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ABSTRACT

Learning to hallucinate additional examples has recently been shown as a promising
direction to address few-shot learning tasks, which aim to learn novel concepts
from very few examples. The hallucination process, however, is still far from
generating effective samples for learning. In this work, we investigate two important
requirements for the hallucinator — (i) precision: the generated examples should
lead to good classifier performance, and (ii) collaboration: both the hallucinator
and the classification component need to be trained jointly. By integrating these
requirements as novel loss functions into a general meta-learning with hallucination
framework, our model-agnostic PrecisE Collaborative hAlluciNator (PECAN)
facilitates data hallucination to improve the performance of new classification tasks.
Extensive experiments demonstrate state-of-the-art performance on competitive
miniImageNet and ImageNet based few-shot benchmarks in various scenarios.

1 INTRODUCTION

Modern deep learning models rely heavily on large amounts of annotated examples (Deng et al.,
2009). Their data-hungry nature limits their applicability to real-world scenarios, where the cost of
annotating examples is prohibitive, or they involve rare concepts (Zhu et al., 2014; Fink, 2011). In
contrast, humans can grasp a new concept rapidly and make meaningful generalizations, even from a
single example (Schmidt, 2009). To bridge this gap, there has been a recent resurgence of interest in
few-shot learning that aims to learn novel concepts from very few labeled examples (Fei-Fei et al.,
2006; Vinyals et al., 2016; Wang & Hebert, 2016; Snell et al., 2017; Finn et al., 2017).

Existing work tries to solve this problem from the perspective of meta-learning (Thrun, 1998;
Schmidhuber, 1987), which is motivated by the human ability to leverage prior experiences when
tackling a new task. Unlike the standard machine learning paradigm, where a model is trained on a
set of exemplars, meta-learning is performed on a set of tasks, each consisting of its own training and
test sets (Vinyals et al., 2016). By sampling small training and test sets from a large collection of
labeled examples of base classes, meta-learning based few-shot classification approaches learn to
extract task-agnostic knowledge, and apply it to a new few-shot learning task of novel classes.

One notable type of task-agnostic (or meta) knowledge comes from the shared mechanism of data
augmentation or hallucination across categories (Wang et al., 2018; Gao et al., 2018; Schwartz et al.,
2018; Zhang et al., 2018a). Hallucinating additional training data by generating images may seem like
an easy solution for few-shot learning, but it is often challenging. In fact, the success of this paradigm
is usually restricted to certain domains like handwritten characters (Lake et al., 2013), or requires
additional supervision (Dixit et al., 2017; Zhang et al., 2018b) or sophisticated heuristics (Hariharan
& Girshick, 2017). An alternative to generating raw data in the form of visually realistic images is
to hallucinate examples in a learned feature space (Wang et al., 2018; Gao et al., 2018; Schwartz
et al., 2018; Zhang et al., 2018a; Xian et al., 2019). This can be achieved by, for example, integrating
a “hallucinator” module into a meta-learning framework, where it generates hallucinated examples,
guided by real examples (Wang et al., 2018). The learner then uses an augmented training set
which includes both the real and the hallucinated examples to learn classifiers. While the existing
approaches showed that it is possible to adjust the hallucinator to generate examples that are helpful
for classification, the generation process is still far from producing effective samples in the few-shot
regime. Our key insight is that, to facilitate data hallucination to improve the performance of new
classification tasks, two important requirements should be satisfied: (i) precision: the generated
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Figure 1: Illustration of the two important properties of our precise collaborative hallucinator, which facilitate
data hallucination to improve the performance of classification tasks. (a) Precision: a classifier trained on
hallucinated examples should match the performance of a classifier trained on real examples, demonstrated by
the closeness of their decision boundaries. Real examples and their classifier are shown as dark colored shapes
and solid lines, respectively; hallucinated examples and their classifier are shown as light colored shapes and
dashed lines, respectively. (b) Collaboration: all the components need to be trained jointly. In addition to the
classification objective imposed on the learner, a collaborative objective is introduced on the hallucinator as
direct and early supervision. We integrate these properties into the meta-learning with hallucination framework
for few-shot learning.

examples should lead to good classifier performance, and (ii) collaboration: all the components
including the hallucinator and the learner need to be trained jointly.

In this work, we propose PrecisE Collaborative hAlluciNator (PECAN), which integrates these
requirements into a general meta-learning with hallucination framework, as shown in Figure 1.
Assume that we have a hallucinator to generate additional examples from the original small training
set. A precise hallucinator indicates that a classifier trained on both the hallucinated and the few
real examples should produce superior validation accuracy. This can be achieved by training the
hallucinator end-to-end with the learner, and back-propagating a classification loss based on ground-
truth labels of validation data (Wang et al., 2018). Since this precision is measured using ground-truth
labels, we term it as hard precision. And more importantly, if the hallucinator perfectly captures the
target distribution, a classifier trained on a set of hallucinated examples, despite being generated
from a small set of real examples, should produce roughly the same validation accuracy as a classifier
trained on a large set of real examples, when these two sets are of the same sample size (Shmelkov
et al., 2018). This indicates similar level of realism and diversity between the generated and the
real examples, as shown in Figure 1a. Motivated by this observation, we introduce an additional
precision-inducing loss function, which explicitly encourages the hallucinator to generate examples
so that a classifier trained on them makes predictions similar to the one trained on a large amount of
real examples. Given that this precision is measured based on classifier predictions, we term it as soft
precision. This precision, which is complementary to hard precision and effective, as shown in our
experiment, is lacking in current approaches (Wang et al., 2018).

Satisfying the precision requirement alone is not sufficient, since the classification objective is still
directly associated with the learner, and thus the hallucinator continues to rely on the back-propagated
signal to update its parameters. This leads to a potential undesirable effect of imbalanced training
between the hallucinator and the learner: the learner tends to be stronger and makes allowances for
errors in the hallucination, whereas the hallucinator becomes “lazy” and does not make its best effort
to capture the data distributions, which is empirically observed in our experiments (See Figure 3).
To address this issue, our key insight is to enforce direct and early supervision for the hallucinator,
and make its contribution to the overall classification transparent, as shown in Figure 1b. Hence,
we introduce a collaborative objective for the hallucinator, which allows us to directly influence the
generation process to favor highly discriminative examples right after hallucination, and to strengthen
the cooperation between the hallucinator and the learner.

Our contributions are three-fold. (1) We propose a novel loss that helps produce precise hallucinated
examples, by using the classifier trained on real examples as a guidance, and encouraging the classifier
trained on hallucinated examples to mimic its behavior. (2) We introduce a collaborative objective for
the hallucinator as early supervision, which directly facilitates the generation process and improves
the cooperation between the hallucinator and the learner. (3) By integrating these properties, we
develop a general meta-learning with hallucination framework, which is model-agnostic and can be
combined with any meta-learning models to consistently boost their few-shot learning performance.
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2 RELATED WORK

As one of the unsolved problems in machine learning and computer vision, few-shot learning is
attracting growing interest in the deep learning era (Miller et al., 2000; Fei-Fei et al., 2006; Lake
et al., 2015; Santoro et al., 2016; Wang & Hebert, 2016; Vinyals et al., 2016; Snell et al., 2017; Finn
et al., 2017; Hariharan & Girshick, 2017; George et al., 2017; Triantafillou et al., 2017; Edwards &
Storkey, 2017; Mishra et al., 2018; Douze et al., 2018; Wang et al., 2018; Chen et al., 2019a; Dvornik
et al., 2019). Successful generalization from few training samples requires appropriate “inductive
biases” or shared knowledge from related tasks (Baxter, 1997), which is commonly acquired through
transfer learning and more recently meta-learning (Thrun, 1998; Schmidhuber, 1987; Schmidhuber
et al., 1997; Bengio et al., 1992). By explicitly “learning-to-learn” over a series of few-shot learning
tasks (i.e., episodes), which are simulated from base classes, meta-learning exploits accumulated
task-agnostic knowledge to target few-shot learning problems of novel classes. Within this paradigm
of approaches, various types of meta-knowledge has been recently explored, including (1) a generic
feature embedding or metric space, in which images are easy to classify using a distance-based
classifier such as cosine similarity or nearest neighbor (Koch et al., 2015; Vinyals et al., 2016; Snell
et al., 2017; Sung et al., 2018; Ren et al., 2018; Oreshkin et al., 2018); (2) a common initialization of
network parameters (Finn et al., 2017; Nichol & Schulman, 2018; Finn et al., 2018) or learned update
rules (Andrychowicz et al., 2016; Ravi & Larochelle, 2017; Munkhdalai & Yu, 2017; Li et al., 2017;
Rusu et al., 2019); (3) a transferable strategy to estimate model parameters based on few novel class
examples (Bertinetto et al., 2016; Qiao et al., 2018; Qi et al., 2018; Gidaris & Komodakis, 2018), or
from an initial small dataset model (Wang & Hebert, 2016; Wang et al., 2017).

Complementary to these discriminative approaches, our work focuses on synthesizing samples to
deal with data scarcity. There has been progress in this direction of data hallucination, either in
pixel or feature spaces (Salakhutdinov et al., 2012; George et al., 2017; Lake et al., 2013; 2015;
Wong & Yuille, 2015; Rezende et al., 2014; Goodfellow et al., 2014; Radford et al., 2016; Dixit
et al., 2017; Hariharan & Girshick, 2017; Wang et al., 2018; Gao et al., 2018; Schwartz et al., 2018;
Zhang et al., 2018a). However, it is still challenging for modern generative models to capture the
entirety of data distribution (Salimans et al., 2016) and produce useful examples that maximally
boost the recognition performance (Wang et al., 2018), especially in the small sample-size regime.
In the context of generative adversarial networks (GANs), Shmelkov et al. (2018) show that images
synthesized by state-of-the-art approaches, despite their impressive visual quality, are insufficient to
tackle recognition tasks, and encourage the use of quantitative measures based on classification results
to evaluate GAN models. Rather than using classification results as a performance measure, we go a
step further in this paper by leveraging classification objectives to guide the generation process.

Other related work such as Wang et al. (2018) proposed a general data hallucination framework based
on meta-learning, which is a special case of our approach. A GAN-like hallucinator takes a seed
example and a random noise vector as input to generate a new sample. This hallucinator is trained
jointly with the classifier in an end-to-end manner. Delta-encoder (Schwartz et al., 2018) is a variant
of Wang et al. (2018), where instead of using noise vectors, it modifies an auto-encoder to extract
transferable intra-class deformations, i.e., “deltas”, and applies them to novel samples to generate new
instances. Unlike the above approaches that directly use the produced samples to train the classifier,
MetaGAN (Zhang et al., 2018a) trains the classifier in an adversarial manner to augment the classifier
with the ability to discriminate between real and synthesized data. Another variant (Gao et al., 2018)
explicitly preserves covariance information to enable better augmentation. Our work investigates
critical yet unexplored properties in this paradigm that the data hallucinator should satisfy. These
properties are general and can be flexibly incorporated into existing meta-learning approaches and
hallucination methods, providing significant gains irrespective of these choices.

3 META-LEARNING WITH HALLUCINATION

We begin by presenting the general meta-learning mechanism (Vinyals et al., 2016; Snell et al.,
2017; Finn et al., 2017) and our meta-learning with hallucination framework for the task of
few-shot image classification. Let I be the space of images. We are given two disjoint sets of
classes: a base class set Cbase and an unseen novel class set Cnovel. The corresponding base dataset
Dbase = {(Ii, yi) , Ii ∈ I, yi ∈ Cbase} contains a large number of labeled examples per class, while
the novel dataset Dnovel = {(Ii, yi) , Ii ∈ I, yi ∈ Cnovel} consists of only a small number n of la-
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Figure 2: Meta-learning with our precise collaborative hallucinator. In each episode, given an initial (sampled)
training set S∗

train, we sample its subset Strain. With real seed examples sampled from Strain and noise vector
z, we obtain a set of hallucinated examples SG

train through the generator G. Strain and SG
train are combined

to create an augmented training set Saug
train. Conditioning on Saug

train (SG
train, or S∗

train), a learner classification
network hcls (hG, or hreal) learns a new embedding space and outputs class probabilities p (pG, or preal) for
a set of real test examples Stest. The classification objective Llearner is a combination of the hard precision
`clslearner (classification loss calculated based on p and ground-truth labels y) and the soft precision-inducing loss
`prelearner (calculated based on p̂real and p̂G). The collaborative objective Lhal shares the same formulation of
Llearner (i.e., a combination of `clshal and `prehal), but is directly enforced before the embedding layers as early
supervision for the hallucinator. The hallucinator and the learner are trained end-to-end based on the combination
of Llearner and Lhal. Dotted red arrows indicate the flow of gradients during back-propagation.

beled examples per class. The goal is to learn a classifier hcls
θh

parametrized by θh on Dbase that can
cross-generalize (Bart & Ullman, 2005) to Cnovel even when n is as few as one.

Meta-learning aims to achieve such generalization through episodic meta-training that explicitly
mimics the few-shot learning scenario on Dbase (Vinyals et al., 2016). Specifically, in each episode
of the meta-training stage, the meta-learner simulates a few-shot classification task out of Dbase. This
task is constructed by first randomly sampling a subset of m classes from Cbase, and then randomly
sampling a small “training” set Strain (also called the support set) and a small “test” set Stest (also
called the query set). The learner, i.e., the classifier hcls

θh
, outputs estimated conditional probabilities p

for each example (x, y) in Stest based on Strain. That is, p(x) = hcls
θh

(x, Strain). The meta-learner
back-propagates the gradient of the total classification loss `cls =

∑
(x,y)∈Stest

loss(hcls
θh

(x, Strain), y)

in Stest to update the learner parameters θh. During the meta-testing stage, the resulting hcls
θh

is used
to address the few-shot classification task on Dnovel, which predicts class probabilities of unlabeled
test examples conditioned on the given small labeled training set Strain of Cnovel.

Our meta-learning with hallucination framework introduces an additional “hallucinator” module
GθG with parameters θG to augment the small training set Strain. To facilitate training, we follow
recent work (Hariharan & Girshick, 2017; Wang et al., 2018) and first pre-train a deep convolutional
network on Dbase using a standard cross-entropy loss. We use it to extract the feature representation
x ∈ X for an input image I. Meta-learning is then performed over the pre-trained features {xi}.
As shown in the shaded region in Figure 2, given an initial Strain, the hallucinator GθG generates
additional examples for each class. Our framework applies to various types of hallucinators, and here
we consider a powerful GAN-like hallucinator in Wang et al. (2018). Each hallucinated example is
of the form (GθG(x, z), y), where (x, y) is a sampled seed example from Strain, and z is a sampled
noise vector. The set of generated examples SGtrain is added to Strain to create an augmented training
set Saug

train. In the next section, we show how to meta-train GθG on Cbase, so that it can hallucinate
new examples to augment Strain of Cnovel during meta-testing.

4 PRECISE COLLABORATIVE HALLUCINATOR

We now present our PrecisE Collaborative hAlluciNator (PECAN) shown in Figure 2, which exploits
two important criteria for useful hallucination: precision and collaboration. As important constraints
and guidance, these criteria facilitate hallucination to improve the classification performance.

Basic hallucinator with hard precision. At first, a precise hallucinator indicates that a classifier
trained on Saug

train should produce superior validation accuracy. We achieve this by training the
hallucinator end-to-end with the learner (Wang et al., 2018). As shown in the shaded region in Figure 2,
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during each episode of meta-training, the learner module hcls
θh

uses Saug
train to produce conditional

probabilities hcls
θh

(x, Saug
train) for each example (x, y) in the test set Stest. The meta-learner then back-

propagates the gradient of the total classification loss `cls =
∑

(x,y)∈Stest
loss(hcls

θh
(x, Saug

train), y) to
update both the learner parameters θh and the hallucinator parameters θG.

Soft precision-inducing hallucinator. One of the important characteristics of an optimal generative
model is that the generated examples should be indistinguishable from real ones (Goodfellow et al.,
2014). We argue that, in terms of our recognition task oriented hallucinator, this means that the
classifier trained on hallucinated examples needs to be similar to the classifier trained on real examples.
As shown in Figure 2, given an initial relatively large training set S∗train, which contains n∗ examples
for each of the m classes, we randomly sample n (n� n∗) examples per class, and obtain a subset
Strain. From Strain, the hallucinator GθG generates n∗ examples per class as SGtrain. This produces
two training sets: S∗train with real examples and SGtrain with hallucinated examples, where both
contain the same number of examples. Importantly, note that SGtrain is hallucinated from the subset
Strain instead of the initial large set S∗train, and because n � n∗, we rule out the trivial identity
hallucinator or memorization. We train two additional classification networks: hreal based on S∗train

and hG based on SGtrain, both of which have the same architecture as hcls. When evaluated on the
same test set Stest composed of real examples, a comparable performance between hreal and hG
shows that the hallucinated samples are sufficiently precise, and as diverse as the real training set.
Otherwise, when the hallucinator is imperfect, the accuracy of hG will be lower than that of hreal.

This similarity of classification accuracy essentially measures the difference between the learned (i.e.,
hallucinated) and the target (i.e., real) distributions, which could serve as an additional supervisory
signal for training a better hallucinator. Since quantifying the similarity of accuracy directly would be
difficult (Hinton et al., 2015), we instead introduce a loss function that acts on the network predictions.
For an example (x, y) in Stest, the two networks produce conditional probabilities

preal(x) = hreal
θh

(x, S∗train) and pG(x) = hGθh(x, SGtrain), (1)

respectively. While only the largest entry in preal(x) or pG(x) is used to make predictions associated
with the ground-truth label y, other entries still carry rich information about the recognition task
and the network, as observed in (Hinton et al., 2015; Dvornik et al., 2019). We thus leverage the
probabilities p̂real and p̂G in the absence of the ground-truth label and measure their similarity using
the negative cosine distance:

ψ(p̂real, p̂G) = − cos(p̂real, p̂G), (2)

where p̂real and p̂G are obtained by removing the logit for y in preal and pG, and re-normalizing the
remaining logits using softmax with a learnable temperature. We treat the classification networks
hcls, hreal, and hG as the new learner h and use shared parameters for them. Their difference thus
lies in different conditional training sets. We obtain the soft precision-inducing loss `pre by summing
the loss (2) in Stest and then combine it with the hard precision (i.e., the classification) loss as the
classification objective. pG is now encouraged to not only make the right prediction according to the
ground-truth label, but also make similar second-best, third-best, etc., choice predictions as preal.

Collaboration between hallucinator and learner. We now consider the interaction between the
hallucinator G and the learner h. While hallucination is conducted in the pre-trained feature space X ,
the final classification is performed in a new embedding space Φ learned by the learner. Since the
classification objective is directly imposed on the learner h, the hallucinator G continues to rely on
the back-propagated signal to update its parameters. We may end up with a good embedding space Φ
but a poor hallucinator G in the original space X . This undesired effect implies a potential imbalance
between the hallucinator and the learner — a stronger learner that is able to make allowances for
errors in hallucination, but a “lazy” hallucinator that does not make its best effort to capture the data
distributions. Indeed, as is empirically validated in the experimental section (see Figure 3), despite
being able to match the class distributions in the embedding space Φ, the hallucinated examples are
initially pulled away from the class distributions in the feature space X .

To mitigate this issue, we introduce a simple collaborative objective to the hallucinator, which
provides an additional constraint or regularization on the hallucination process. This collaborative
objective is the same as the above classification objective (i.e., a combination of the classification loss
and the precision-inducing loss), but enforces direct and early supervision for the hallucinator in the
pre-trained feature space X . By doing so, we directly influence the update process of the hallucinator
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parameters, and generate much more discriminative examples right after hallucination than would
be the case if we had to rely on gradual back-propagation from the learner alone. Our objective
thus strengthens the cooperation between the hallucinator and the learner for the final classification
performance, which can be viewed as a source of deep supervision that introduces auxiliary losses to
intermediate layers when training deep neural networks (Simonyan & Zisserman, 2015; Lee et al.,
2015). The overall objective combines the classification objective Llearner (on the learner) and the
collaborative objective Lhal (on the hallucinator), each of which consists of a classification loss `cls

(hard precision as cross-entropy with respect to ground-truth) and a soft precision-inducing loss `pre:

L(θG, θh) = Llearner + λLhal = `cls
learner + λ1`

pre
learner + λ2`

cls
hal + λ3`

pre
hal , (3)

where λ, λ1, λ2, and λ3 are scalar hyper-parameters.

Our hallucinator is general and applies to different types of h (i.e., meta-learning algorithms).
Here we focus on the widely used and powerful prototypical networks (PN) (Snell et al., 2017),
prototype matching networks (PMN) (Vinyals et al., 2016; Wang et al., 2018), and cosine classifiers
(Cos) (Gidaris & Komodakis, 2018; Chen et al., 2019a). Without loss of generality, we take PN as
an example to explain the overall meta-training and meta-testing process. PN learns an embedding
space Φ and uses a non-parametric nearest centroid classifier to assign class probabilities for a test
example based on its distances from class means in Φ. As before, in each meta-training episode,
after sampling S∗train, Strain, and Stest and hallucinating SGtrain in the pre-trained feature space X ,
we perform nearest centroid classification and produce the collaborative objective Lhal on Stest.
We then feed the examples to the PN learner, obtain their embedded features in Φ, perform nearest
centroid classification, and produce the classification objective Llearner on Stest. The final loss
is back-propagated to update both the PN learner parameters θh and the hallucinator parameters
θG. Figure 2 shows a schematic of the entire process. During meta-testing, we use the resulting
GθG to hallucinate new examples to augment Strain of Cnovel, and we combine the predicted class
probabilities in X and Φ as the final predictions.

5 EXPERIMENTAL EVALUATION

We explore the use of our meta-learning with hallucination framework for few-shot visual classi-
fication tasks. We focus the evaluation on the ImageNet based few-shot benchmark (Hariharan &
Girshick, 2017; Wang et al., 2018). This is one of the largest datasets by far used for few-shot classi-
fication and it captures more realistic scenarios than others based on handwritten characters (Lake
et al., 2015) or low-resolution images (Vinyals et al., 2016). The benchmark divides the 1,000 Ima-
geNet categories (Russakovsky et al., 2015) into 389 base classes Cbase, with thousands of training
images per class, and 611 novel classes Cnovel, with a small number n of training images per class.
Following Hariharan & Girshick (2017), we use Cbase to train a convolutional network (ConvNet)
based feature extractor and to conduct meta-training. Meta-testing is performed on Cnovel, and the per-
formance is evaluated on a held-out test set, i.e., the original validation set of ImageNet. In addition,
to avoid over-fitting, both Cbase and Cnovel are further split into two disjoint subsets. 193 of the base
classes Ccv

base and 300 of the novel classes Ccv
novel are used for cross-validating hyper-parameters, and

the remaining 196 base classes Cfin
base and 311 novel classes Cfin

novel are used for the final evaluation.
Here we focus on hallucinating novel instances and thus evaluate the performance primarily on the
novel classes Cfin

novel, which is also consistent with most of the contemporary work (Vinyals et al.,
2016; Snell et al., 2017; Finn et al., 2017). We report the mean top-1 and top-5 accuracies for 311-way,
n = 1, 2, 5, 10, 20-shot classification, with each of them averaged over 5 trials.

In addition to this challenging version of ImageNet, we also evaluate on the widely used
miniImageNet (Vinyals et al., 2016) dataset to show the generality of our approach. miniImageNet is
a subset of 100 classes selected randomly from ImageNet with 600 images sampled from each class.
Following the data split in Ravi & Larochelle (2017), we use 64 base, 16 validation, and 20 novel
classes. We evaluate in the standard 5-way, 1-shot and 5-way, 5-shot settings (Vinyals et al., 2016).

5.1 RESULTS ON IMAGENET

Implementation details. We mainly use a ResNet-10 architecture (He et al., 2016) as the feature
extractor, following Hariharan & Girshick (2017); Wang et al. (2018). Additionally, we provide
results using a deeper ResNet-50 architecture in Section A.3. We extract and record the features,
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Top-1 accuracy Top-5 accuracy
Method (311-way classification) n=1 2 5 10 20 n=1 2 5 10 20

Meta-learning method I

PMN w/ G + PECAN (Ours) 21.3 29.0 39.1 45.3 49.6 47.0 59.1 70.5 75.5 78.7
PMN w/ G (Wang et al., 2018) 21.0 28.4 38.2 43.9 47.9 45.8 57.8 69.0 74.3 77.4
PMN w/ aug 20.3 27.7 37.9 43.7 47.5 44.1 56.4 68.8 74.1 77.2
PMN (Wang et al., 2018) 19.6 27.2 37.5 43.5 47.3 43.3 55.7 68.4 74.0 77.0

Meta-learning method II

PN w/ G + PECAN (Ours) 20.8 27.7 37.5 43.9 48.4 46.5 57.5 69.3 74.9 78.1
PN w/ G (Wang et al., 2018) 19.9 26.4 35.7 41.9 45.9 45.0 55.9 67.3 73.0 76.5
PN w/ aug 18.7 25.9 34.9 39.6 42.3 40.2 55.0 66.7 71.6 74.3
PN (Snell et al., 2017) 17.7 25.3 34.4 39.3 42.1 39.3 54.4 66.3 71.2 73.9

Meta-learning method III

Cos-Cls w/ G + PECAN (Ours) 18.8 25.4 33.7 38.1 39.2 43.1 53.6 64.8 69.9 71.4
Cos-Cls w/ G (Ours) 18.4 25.1 33.5 37.5 38.6 42.1 52.8 64.0 69.0 70.7
Cos-Cls (Gidaris & Komodakis, 2018; Chen et al., 2019a) 17.7 21.4 25.7 28.4 30.0 41.6 49.2 56.3 60.4 62.7

Other Meta-learning Cos & Att. (Gidaris & Komodakis, 2018) - - - - - 46.0 57.5 69.2 74.8 78.1
Baselines MN (Vinyals et al., 2016) 19.8 25.8 34.8 41.1 46.5 43.6 54.0 66.0 72.5 76.9

MAML (Finn et al., 2017; Gao et al., 2018) - - - - - 39.2 - 64.2 - 76.8

LogReg (Wang et al., 2018) 16.8 24.9 35.6 42.2 48.0 38.4 51.1 64.8 71.6 76.6
Non-meta-learning LogReg w/ Analogies (Hariharan & Girshick, 2017) 17.1 23.5 32.5 39.2 48.0 40.7 50.8 62.0 69.3 76.5
baselines Gaussian hallucinator (Wang et al., 2018) 16.7 24.2 33.4 38.2 44.0 39.1 51.4 63.3 69.5 74.2

SN (Koch et al., 2015) - - - - - 38.9 - 64.6 - 76.4

Table 1: Top-1 and top-5 accuracies (%) on the novel classes for the ImageNet based n-shot classification
benchmark. We use ResNet-10 as the feature extractor. PN: prototypical networks, PMN: prototype matching
networks, Cos-Cls: cosine classifiers. Methods with ‘w/ G’ use a meta-learned hallucinator. Standard deviations
for all numbers are of the order of 0.2%. Our PECAN achieves the best performance. Importantly, PECAN is
model-agnostic and can be combined with different meta-learning models to improve their performance.

Top-1 accuracy Top-5 accuracy
Method `cls

learner `pre
learner `cls

hal `pre
hal n=1 2 5 10 20 n=1 2 5 10 20

PN w/ G + PECAN X 19.9 26.4 35.7 41.9 45.9 45.0 55.9 67.3 73.0 76.5
X 6.5 10.6 19.5 27.9 35.1 30.5 41.0 55.3 63.8 68.7

X X 20.1 26.8 36.7 42.6 47.0 45.3 56.0 67.5 73.3 76.8
X X 20.1 26.6 36.0 42.8 47.6 45.8 56.2 67.6 74.0 77.6

X X 6.8 10.8 19.7 27.9 35.2 31.5 41.4 55.4 63.8 68.7
X X X X 20.8 27.7 37.5 43.9 48.4 46.5 57.5 69.3 74.9 78.1

Table 2: Ablation on precision and collaboration requirements. ‘`cls’: hard precision based on classification
loss, ‘`pre’: soft precision-inducing loss, ‘`hal’: collaborative objective imposed on the hallucinator. Different
components are complementary to each other.

and perform meta-learning by using these pre-computed features. We consider three widely-used,
powerful meta-learning approaches: prototypical networks (PN) (Snell et al., 2017), prototype
matching networks (PMN) (Vinyals et al., 2016; Wang et al., 2018), and cosine classifiers (Cos-Cls)
used in Gidaris & Komodakis (2018); Chen et al. (2019a). More implementation details are included
in Section A.1.

Baselines. First we compare with the state-of-the-art meta-learning with hallucination method (Wang
et al., 2018), which is a special case of our approach learned with only the hard precision loss.
While Wang et al. (2018) focused on ‘PN w/ G’ and ‘PMN w/ G’, here we consider an additional
type of classier with hallucination, ‘Cos-Cls w/ G’, to show the generality of our work. In addition,
we compare with a variety of baselines, including (1) these meta-learning approaches with standard
data augmentation techniques (Chen et al., 2019a); (2) data hallucination approaches which are not
meta-learned: logistic regression with analogies hallucination (Hariharan & Girshick, 2017) and
Gaussian hallucinator (Wang et al., 2018); (3) other recent meta-learning approaches: matching
networks (MN) (Vinyals et al., 2016), model-agnostic meta-learning (MAML) (Finn et al., 2017),
and ‘cosine classifier & attentive weight generators (Cos & Att)’ (Gidaris & Komodakis, 2018); (4)
classical few-shot learning approaches: Siamese networks (SN) (Koch et al., 2015); and (5) simple
baselines which are not meta-learned: logistic regression (Hariharan & Girshick, 2017). For fair
comparison, all these baselines and our approach use the same pre-trained ConvNet backbone.

Comparisons with the state of the art. Table 1 shows that our PECAN consistently outperforms all
the baselines by large margins across different scenarios. For this challenging 311-way classification,
our improvements are of the order of 1% to 2%, while standard deviations for accuracy are of the
order of 0.2%. For example, in the case of top-5 accuracy, our ‘PN w/ G + PECAN’ outperforms ‘PN
w/ G’ by 1.5 points for n = 1 and 1.6 points for n = 20. Similar trends can be observed for ‘PMN w/
G + PECAN’ and ‘Cos-Cls w/ G + PECAN’, and also in the top-1 accuracy regime. This indicates
that our approach is general and can work with different meta-learners.

Ablation studies. We conduct a series of ablations to evaluate the contribution of each component
and different design choices. We use the prototypical network (PN) here due to its fast training speed.
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(a) In pre-trained space X w/o CO (b) In embedding space Φ w/o CO (c) In pre-trained space X w/ CO
Figure 3: t-SNE visualizations of hallucinated examples for investigating the impact of collaborative objective
(CO) without precision. Seeds are shown as stars, real examples as crosses, hallucinations as triangles. PECAN
without CO: (a) in the pre-trained ResNet-10 feature space X , (b) in the new embedding space Φ learned by PN;
PECAN with CO: (c) in the pre-trained ResNet-10 feature space X . Best viewed in color with zoom.

Top-5 accuracy
Similarity measure n=1 2 5 10 20

− cos(preal, pG) 44.9 55.8 66.8 72.5 76.0

CE(p̂real, p̂G) 44.0 53.9 65.0 70.7 74.1

JS(preal, pG) 44.9 55.6 66.9 72.8 76.2
JS(p̂real, p̂G) 45.0 56.0 67.4 73.3 76.6
sKL(preal, pG) 44.9 55.6 67.0 72.7 76.2
sKL(p̂real, p̂G) 45.0 55.9 67.1 72.8 76.2

− cos(p̂real, p̂G) 45.8 56.2 67.6 74.0 77.6
Table 3: Ablation on choice of similarity measure in
the soft precision-inducing loss. preal and pG: class
probabilities of hreal and hG, respectively. p̂real and
p̂G: class probabilities in the absence of the ground-
truth labels. ‘CE’: cross-entropy loss as in knowledge
distillation (Hinton et al., 2015), ‘JS’: Jensen-Shannon
divergenc, ‘sKL’: symmetric KL-divergence. Our sim-
ilarity measure achieves the best performance.

Accuracy (%)
Method n=1 5

Matching Networks (Vinyals et al., 2016) 43.56± 0.84 55.31±0.73
MAML (Finn et al., 2017) 48.70± 1.84 63.11±0.92
Prototypical Networks (Snell et al., 2017) 49.42± 0.78 68.20±0.66
Reptile (Nichol & Schulman, 2018) 49.97±0.32 65.99±0.58
Meta-SGD (Li et al., 2017) 50.47± 1.87 64.03±0.94
MetaGAN (Zhang et al., 2018a) 52.71±0.64 68.63±0.67
Baseline++ (Chen et al., 2019a) 53.97±0.79 76.16±0.63
Cos & Att. (Gidaris & Komodakis, 2018) 55.45± 0.89 70.13 ±0.68
SNAIL (Mishra et al., 2018) 55.71± 0.99 68.88±0.92
Relation Networks (Sung et al., 2018) 57.02± 0.92 71.07±0.69
TADAM (Oreshkin et al., 2018) 58.50±0.30 76.70±0.30
Delta-Encoder (Schwartz et al., 2018) 58.7 73.6
IDeMe-Net (Chen et al., 2019b) 59.14± 0.86 74.63±0.74
LEO (Rusu et al., 2019) 61.76±0.08 77.59±0.12
MetaOptNet-SVM (Lee et al., 2019) 62.64±0.61 78.63±0.46

PMN w/ G + PECAN (Ours) 63.93±0.40 80.58±0.29
Table 4: Test accuracies (%) on the novel classes for
the miniImageNet dataset. ‘±’ indicates 95% confi-
dence intervals over tasks. Our PECAN significantly
outperforms the state-of-the-art approaches.

Variants of PECAN. PECAN leverages two requirements for the meta-learned hallucinator: precision
and collaboration. ‘`cls

learner’ is the basic hallucinator with only the hard precision based on the
classification loss. Table 2 shows that each requirement by itself yields performance superior to the
basic hallucinator. The soft precision-inducing loss `pre consistently helps when combined with the
hard precision `cls: ‘`cls

learner + `pre
learner’ outperforms ‘`cls

learner’ and ‘`cls
hal + `pre

hal’ outperforms ‘`cls
hal’.

The collaboration objective integrates `learner and `hal to boost the performance: ‘`cls
learner + `cls

hal’
outperforms ‘`cls

learner’. Each component is thus essential and complementary to each other, enabling
our full PECAN to outperform its variants.

Choice of similarity measure in soft precision-inducing loss. Our precision-inducing loss measures
the similarity between classifier predictions preal and pG. We used negative cosine distance between
the probabilities p̂real and p̂G in the absence of ground-truth labels. Table 3 compares with other types
of similarity: variant of negative cosine distance, cross-entropy as in knowledge distillation (Hinton
et al., 2015), Jensen-Shannon divergence, and symmetric KL-divergence (Dvornik et al., 2019). Our
similarity achieves the best performance, and removing the true-class probability consistently helps.

Impact of collaborative objective. Our collaborative objective introduces additional direct and early
supervision to train the hallucinator. Table 2 shows quantitatively its contribution to the overall
accuracy. Here, we further qualitatively understand its impact though t-SNE visualizations (van der
Maaten & Hinton, 2008) of the hallucinated examples for novel classes. For ease of analysis, we do
not use the precision-inducing loss. Without the collaborative objective, despite being able to match
the class distributions in the embedding space Φ (Figure 3b), the hallucinated examples are initially
pulled away from the class distributions in the pre-trained feature space X (Figure 3a), indicating a
“lazy” hallucinator. In contrast, the collaborative objective enforces the hallucinator to generate more
discriminative examples right after hallucination (Figure 3c), leading to improved performance.

Qualitative visualizations. To better understand the hallucination process, Figure 4 shows some
examples of classification results for our PECAN and the state-of-the-art baseline (Wang et al., 2018).
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Figure 4: Visual comparisons of top-1 classification results on two representative novel classes between our
PECAN and the state-of-the-art meta-learned hallucinator (Wang et al., 2018). Top row: bullmastiff; bottom
row: American chameleon. Left 3 columns: test images that are correctly classified by both approaches; middle
3 columns: target test images that are misclassified by Wang et al. (2018) as other classes (the names of the
predicted classes by Wang et al. (2018) are overlaid on the images), but correctly classified by PECAN; right
3 columns: test images from other classes that are misclassified by Wang et al. (2018) as the target class, but
correctly classified by PECAN. Our approach is able to model a large range of visual variations and diversity,
e.g., bullmastiffs in different poses, and chameleons in different viewpoints and background, whereas Wang et al.
(2018) is confused by visually similar classes.

5.2 RESULTS ON miniIMAGENET

To show the generality of our approach, we further evaluate on miniImageNet. We use a ResNet-10 ar-
chitecture and focus on incorporating our hallucinator into prototype matching networks (PMN). From
Table 4, our PECAN significantly outperforms all these state-of-the-art competitors, including other
hallucination based approaches such as MetaGAN (Zhang et al., 2018a), delta-encoder (Schwartz
et al., 2018), and IDeMe-Net (Chen et al., 2019b). Our superior performance over MetaGAN, a
GAN-based approach to hallucinate data, shows that directly matching the classification performance
is more desirable than matching the data distribution between hallucinated and real examples for
recognition tasks. Our generic framework can be combined with more recent meta-learning methods,
such as LEO (Rusu et al., 2019) and MetaOptNet-SVM (Lee et al., 2019), for further improvement.

6 CONCLUSION

We have presented an approach to few-shot learning that uses a precise collaborative hallucinator to
generate additional examples. Our hallucinator integrates two important requirements that facilitate
data hallucination in a way that most improves the classification performance, and is trained end-to-
end through meta-learning. The extensive experiments demonstrate our state-of-the-art performance
on the challenging ImageNet and miniImageNet based few-shot benchmark in various scenarios.
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A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

The embedding architecture of PN is composed of two-layer MLPs with leaky ReLU nonlinearity of
slope 0.01, and a Euclidean distance similar to Snell et al. (2017). The embedding architecture of
PMN is composed of a one-layer bi-directional LSTM and attention LSTM, and a cosine distance as
in (Vinyals et al., 2016; Wang et al., 2018). The embedding architecture of Cos-Cls is composed of
two-layer MLPs with leaky ReLU nonlinearity of slope 0.01 and an additional one-layer MLP without
nonlinearity, and a cosine distance with a learnable temperature similar to Gidaris & Komodakis
(2018). The initial value of the temperature is 100. The classification weight vector is estimated
by averaging the feature vectors of the training examples for each class. The hallucinator G is a
three-layer MLP with leaky ReLU nonlinearity of slope 0.01, with its parameters initialized to block
diagonal identity matrices (Wang et al., 2018). The dimensionality of the hidden layers is 512 for
ResNet-10 features and 2,048 for ResNet-50 features.
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Figure A.1: Top-5 accuracy (%) on the novel classes for the
ImageNet based n-shot classification benchmark. We use
ResNet-50 as the feature extractor. PN: prototypical networks.
Methods with ‘w/ G’ use a meta-learned hallucinator. With
a deeper network, all accuracies are higher, and our PECAN
significantly outperforms the baselines.

Top-5 accuracy
Precision inducing n=1 2 5 10 20

||mreal −mG)||2 45.3 56.0 67.6 73.2 76.6

− cos(p̂real, p̂G) (Ours) 45.8 56.2 67.6 74.0 77.6
Table A.1: Additional analysis of the soft
precision-inducing loss in the case of PN on
the ImageNet based n-shot classification bench-
mark. p̂real and p̂G: class probabilities of hreal

and hG in the absence of the ground-truth la-
bels, respectively. mreal and mG: class means
of real and hallucinated examples, respectively.
Our generic similarity generalizes significantly
better than the specific similarity applicable to
PN for novel calsses.

Both the baselines (PN/PMN/Cos-Cls and PN/PMN/Cos-Cls with hallucination) and our approach
are meta-trained on ImageNet for 60,000 episodes by SGD with an initial learning rate 0.05 for
PN/PMN and 0.005 for Cos-Cls, decayed by a factor of 10 every 20,000 episodes. In each episode of
the meta-training stage, we sample all the base classes following Wang et al. (2018), which found
that it is advantageous to use more classes rather than fewer. We sample n∗=20 examples per class
from the base dataset Dbase, leading to an initial training set S∗train. Consistent with Wang et al.
(2018), to make a single hallucinator robust to different sample sizes, we randomly sample different
sized examples per class from S∗train, from 1 to 15 examples per class, to obtain Strain. One random
seed example is sampled from Strain, and fed into the hallucinator G with different noise vectors
to generate 20 examples per class as SGtrain. Hallucinated examples are sampled from SGtrain and
added to Strain until there are exactly 20 examples per class in Saug

train. For the test set Stest, we
have 5 random examples per class for prototypical networks (PN) (Snell et al., 2017) and cosine
classifiers(Cos-Cls) (Gidaris & Komodakis, 2018), and 1 random example per class for prototype
matching networks (PMN) (Vinyals et al., 2016; Wang et al., 2018).

For the soft precision-inducing loss, we use softmax with temperature to produce conditional class
probabilities p̂real and p̂G. This temperature is a learnable parameter. It is shared between p̂real and
p̂G, but is not shared between Llearner and Lhal.

The hyper-parameters obtained by cross-validation on ImageNet are: λ1=0.5, λ2=0.02, and λ3=0.1 for
PN with ResNet-10; λ1=0.2, λ2=0.0001, and λ3=0.05 for PN with ResNet-50; λ1=0.4, λ2=2.0, and
λ3=0.1 for PMN with ResNet-10; and λ1=0.5, λ2=0.000001, and λ3=0.005 for the cosine classifier
with ResNet-10.

During the meta-testing stage, following Wang et al. (2018) we use n=1, 2, 5, 10 or 20 examples per
class from the novel dataset Dnovel, and then hallucinate a fixed number of additional examples for
each novel class. By cross-validation, the number of hallucinated examples per class is set to 10 for
PN, Cos-Cls and Cos-Cls w/ G + PECAN with ResNet-10, 8 for Cos-Cls w/ G with ResNet-10, 5 for
PN with ResNet-50, and 20 for PMN with ResNet-10. We combine the classifier prediction results
in the pre-trained feature space and the learned embedding space using a scalar hyper-parameter.
By cross-validation, this hyper-parameter is set to 0.05 for PN with ResNet-10, 0.07 for PN with
ResNet-50, 1 for PMN with ResNet-10, and 0.00002 for the cosine classifier with ResNet-10. For the
test set Stest, following Wang et al. (2018) we have 50 real examples per class, and we average the
top-1 or top-5 accuracy of them over the novel classes.

A.2 PERFORMANCE ON BASE CLASSES

While we significantly improve the classification performance on novel classes, our approach remains
accurate on base classes. For example, for prototypical networks (PN) (Snell et al., 2017), both
our ‘PN w/ G + PECAN’ and the baseline ‘PN w/ G’ achieve the same top-5 accuracy 92.4% on
ImageNet.

A.3 IMPACT OF DEEPER REPRESENTATION MODELS

Figure A.1 shows the results on ImageNet using features from a ResNet-50 architecture. As expected,
deeper networks result in better performance for all the approaches, but our PECAN hallucination
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Figure A.2: Top-5 accuracy (%) of additional hyper-parameter analysis on the novel classes for the ImageNet
based n-shot classification benchmark. This analysis is conducted on ‘PN w/ G + PECAN’ with ResNet-
10. (a)(b)(c) provide sensitivity analysis of the hyper-parameters λ1, λ2, and λ3 in the overall objective.
The performance of our PECAN is stable over a wide range of hyper-parameter values. (d) shows how
our performance gradually increases and then saturates as more examples are hallucinated for n = 1-shot
classification.

strategy still provides large gains across the board over the state-of-the-art meta-learned hallucinator
in (Wang et al., 2018).

A.4 ANALYSIS OF HYPER-PARAMETER SENSITIVITY

Hyper-parameters in the overall objective. We conduct sensitivity experiments for the hyper-
parameters λ1, λ2, and λ3, which trade off different loss components in the overall objective of
our PECAN. We vary one of the three hyper-parameters while fixing the remaining two to their
cross-validated values. Figures A.2a, A.2b, and A.2c show the top-5 accuracy of ‘PN w/ G + PECAN’
on the novel classes for the ImageNet based n-shot classification benchmark. We can see that the
top-5 accuracy is stable over a wide range of hyper-parameter values, for example when the value of
λ1 becomes 50 times larger or 100 times smaller than λ1 used in the main paper. Across the board,
our PECAN consistently and significantly outperforms the baselines shown in the main paper.

Number of hallucinated examples. We also show how the top-5 accuracy changes for n = 1-shot
classification with respect to the number of hallucinated images in Figure A.2d. We can see that
when the number of hallucinated examples is changed from 0 to 10, the performance of our PECAN
gradually improves, and then saturates and drops slightly with more than 10 images generated.

A.5 ADDITIONAL ANALYSIS OF SOFT PRECISION-INDUCING LOSS

Our soft precision-inducing loss measures the similarity between classifier predictions preal and pG.
This is a general similarity measure which applies to various types of classifiers, including parametric
and non-parametric classifiers. For prototypical networks (PN) (Snell et al., 2017), a non-parametric
nearest centroid classifier is used to assign class probabilities for a test example based on its distances
from class means. Hence, in this special case, to measure the similarity between classifier predictions,
we can directly calculate the distance between the mean of real examples mreal and the mean of
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Figure A.3: Additional visual comparisons of top-1 classification results on four representative novel classes
between our PECAN and the state-of-the-art meta-learned hallucinator (Wang et al., 2018). From top to bottom
rows: Dungeness crab, king penguin, container ship, and potpie. Left 3 columns: test images that are correctly
classified by both approaches; middle 3 columns: target test images that are misclassified by Wang et al. (2018)
as other classes (the names of the predicted classes by Wang et al. (2018) are overlaid on the images), but
correctly classified by PECAN; right 3 columns: test images from other classes that are misclassified by Wang
et al. (2018) as the target class, but correctly classified by PECAN. Our approach is able to model a large range
of visual variations and diversity, whereas Wang et al. (2018) is confused by visually similar classes.

hallucinated examples mG. Table A.1 compares our generic similarity with this specific similarity
for PN on the ImageNet based n-shot classification benchmark. The result shows that our similarity
generalizes significantly better for novel classes.

A.6 ADDITIONAL VISUALIZATIONS OF CLASSIFICATION RESULTS

Similar to Figure 5 in the main paper, here we provide more examples of classification results for our
PECAN and the state-of-the-art meta-learned hallucinator (Wang et al., 2018) in Figure A.3.
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