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ABSTRACT

Almost all current adversarial attacks of CNN classifiers rely on information de-
rived from the output layer of the network. This work presents a new adversarial
attack based on the modeling and exploitation of class-wise and layer-wise deep
feature distributions. We achieve state-of-the-art targeted blackbox transfer-based
attack results for undefended ImageNet models. Further, we place a priority on
explainability and interpretability of the attacking process. Our methodology af-
fords an analysis of how adversarial attacks change the intermediate feature dis-
tributions of CNNs, as well as a measure of layer-wise and class-wise feature
distributional separability/entanglement. We also conceptualize a transition from
task/data-specific to model-specific features within a CNN architecture that di-
rectly impacts the transferability of adversarial examples.

1 INTRODUCTION

Figure 1: (top) Given a pre-trained whitebox
model f , we capture the layer-wise and class-wise
feature distributions with binary neural networks
gl,c, aiming to model the probability that the layer
l features extracted from input x are from the class
c feature distribution (i.e. p(y = c|fl(x))). (bot-
tom) Forward pass for FDA targeted attack.

Most recent adversarial attack literature has
focused on empirical demonstrations of how
classifiers can be fooled by the addition of
quasi-imperceptible noise to the input (Szegedy
et al., 2014; Goodfellow et al., 2015; Carlini &
Wagner, 2017; Moosavi-Dezfooli et al., 2016;
Madry et al., 2018; Kurakin et al., 2017). How-
ever, adversarial attacks may be leveraged in
other constructive ways to provide insights into
how deep learning models learn data represen-
tations and make decisions. In this work, we
propose a new blackbox transfer-based adver-
sarial attack that outperforms state-of-the-art
methods for undefended ImageNet classifiers.
Importantly, this work provides a broad ex-
ploration into how different Deep Neural Net-
work (DNN) models build feature representa-
tions and conceptualize classes. The new attack
methodology, which we call the Feature Distribution Attack (FDA), leverages class-wise and layer-
wise deep feature distributions of a substitute DNN to generate adversarial examples that are highly
transferable to a blackbox target DNN.

One perspective on adversarial attacks is that adversarial noise is a direction in which to “move” the
natural data. In standard attacks which directly use the classification output, the noise points in the
direction of the nearest decision boundary at the classification layer (Tramèr et al., 2017). In this
work, our crafted noise points in a direction that makes the data “look like” a sample of another class
in intermediate feature space. Intuitively, if we can alter the representation in a layer whose features
are representative of the data for the given task, but not specific to the model, the adversarial example
may transfer better (to unobserved architectures) than attacks derived from logit-layer information.

Fig. 1(top) illustrates the feature distribution modeling of a DNN, which is the core mechanism of
the attack. f is a pre-trained substitute whitebox model to which we have full access. The true
target blackbox model is not shown, but we only assume limited query access and that it has been
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trained on ImageNet-1k (Deng et al., 2009). Adversarial examples are then generated on the white-
box model and transferred to the blackbox model. The novelty of the attack comes from the explicit
use of class-wise and layer-wise feature distributions. In Fig. 1(top), an auxiliary Neural Network
(NN) gl,c learns p(y = c|fl(x)), which is the probability that the layer l features of the whitebox
model, extracted from input image x, belong to class c. The attack uses these learned distributions to
generate targeted (or untargeted) adversarial examples by maximizing (or minimizing) the probabil-
ity that the adversarial example is from a particular class’s feature distribution (Fig. 1(bottom)). We
also use these learned distributions to analyze layer-wise and model-wise transfer properties, and to
monitor how perturbations of the input change feature space representations. Thus, we gain insights
on how feature distributions evolve with layer depth and architecture.

2 RELATED WORK

In blackbox attacks (Narodytska & Kasiviswanathan, 2017; Su et al., 2017; Papernot et al., 2017;
Tramèr et al., 2017; Inkawhich et al., 2019; Dong et al., 2018; Zhou et al., 2018), knowledge of
the target model is limited. In this work, the target model is blackbox in the sense that we do not
have access to its gradients and make no assumptions about its architecture (Madry et al., 2018;
Cheng et al., 2019). A popular blackbox technique is transfer-based attacks, in which adversarial
examples are constructed on the attackers’ own whitebox model and transferred to the target model.
Papernot et al. (2016; 2017) develop special methods for training the attackers’ whitebox model
to approximate the target model’s decision boundaries. In this work, we only use models that have
been trained under standard configurations for ImageNet-1k (Deng et al., 2009). Tramèr et al. (2018)
and Liu et al. (2017) bolster transferability by generating adversarial examples from an ensemble
of whitebox models, which helps the noise not overfit a single model architecture. Our methods
also discourage overfitting of the generating architecture, but we instead leverage feature space
perturbations at the appropriate layer. In the 2017 NeurIPS blackbox attack competition (Kurakin
et al., 2018), the winning method (Dong et al., 2018) used momentum in the optimization step,
which helped to speed up the convergence rate and de-noise the gradient directions as to not be
overly specific to the generating architecture. We also use this approach. Finally, Tramèr et al.
(2017) analyze why transferability occurs and find that well-trained models have similar decision
boundary structures. We also analyze transferability, but in the context of how adversarial examples
change a model’s internal representations, rather than only making observations at the output layer.

While all of the above methods generate adversarial examples using information from the classifica-
tion layer of the model, there have been a few recent works delving into the feature space of DNNs
for both attacks and defenses. Sabour et al. (2016) show that in whitebox settings, samples can be
moved very close together while maintaining their original image-domain representations. Zhou
et al. (2018) regularize standard untargeted attack objectives to maximize perturbations of (all) in-
termediate feature maps and increase transferability. However, their primary objective is untargeted
and still based on classification output information. Also, the authors do not consider which lay-
ers are affected and how the regularization alters the intermediate representations. Inkawhich et al.
(2019) show that driving a source sample’s feature representation towards a target sample’s repre-
sentation at particular layers in deep feature space is an effective method of targeted transfer attack.
However, the method is targeted only and relies on the selection of a single (carefully selected) sam-
ple of the target class. Also, the attack success rate on ImageNet was empirically low. This work
describes a more robust attack, with significantly better performance on ImageNet, and provides a
more detailed analysis of layer-wise transfer properties. For adversarial defenses, Xie et al. (2019),
Frosst et al. (2019), and Lin et al. (2019) consider the effects of adversarial perturbations in feature
space but do not perform a layer-wise analysis of how the internal representations are affected.

3 ATTACK METHODOLOGY

We assume to have a set of training data and a pre-trained model f from the same task as the target
blackbox model (i.e. the ImageNet-1k training set and a pre-trained ImageNet model). To model
the feature distributions for f , we identify a set of classes C = {c1, ..., cK} and a set of layers
L = {l1, ..., lN} that we are keen to probe. For each layer in L, we train a small, binary, one-versus-
all classifier g for each of the classes in C, as shown in Fig. 1 (top). Each binary classifier is given
a unique set of parameters, and referred to as an auxiliary model gl,c. The output of an auxiliary
model represents the probability that the input feature map is from a specific class c ∈ C. Thus, we
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say that gl,c(fl(x)) outputs p(y = c|fl(x)), where fl(x) is the layer l feature map of the pre-trained
model f given input image x.

Once trained, we may leverage the learned feature distributions to create both targeted and untar-
geted adversarial examples. Here, we focus mostly on targeted attacks, which are considered a
harder problem (especially in the blackbox transfer case when we do not have access to the target
model’s gradients) (Kurakin et al., 2018; Sharma et al., 2018). Discussion of untargeted attacks is
left to Appendix C. Recall, the goal of a targeted attack is to generate an adversarial noise δ that
when added to a clean sample x of class ysrc, the classification result of x+ δ is a chosen class ytgt.
The key intuition for our targeted methods is that if a sample has features consistent with the feature
distribution of class c at some layer of intermediate feature space, then it will likely be classified as
class c. Although not shown in the objective functions for simplicity, for all attacks the adversarial
noise δ is constrained by an `p norm (i.e. ||δ||p ≤ ε), and the choice of layer l and target class label
ytgt are chosen prior to optimization.

FDA We propose three targeted attack variants. The most straightforward variant, called FDA,
finds a perturbation δ of the “clean” input image x that maximizes the probability that the layer l
features are from the target class ytgt distribution:

max
δ
p(y = ytgt|fl(x+ δ)). (1)

We stress that unlike standard attacks that use output layer information to directly cross decision
boundaries of the whitebox, our FDA objective leverages intermediate feature distributions which
do not implicitly describe these exact boundaries.

FDA+ms In addition to maximizing the probability that the layer l features are from the target
class distribution, the FDA+ms variant also considers minimizing the probability that the layer l
features are from the source class ysrc distribution (ms = minimize source):

max
δ
λp(y = ytgt|fl(x+ δ))− (1− λ)p(y = ysrc|fl(x+ δ)). (2)

Here, λ ∈ (0, 1) weights the contribution of both terms and is a fixed positive value.

FDA+fd Similarly, the FDA+fd variant maximizes the probability that the layer l features are from
the target class distribution while also maximizing the distance of the perturbed features from the
original features (fd = feature-disruption):

max
δ
p(y = ytgt|fl(x+ δ)) + η

‖fl(x+ δ)− fl(x)‖2
‖fl(x)‖2

. (3)

In other words, the feature-disruption term, with a fixed η ∈ R+, prioritizes making the layer l
features of the perturbed sample maximally different from the original sample.

The additional terms in FDA+ms and FDA+fd encourage the adversarial sample to move far away
from the starting point, which may intuitively help in generating (targeted) adversarial examples.
Also, notice that FDA+ms requires the modeling of both the source and target class distributions,
whereas the others only require the modeling of the target class distribution.

Optimization Procedure. The trained auxiliary models afford a way to construct a fully differen-
tiable path for gradient-based optimization of the objective functions. Specifically, to compute FDA
adversarial noise from layer l, we first build a composite model using the truncated whitebox model
fl and the corresponding layer’s auxiliary model gl,c=ytgt for the target class ytgt, as shown in Fig.
1(bottom). The loss is calculated as the Binary Cross Entropy (BCELoss) between the predicted
p(y = ytgt|fl(x)) and 1. Thus, we perturb the input image in the direction that will minimize the
loss, in turn maximizing p(y = ytgt|fl(x)). For optimization, we employ iterative gradient descent
with momentum, as the inclusion of a momentum term in adversarial attacks has proven effective
(Inkawhich et al., 2019; Dong et al., 2018). See Appendix D for more details.

4 EXPERIMENTAL SETUP

ImageNet models. For evaluation we use popular CNN architectures designed for the ImageNet-1k
(Deng et al., 2009) classification task: VGG-19 with batch-normalization (VGG19) (Simonyan &
Zisserman, 2015), DenseNet-121 (DN121) (Huang et al., 2017), and ResNet-50 (RN50) (He et al.,
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2016). All models are pre-trained and found in the PyTorch Model Zoo. Note, our methods are in no
way specific to these particular models/architectures. We also emphasize transfers across different
architectures rather than showing results between models from the same family.

Layer decoding scheme. Given a pre-trained model, we must choose a set of layers L to probe.
For each model we subsample the layers such that we probe across the depth. For notation we use
relative layer numbers, so layer 0 of DN121 (DN121l=0) is near the input layer and DN121l=12 is
closer to the classification layer. For all models, the deepest layer probed is the logit layer. Appendix
A decodes the notation for each model.

Auxiliary model training. We must also choose a set of classes C that we are interested in modeling.
Recall, the number of auxiliary models required for a given base model is the number of layers
probed multiplied by the number of classes we are interested in modeling. Attempting to model
the feature distributions for all 1000 ImageNet classes for each layer is expensive, so we instead
choose to run the majority of tests with a set of 10 randomly chosen classes (which are meant to
be representative of the entire dataset): 24:“grey-owl”, 99:“goose”, 245:“bulldog”, 344:“hippo”,
471:“cannon”, 555:“fire-truck”, 661:“Model-T”, 701:“parachute”, 802:“snowmobile”, 919:“street-
sign”. Thus, for each layer of each model we train 10 auxiliary classifiers, one for each class. After
identifying high performing attack settings, we then produce results for all 1000 classes.

The architecture of all auxiliary models is the same, regardless of model, layer, or class. Each is
a 2-hidden layer NN with a single output unit. There are 200 neurons in each hidden layer and
the number of input units matches the size of the input feature map. To train the auxiliary models,
unbiased batches from the whole ImageNet-1k training set are pushed through the truncated pre-
trained model (fl), and the extracted features are used to train the auxiliary model parameters.

Experimental procedure. Since we have three pre-trained models, there are 6 blackbox transfer
scenarios to evaluate (no self-transfers). We use the ImageNet-1K validation set as the test dataset.
Because FDA+ms requires both the source and target class distributions, for the targeted attack eval-
uations we only use source samples from the 10 trained classes, and for each sample, target each of
the other 9 classes. For baseline attacks, we use targeted random-start Projected Gradient Descent
(tpgd) (Madry et al., 2018; Kurakin et al., 2018), targeted NeurIPS2017 competition winning mo-
mentum iterative method (tmim) (Dong et al., 2018), and the Activation Attack (AA) (Inkawhich
et al., 2019). Further, all targeted adversarial examples are constrained by `∞ ε = 16/255 as de-
scribed in (Dong et al., 2018; Kurakin et al., 2018). As experimentally found, λ = 0.8 in (2) and
η = 1e-6 in (3). Finally, as measured over the initially correctly classified subset of the test dataset
(by both the whitebox and blackbox models), attack success is captured in two metrics. Error is
the percentage of examples that the blackbox misclassifies and Targeted Success Rate (tSuc) is the
percentage of examples that the blackbox misclassifies as the target label.

5 EMPIRICAL RESULTS

5.1 10-CLASS IMAGENET RESULTS

The primary axis of interest is how attack success rate varies with the layer depth from which the
feature distributions are attacked. Fig. 2 shows the transfer results between all pairs of whitebox
and blackbox models. Each plot shows a metric of attack success versus relative layer depth of the
generated attack. The notation DN121 → VGG19 indicates adversarial examples were generated
with a DN121 whitebox model and transferred to a VGG19 blackbox model.

Similar to Inkawhich et al. (2019), transferability trends for FDAs from a given whitebox model
appear blackbox model agnostic (e.g. the shape of the curves from DN121→ RN50 are the same
as DN121→ VGG19). This is a positive property, as once the optimal transfer layer for a whitebox
model is found, evidence shows it will be the same for any blackbox model architecture. Further, the
most powerful transfers come from perturbations of intermediate features, rather than perturbations
of classification layer information. Another global trend is that in tSuc, FDA+fd performs best, FDA
performs worst, FDA+ms is in-between, and all FDAs significantly outperform the other baselines.
In the error metric, FDA+fd is best in early layers, FDA+ms is best in later layers, and FDA routinely
under-performs the AA baseline. Although all attacks are targeted, it is relevant to report error as it
is still an indication of attack strength. Also, it is clearly beneficial for the targeted attack objective
to include a term that encourages the adversarial example to move far away from its starting place
(FDA+ms & FDA+fd) in addition to moving toward the target region.
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Figure 2: Targeted adversarial attack transfer results. The x-axis of each plot is the relative layer
depth at which the adversarial example was generated from. Each row is a different whitebox model.

We now compare performance across whitebox models. For a DN121 whitebox, FDA+fd from
DN121l=7 is the optimal targeted attack with an average tSuc of 34%. For DN121→ RN50, this
attack outperforms the best baseline by 14% and 32% in error and tSuc, respectively. For a VGG19
whitebox, FDA+fd from V GG19l=5 is the optimal targeted attack with an average tSuc of 2.3%.
For VGG19→ RN50, this attack outperforms the best baseline by 15% and 2% in error and tSuc,
respectively. For a RN50 whitebox, FDA+fd from RN50l=8 is the optimal targeted attack with an
average tSuc of 18%. For RN50→ DN121, this attack outperforms the best baseline by 27% and
17% in error and tSuc, respectively.

5.2 1000-CLASS IMAGENET RESULTS

Table 1: Transferability rates for 1000-class targeted attack tests using optimal layers.
DN121 → VGG19 DN121 → RN50 RN50 → DN121 RN50 → VGG19

attack error tSuc error tSuc error tSuc error tSuc
tpgd 23.1 0.3 21.4 0.6 20.2 0.5 22.4 0.3
tmim 48.6 1.4 45.5 2.2 44.3 2.9 46.7 1.3
FDA 64.9 15.5 64.3 18.1 56.4 12.6 54.6 6.9

FDA+ms 91.9 21.7 91.9 23.4 87.3 15.9 85.3 10.2
FDA+fd 81.2 29.0 81.7 30.9 82.6 24.3 78.9 15.9

Recall, due to the computational complexity of training one auxiliary model per class per layer
per model, we ran the previous experiments using 10 randomly sampled ImageNet-1k classes. In
reality, this may be a realistic attack scenario because an adversary would likely only be interested
in attacking certain source-target pairs. However, to show that the 10 chosen classes are not special,
and the previously identified optimal transfer layers are still valid, we train all 1000 class auxiliary
models for DN121l=7 and RN50l=8. We exclude VGG19 because of its inferior performance
in previous tests. Table 1 shows results for the four transfer scenarios. Attack success rates are all
averaged over four random 10k splits and the standard deviation of all measurements is less than 1%.
In these tests, for each source sample, a random target class is chosen. As expected, the 1000-class
results closely match the previously reported 10-class results.

6 ANALYSIS OF TRANSFER PROPERTIES

We now investigate why a given layer and/or whitebox model is better for creating transferable
adversarial examples. We also explore the hypothesis that the layer-wise transfer properties of a
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DNN implicate the transition of intermediate features from task/data-specific to model-specific. In-
tuitively, early layers of DNNs trained for classification may be working to optimally construct a
task/data-specific feature set (Zeiler & Fergus, 2014; Yosinski et al., 2014). However, once the nec-
essary feature hierarchy is built to model the data, further layers may perform extra processing to
best suit the classification functionality of the model. This additional processing may be what makes
the features model-specific. We posit that the peak of the tSuc curve for a given transfer directly en-
codes the inflection point from task/data-specific to model-specific features in the whitebox model.
Instinctively, to achieve targeted attack success, the layer at which the attacks are generated must
have captured the concepts of the classes for the general task of classification, without being overly
specific to the architecture. Thus, layers prior to the inflection point may not have solidified the
class concepts, whereas layers after the inflection point may have established the class concepts and
are further processing them for the model output. This may also be considered an extension of the
convergent learning theory of Li et al. (2016) and general-to-specific theory of Yosinski et al. (2014).

6.1 INTERMEDIATE DISRUPTION

One way to measure why and how adversarial attacks work is to observe how the intermediate
representations change as a result of perturbations to the input. Our trained auxiliary models afford
a novel way to monitor the effects of such perturbations in deep feature space. To measure how much
a layer’s features have changed as a result of a (targeted) adversarial perturbation, we define layer-
wise disruption as the difference between the target class probability before and after perturbation,
as measured in layer l of model f : disruption = p(y = ytgt|fl(x+ δ))− p(y = ytgt|fl(x)).
Fig. 3 shows the average disruption caused in each transfer scenario, using both logit-based (tmim)
and feature-based (FDA+fd) adversarial attacks. Each row plots the disruption versus layer depth
from a single whitebox model to each blackbox model (e.g. the top row results from DN121 →
VGG19 and DN121 → RN50 transfers). Each line represents the average disruption caused by
some adversarial attack, where all FDAs are FDA+fd. The first column of plots shows the impact of
each attack on the whitebox model’s feature distributions while the second and third columns shows
impacts on the blackbox models’ feature distributions.
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Figure 3: Disruption versus layer depth for all transfer scenarios. Each row uses a different whitebox
model. Each line is a different attack, where all FDAs are FDA+fd.

It appears FDAs generated from early layers (e.g. DN121l=0, V GG19l=0, RN50l=0) disrupt fea-
tures the most in early layers and less so in deeper layers. Therefore, a sample resembling class
ytgt in an early layer does not mean it will ultimately be classified as ytgt. However, recall from
Fig. 2 that attacks from early layers create very powerful untargeted adversarial examples (error).
This indicates that early layer perturbations are amplified as they proceed through the model (Lin
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et al., 2019), just not in a class-specific manner. Next, as expected, attacks that use information
from the last layers of a whitebox model (e.g. tmim, DN121l=13, V GG19l=9, RN50l=12) create
the largest disruption in the last layers of the whitebox, but not necessarily at the last layers of the
blackbox models. However, the optimal transfer attacks (DN121l=7, V GG19l=5, RN50l=8) have
high disruption all throughout the models, not just at the last layer. This is further evidence that
perturbations of classification-layer features are overly model-specific and perturbations of optimal
transfer-layer features are more specific to the data/task. Finally, notice that the maximum disruption
caused in any blackbox model layer from VGG19 whitebox transfers is around 40% (row 2). For
the DN121 and RN50 whitebox models, the maximum disruption is around 80%. This may explain
VGG19 being an inferior whitebox model to transfer from, as the perturbation of intermediate VGG
features does not in-turn cause significant disruption of blackbox model features.

6.2 AUXILIARY MODEL CORRELATION WITH FULL MODEL
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Figure 4: Correlation of a layer’s
auxiliary models with the white-
box model output.

Another point of analysis is to investigate the correla-
tion/discrepancy between the auxiliary models at a given layer
and the output of the whitebox model. This may also indicate
a transition from task/data-specific to model-specific features.
We discuss discrepancy as an indication of how different the
auxiliary model outputs are from the whitebox model outputs.
Then correlation is the inverse of discrepancy so that when the
auxiliary model outputs align well with the whitebox model
outputs, the discrepancy is low and correlation is high. To eval-
uate discrepancy at a given layer l for input x, we aggregate the
logit values (i.e. pre-sigmoid/softmax) for each class in C, as
measured by the auxiliary models gl,c and the whitebox model
f , into separate vectors. Then, a softmax (smax) operation is
performed on each vector to establish two proper probability
distributions over the classes in C. Discrepancy is then defined
as the Kullback-Leibler divergence (DKL) between the two
distributions, or discrepancy = DKL

(
smax(

[
gl,c(fl(x))

]
∀c∈C)

∥∥ smax(
[
f(x)[c]

]
∀c∈C)

)
. Here,

f(x)[c] is the class c logit value from the whitebox model f given input x. Fig. 4 shows the layer-
wise auxiliary model correlations with the whitebox model outputs as measured from the average
discrepancy over 500 input samples of classes in C.

Note, the shapes of the curves are more informative than the actual values. Also, VGG19 layers
have been shifted in notation by +4 so that layer depth 13 is the logit layer of each model. As
expected, the auxiliary models in early layers have little correlation with the model output, while
auxiliary models in later layers have high correlation with the model output. Importantly, the optimal
transfer layers (?) mark a transition in the trendlines after which correlation increases sharply. This
effect may directly explain why layers after the optimal layer are suboptimal, because the auxiliary
models become highly correlated with the model output and begin to overfit the architecture. Since
the auxiliary models are not highly-correlated with the output layer at the optimal-transfer-layers,
we may surmise that the captured features are still mostly task/data specific.

Figure 5: Saliency maps of auxiliary models on several interesting inputs across model depth.
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6.3 AUXILIARY MODEL SALIENCY

For a more qualitative analysis, we may inspect the auxiliary model saliency maps. Given an image
of class ysrc, we visualize in Fig. 5 what is salient to the ysrc auxiliary models at several DN121
layer depths using SmoothGrad (Smilkov et al., 2017) (see Appendix E for additional saliency ex-
amples for RN50). Notice, an observable transition occurs at the high-performing transfer layers
from Fig. 2 (DN121l=5,7). The salient regions move from large areas around the whole image (e.g.
DN121l=0,3) to specific regions that are also salient in the classification layer (DN121l=13). The
saliency and correlation transitions together show that the well-transferring layers have learned simi-
lar salient features as the classification layer while not being overly correlated with the model output.
Therefore, perturbations focused on these salient regions significantly impact the final classification
without being too specific to the generating architecture.

6.4 CLASS DISTRIBUTION SEPARABILITY
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Figure 6: Class separability versus
layer depth for each whitebox.

Finally, our trained auxiliary models afford new ways of
measuring class-wise feature entanglement/separability for the
purpose of explaining transfer performance. We adopt the def-
inition of entanglement from Frosst et al. (2019) which states
that highly entangled features have a “lack of separation of
class manifolds in representation space,” and define separa-
bility as the inverse of entanglement. One way to measure
the separability between class distributions in a layer using the
auxiliary models is to gauge how far a sample has to “move” to
enter a region of high class confidence. We define intra-class
distance as the distance a sample has to move to enter a high-
confidence region of its source class’s distribution. Similarly,
we define inter-class distance as the distance a sample has to
move to enter a high-confidence region of a target class dis-
tribution, where ysrc 6= ytgt. Then, separability in a layer is
the difference between average inter-class and intra-class distances. In practice, for a given sample,
given model, chosen target class, and chosen layer, we iteratively perturb the sample using FDA with
a small step size (e.g. 5e-5) until the confidence of the target distribution auxiliary network is over a
threshold (e.g. 99.9%). The number of perturbation steps it takes to reach the confidence threshold
encodes the distance of the sample to the targeted class’s distribution.

Results for the three whitebox models are shown in Fig. 6, where the vertical axis is the separability
in units of perturbation steps, and the horizontal axis is the layer-depth of each model. We see that
there is some separability in all layers, for all models, indicating that even features very close to the
input layer are somewhat class-specific. Further, VGG19’s features are much less separable than
DN121 and RN50, indicating why VGG19 may have performed much worse as a whitebox model
in the transferability tests. In the same vein, DN121 has generally the most separated features which
further indicates why it may be a superior whitebox model. Intuitively, if a model/layer has highly
class-separable feature distributions, FDA attacks may be more transferable because there is less
ambiguity between the target class’s distribution and other class distributions during generation.

7 CONCLUSIONS

We present a new targeted blackbox transfer-based adversarial attack methodology that achieves
state-of-the-art success rates for ImageNet classifiers. The presented attacks leverage learned class-
wise and layer-wise intermediate feature distributions of modern DNNs. Critically, the depth at
which features are perturbed has a large impact on the transferability of those perturbations, which
may be linked to the transition from task/data-specific to model-specific features in an architecture.
We further leverage the learned feature distributions to measure the entanglement/separability of
class manifolds in the representation space and the correlations of the intermediate feature distri-
butions with the model output. Interestingly, we find the optimal attack transfer layers have fea-
ture distributions that are class-specific and highly-separable, but are not overly-correlated with the
whitebox model output. We also find that highly transferable attacks induce large disruptions in the
intermediate feature space of the blackbox models.
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APPENDIX

A. LAYER DECODING

Table 2: Whitebox Model Layer Decoding Table

Layer DenseNet-121 VGG19bn ResNet-50
0 6,2 512 3,1
1 6,10 512 3,2
2 6,12 512 3,3
3 6,12,2 512 3,4
4 6,12,14 512 3,4,1
5 6,12,20 512 3,4,2
6 6,12,22 512 3,4,3
7 6,12,24 512 3,4,4
8 6,12,24,2 FC2 3,4,5
9 6,12,24,8 FC3 3,4,6
10 6,12,24,12 - 3,4,6,1
11 6,12,24,14 - 3,4,6,2
12 6,12,24,16 - 3,4,6,3
13 6,12,24,16,FC - 3,4,6,3,FC

Table 2 is the layer number look-up-table that corresponds to the layer notation used in the pa-
per. DenseNet-121 (DN121), VGG19bn (VGG), and ResNet-50 (RN50) appear because they are
the model architectures used for the main results. The DN121 notation follows the implemen-
tation here: https://github.com/pytorch/vision/blob/master/torchvision/
models/densenet.py. In english, layer 0 shows that the output of the truncated model comes
from the 2nd denseblock of the 2nd denselayer. Layer 11 means the output of the truncated model
comes from the 14th denseblock in the 4th denselayer. Layer 13 indicates the output comes from
the final FC layer of the model.

The VGG model does not have denseblocks or dense layers so we use another nota-
tion. In the implementation at https://github.com/pytorch/vision/blob/master/
torchvision/models/vgg.py, the VGG19bn model is constructed from the layer array:
[64, 64,′M ′, 128, 128,′M ′, 256, 256, 256, 256,′M ′, 512, 512, 512, 512,′M ′, 512, 512, 512, 512,
′M ′, FC1, FC2, FC3], and we follow this convention in the table. In the array, each number cor-
responds to a convolutional layer with that number of filters, the M’s represent max-pooling layers,
and the FCs represent the linear layers at the end of the model. Notice, in these tests we do not
consider the first 11 layers of VGG19 as they were shown to have very little impact on classification
when perturbed.

The RN50 notation follows the implementation here: https://github.com/pytorch/
vision/blob/master/torchvision/models/resnet.py. As designed, the model has
4 layer groups with [3,4,6,3] Bottlenecks in each, respectively. Thus, layer 0 means the output of the
truncated model comes from the 1st Bottleneck of layer group 2. Layer 12 means the output comes
from the 3rd Bottleneck of layer group 4, and layer 13 means the output comes from the final FC
layer (i.e. output layer) of the model.
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B. FULL TARGETED TRANSFER RESULTS

Fig. 7 shows the full targeted attack transfer results from which the Fig. 2 were extracted. These
full results include two additional metrics of attack success. Untargeted Transfer Rate (uTR) is
the rate at which examples that fool the whitebox also fool the blackbox (encodes likelihood of
misclassification). Targeted Transfer Rate (tTR) is the rate at which successful targeted examples on
the whitebox are also successful targeted examples on the blackbox (encodes likelihood of targeted
misclassification). Error and tSuc are described in Section 4.
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Figure 7: Full targeted adversarial attack transfer results. Each row is a unique transfer scenario
and each column is a different attack success metric. The x-axis of each plot is the layer depth at
which the adversarial example was generated from. Note, top two rows are transfers from DN121
whitebox model, middle two rows are from VGG19 whitebox model, and bottow two rows are from
RN50 whitebox.
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C. UNTARGETED FEATURE DISTRIBUTION ATTACKS

The goal of an untargeted attack is to generate an adversarial noise δ that when added to a clean
sample x of class ysrc, the classification result of x + δ is not ysrc. The key intuition for feature
distribution-based untargeted attacks is that if a sample’s features are made to be outside of the
feature distribution of class ysrc at some layer of intermediate feature space, then it will likely not
be classified as ysrc.

uFDA The first untargeted attack variant is uFDA which is described as

min
δ
p(y = ysrc|fl(x+ δ)).

uFDA minimizes the probability that the layer l features of the perturbed sample x + δ are from
the source class ysrc distribution. Unlike the targeted samples which drive towards high confidence
regions of a target class feature distribution, this objective drives the sample towards low confidence
regions of the source class feature distribution.

uFDA+fd The second untargeted variant uFDA+fd is described as

min
δ
pl(y = ysrc|fl(x+ δ))− η

‖fl(x+ δ)− fl(x)‖2
‖fl(x)‖2

.

uFDA+fd also carries a feature disruption term so that the objective drives the perturbed sample
towards low confidence regions of the source class feature distribution and maximal distance from
the original sample’s feature representation.

fd-only The final untargeted attack fd-only is described as

max
δ

‖fl(x+ δ)− fl(x)‖2
‖fl(x)‖2

.

Notice, fd-only is simply the feature disruption term and is a reasonable standalone untargeted attack
objective because making features maximally different may intuitively cause misclassification.

To test attack success, we generate untargeted adversarial examples from both DN121 and RN50
whiteboxes and test transfers to a VGG19 blackbox model. It is common to evaluate untargeted
attacks with a tighter noise constraint (Kurakin et al., 2018; Dong et al., 2018) as the task is simpler,
so in these tests we use `∞ ε = 4/255 and ε = 8/255 (rather than ε = 16/255 used for targeted
tests). For baselines, we use the Madry et al. (2018) random start PGD attack (upgd) and the Dong
et al. (2018) competition winning momentum iterative attack (umim). Similar to the layer-wise
targeted evaluations, each ”clean” source sample belongs to the same set of 10 previously modeled
classes. Fig. 8 shows the error rates versus layer depth for the attacks.
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Figure 8: Error versus layer depth plots caused by untargeted adversarial attacks for DN121 →
VGG19 and RN50→ VGG19 transfer scenarios at two different attack strengths ε = 4, 8.

As expected, the error rate increases with epsilon and the layer depth at which feature-based attacks
are generated from has a large impact on attack success rate. In general, uFDA+fd is the top per-
former, followed by fd-only, then uFDA. However, uFDA often under-performs the umim baseline,
further indicating that for adversarial attacks in feature space it is beneficial to include a term that
prioritizes feature disruption (e.g. uFDA+fd & fd-only).

On average across models, at ε = 4/255, the optimal layer uFDA+fd has an untargeted error rate
of 37%, which is 9% higher than the best baseline. At ε = 8/255, the optimal layer uFDA+fd has
an untargeted error rate of 79%, which is 27% higher than the best baseline. Also, both whitebox
models perform similarly in terms of attack success rate, however the performance of fd-only varies
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between the two (especially at ε = 8/255). Surprisingly, fd-only which simply disrupts the original
feature map is the optimal attack for the DN121 whitebox (by a small margin). Finally, note that
the optimal transfer layers from the targeted attacks (i.e. DN121l=7 and RN50l=8) are also high
performing layers for the untargeted attacks.

D. ADVERSARIAL EXAMPLE GENERATION PROCESS

Recall, because the auxiliary models are NNs, the optimization objectives described for both the
targeted and untargeted attacks can be solved with an iterative gradient descent procedure. For
any version of the FDA attacks, we first build a ”composite” model which includes the truncated
whitebox model fl and the appropriate auxiliary model gl,c, as shown in Fig. 1(bottom). An attack
loss function LFDA is then defined which includes a BCELoss term and any additional term which
is trivially incorporated (e.g. the feature disruption term). We then iteratively perturb the source
image for K iterations using the sign of a collected momentum term. Similar to Dong et al. (2018)
and Inkawhich et al. (2019), momentum is calculated as

mk+1 = mk +
∇IkLFDA(Ik; θ)
||∇IkLFDA(Ik; θ)||1

,

where m0 = 0 and Ik is the perturbed source image at iteration k. The perturbation method for this
`∞ constrained attack is then

Ik+1 = Clip(Ik − α ∗ sign(mk+1), 0, 1).

In this work, all attacks perturb for K = 10 iterations and α = ε/K.

E. ADDITIONAL SALIENCY

Figure 9: SmoothGrad saliency maps for RN50 auxiliary models.

14


	Introduction
	Related work
	Attack methodology
	Experimental setup
	Empirical results
	10-class ImageNet results
	1000-class ImageNet results

	Analysis of transfer properties
	Intermediate disruption
	Auxiliary model correlation with full model
	Auxiliary model saliency
	Class Distribution Separability

	Conclusions

