability, but is also
distributed in the misclassified areas. The predictive result of DU is similar to the result of DNN.
However, the uncertainty differs from the uncertainty of DNN. First, DU is under-confident compared
to softmax probability of DNN. Second, although DU does not identify all of the misclassifications
compared to MU (upper left area), it sometimes estimates high uncertainty in the misclassified areas
(lower left area). The predictive result and uncertainty of DBNN is similar to the model uncertainty
as we expected.

14


	Introduction
	Background and Related Work
	Bayesian Neural Network Inference
	Bayesian Neural Network Gradient Estimation

	Online Codevector Histogram
	Differentiable Bayesian Neural Network Inference
	Differentiation of Bayesian Neural Network Inference as Difference of Prediction
	Implementation of Differentiable Bayesian Neural Network Inference

	Experiments
	Simple Linear Regression
	Classification on Multivariate Datasets
	Semantic Segmentation

	Conclusion
	Experimental Setup and Datasets
	Computational Performance for Neural Network Depth
	Predictive Performance for Hyperparameters
	Qualitative Results of Semantic Segmentation

