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ABSTRACT

The performance of deep neural networks is often attributed to their automated, task-
related feature construction. It remains an open question, though, why this leads to
solutions with good generalization, even in cases where the number of parameters
is larger than the number of samples. Back in the 90s, Hochreiter and Schmidhuber
observed that flatness of the loss surface around a local minimum correlates with
low generalization error. For several flatness measures, this correlation has been
empirically validated. However, it has recently been shown that existing measures
of flatness cannot theoretically be related to generalization: if a network uses ReLU
activations, the network function can be reparameterized without changing its
output in such a way that flatness is changed almost arbitrarily. This paper proposes
a natural modification of existing flatness measures that results in invariance to
reparameterization. The proposed measures imply a robustness of the network to
changes in the input and the hidden layers. Connecting this feature robustness to
generalization leads to a generalized definition of the representativeness of data .
With this, the generalization error of a model trained on representative data can be
bounded by its feature robustness which depends on our novel flatness measure.

1 INTRODUCTION

Neural networks (NNs) have become the state of the art machine learning approach in many appli-
cations. An explanation for their superior performance is attributed to their ability to automatically
learn suitable features from data. In supervised learning, these features are learned implicitly
through minimizing the empirical error Eemp(f, S) = 1/|S|

∑
(x,y)∈S `(f(x), y) for a training set

S ⊂ X × Y drawn iid according to a target distribution D : X × Y → [0, 1], and a loss function
` : Y × Y → R+. Here, f : X → Y denotes the function represented by a neural network.

It is an open question why minimizing the empirical error during deep neural network training leads
to good generalization, even though in many cases the number of network parameters is higher than
the number of training examples. That is, why deep neural networks have a low generalization error

Egen = E(x,y)∼D [`(f(x), y)]− 1

|S|
∑

(x,y)∈S

`(f(x), y) (1)

which is the difference between expected error on the target distribution D and the empirical error on
a finite dataset S ⊂ X × Y .

It has been proposed that good generalization correlates with flat minima of the non-convex loss
surface (Hochreiter & Schmidhuber, 1997; 1995) and this correlation has been empirically val-
idated (Keskar et al., 2016; Novak et al., 2018; Wang et al., 2018). Thus, for deep neural net-
works trained with stochastic gradient descent (SGD), this could present a (partial) explanation
for their generalization performance (Zhang et al., 2016), since minibatch SGD tends to converge
to flat local minima (Zhang et al., 2018; Jastrzębski et al., 2017). This idea was elaborated on
by Chaudhari et al. (2016) who suggest a new training method that favors flat over sharp min-
ima even at the cost of a slightly higher empirical error – indeed solutions found by this algo-
rithm exhibit better generalization performance. However, as Dinh et al. (2017) remarked, cur-
rent flatness measures—which are based only on the Hessian of the loss function—cannot theo-
retically be related to generalization: For deep neural networks with ReLU activation functions,
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there are layer-wise reparameterizations that leave the network function unchanged (hence, also
the generalization performance), but change any measure derived only from the loss Hessian.
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Figure 1: Illustration of the decomposi-
tion of f = ψ ◦ φ.

Another, more intuitive explanation for generalization is
that the function generalizes well if the extracted features
encode a semantic similarity of the input that is robust to
small changes—both in the input and the features. This al-
lows to generalize from the training set to novel, sufficiently
similar data. Starting from such a concept of robustness
with respect to changes of features, we derive a measure of
flatness that is invariant under the mentioned reparameteri-
zations and that reduces to the well-known ridge regression
penalty in the special case of a linear regression.

This brings three seemingly related properties into our fo-
cus: flatness, robustness, and generalization. The exact
relationship, however, between flatness of the loss surface
around local minima (measuring changes of the empiri-
cal error for perturbations in parameter space), robustness
(measuring changes of the error for perturbations in either
input or feature space), and generalization (performance on unseen data from the target distribution)
is not well-understood. This paper provides new insights into this relationship.

The notion of feature robustness proposed in this paper measures the robustness of a function
f = ψ ◦ φ (e.g., a neural network) toward local changes in a feature space. That is, f can be split
into a composition of functions f(x) = (ψ ◦ φ)(x) for x ∈ X , φ : X → Rm and ψ : Rm → Y .
The function φ is considered as a feature extraction, mapping the input X into a feature space Rm,
while the function ψ corresponds to the model (e.g., a classifier) with Rm as its domain (see Figure 1
for illustration). It is the feature space defined by φ where we measure robustness toward small
perturbations. For neural networks, the activation values of any but the output layer can be viewed as
a feature space. A function f is called εεε-feature robust on a dataset S ⊂ X × Y if small changes in
the feature space defined by φ do not change the empirical error by more than ε. This differs from
the notion of robustness defined by Xu & Mannor (2012) using a cover of the sample space, which
has been theoretically connected to generalization. Flatness of the loss surface, however, is a local
property and we require a more local version of robustness to derive a connection between flatness
and robustness. Then, indeed, feature-robustness is upper bounded by the proposed flatness measure.
To finally connect the two local properties of robustness and flatness to generalization, we necessarily
need a notion describing how representative the given samples are for the true distribution. We define
a suitable notion, leading to an upper bound for the generalization error given by feature robustness
together with representativeness.

In summary, our contributions are as follows: (i) For models of the form f(x) = (ψ ◦ φ)(x) (e.g.
most (deep) neural networks) that split up into a feature extractor φ and a model ψ on the feature
space defined by φ, we define a property of feature robustness that measures the change of the loss
function under small perturbations of the features. This property is strongly related to flatness of
the loss surface at local minima. (ii) We propose a novel flatness measure. For neural networks
with ReLU activation functions, it is invariant under layer-wise reparameterization, addressing a
shortcoming of previous measures of flatness. (iii) We define a suitable notion of representativeness
of a dataset connecting feature robustness to the generalization error in form of an upper bound. (iv)
The proposed flatness measure is empirically shown to strongly correlate with good generalization
performance. Thereby, we recover Hessian based quantities as measures of flatness.

2 FEATURE ROBUSTNESS

We will define a notion of robustness in feature space Rm for the model f = (ψ ◦ φ) : X → Y ,
which depends on a small number δ > 0, a training set S, and a feature selection defined by a matrix
A ∈ Rm×m of operator norm ||A|| ≤ 1. In the case of neural networks split into a composition
according to Figure 1, traditionally, the activation values φj(x) of neurons are considered as feature
values. The feature value defined by the j-th neuron in the feature space φ(x) ∈ Rm can be written
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as φj(x) = 〈φ(x), ej〉, where ej denotes the j-th unit vector and 〈·, ·〉 the scalar product in Rm.
However, it was shown by Szegedy et al. (2013) that, for any other direction v ∈ Rm, ||v|| = 1, the
values 〈φ(x), v〉 = projvφ(x) obtained from the projection φ(x) onto v, can be likewise semantically
interpreted as a feature. We can single out the feature defined by v from φ(x) by multiplication with
the projection matrix Ev = vvT . Similarly, multiplication of φ(x) with a matrix A corresponds to a
weighted selection of rank(A)-many features in parallel (e.g., projection matrices on d-dimensional
subspaces correspond to the selection of d many features). This justifies our terminology considering
a matrix A as a feature selection. The same way that, for a sample input x, non-activated neurons
φj(x) = 0 are considered as non-expressed features, we call a selection of features defined by matrix
A as non-expressed whenever Aφ(x) = 0.

We define our notion of feature robustness. In words, feature robustness measures the mean change
in loss over a dataset under small changes of features in the feature space. Hereby, a matrix A
determines which features shall be perturbed. For each sample, the perturbation is linear in the
expression of the feature. Thereby, we only perturb features that are relevant for the output for a given
sample and leave feature values unchanged that are not expressed (in the sense explained above).
With

F(δ, S,A) :=
1

|S|
∑

(x,y)∈S

[`(ψ(φ(x) + δAφ(x)), y)− `(f(x), y)] , (2)

the precise definition is given as follows:

Definition 1. Let ` : Y × Y → R+ denote a loss function, δ and ε two strictly positive (small)
real numbers, S = {(xi, yi) | i = 1, . . . , N} ⊆ X × Y a set, and A ∈ Rm×m a matrix such that
||A|| ≤ 1. A model f(x) = (ψ ◦ φ)(x), which is a composition of functions φ : X → Rm and
ψ : Rm → Y , is called ((δ, S,A), ε)((δ, S,A), ε)((δ, S,A), ε)-feature robust, if |F(δ′, S,A)| ≤ ε for all |δ′| ≤ δ.
More generally, if A ⊂ Rm×m denotes a probability space over matrices such that ||A|| ≤ 1
for all A ∈ A, then we call the model ((δ, S,A), ε)((δ, S,A), ε)((δ, S,A), ε)-feature robust on average over A, if
EA∼A [|F(δ′, S,A)|] ≤ ε for all |δ′| ≤ δ.

We will bound feature robustness at local minima for a dataset S uniformly over all feature selections
A and dependent on δ. With our interpretation, this corresponds to an upper bound of the change in
loss when perturbing features in feature space Rm. In Appendix C.1 we note how feature robustness is
related to noise injection in the layer of consideration, which is known to be related to generalization
(An, 1996; Bishop, 1995).

3 FEATURE ROBUSTNESS IS CONNECTED TO FLATNESS OF THE LOSS CURVE

Consider a function f(x,w) = ψ(w, φ(x)) = g(wφ(x)), where ψ is the composition of a twice
differentiable function g : Rd → Y and a matrix product with a matrix w ∈ Rd×m. As before,
φ : X → Rm can be considered as a feature extractor. We fix a loss function ` : Y × Y → R+

for supervised learning and let w∗ denote a choice of parameters for which the empirical error
Eemp(w, S) = 1/|S|

∑
(x,y)∈S `(f(x,w), y), considered as a function on w, is at a local minimum

on the training set S = {(xi, yi) | i = 1, . . . , N}. In the following, we write z = φ(x).

For any matrix A ∈ Rm×m we have that

ψ(w, z + δAz) = g(w(z + δAz)) = g((w + δwA)z) = ψ(w + δwA, z). (3)

Therefore,

F(δ, S,A) + Eemp(w, S) =
1

|S|
∑

(x,y)∈S

`(ψ(w, z +Aδz), y)

=
1

|S|
∑

(x,y)∈S

`(ψ(w + δwA, z), y).

(4)

The latter is the empirical error Eemp(w + δwA,S) of the model f on the dataset S at parameters
w + δwA. If δ is sufficiently small, then by Taylor expansion of Eemp(w, S) with respect to
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parameters w around the critical point w∗, we have that

Eemp(w∗ + δw∗A,S) = Eemp(w∗, S) + 〈δw∗A, ∇Eemp(w∗, S)〉

+
1

2
〈δw∗A, HEemp(w∗, S) · (δw∗A)〉+O(δ3||w∗A||3F )

= Eemp(w∗, S) +
δ2

2
〈w∗A, HEemp(w∗, S) · (w∗A)〉+O(δ3||w∗A||3F )

(5)

with HEemp(w∗, S) denoting the Hessian of the empirical error with respect to w, 〈·, ·〉 the scalar
product with vectorized versions of the parameters and ||w||F the Frobenius norm of w.

Subtracting Eemp(w∗, S) from (5), maximizing over matrices ||A|| ≤ 1 and using (4), we get that,
for any feature selection A, the function (2) defining feature robustness is bounded by

max
||A||≤1

F(δ, S,A) ≤ δ2

2
||w∗||2F λHmax(w∗) +O(δ3) (6)

where λHmax(w∗) denotes the largest eigenvalue of the Hessian HEemp(w∗, S) of the empirical error
at w∗. Here we used the identity that max||x||=1 x

TMx = λMmax for any symmetric matrix M , and
that for matrices of norm ||A|| ≤ 1, we have ||w∗A||F ≤ ||w∗||F . We show details of the proof of
(6) in the appendix. We summarize the connection between feature robustness and flatness in terms
of the Hessian in the following theorem.
Theorem 2. Let ` : Y × Y → R+ denote a loss function, δ a strictly positive (small) real number,
A ∈ Rm×m a matrix with ||A|| ≤ 1, and let f(x,w) = g(wφ(x)) be a model with g an arbitrary
twice differentiable function on a matrix product of parameters w and the image of x under a (feature)
function φ. Let w∗ denote a local minimum of the empirical error on a dataset S.
Then the model f(w∗) is ((δ, S,A), ε)-feature robust for ε = δ2

2 ||w∗||
2
F λ

H
max(w∗) +O(δ3).

4 MEASURES OF FLATNESS OF THE LOSS CURVE

Motivated by the relation of feature robustness with the Hessian H , we define a novel measure of
flatness. Note that the Hessian is computed with respect to those parameters w that are applied
linearly on the feature space φ(X ) ⊆ Rm.
Definition 3. Let ` : Y ×Y → R+ denote a loss function and f(x,w) = g(wφ(x)) be a model with
g : Rm → Y an arbitrary twice differentiable function on a matrix product of parameters w and the
image of x under a (feature) function φ : X → Rm. Then κφ(w) shall denote a flatness measure of
the loss surface defined by

κφ(w) := ||w||2 · λHmax(w). (7)

Note that small values of κφ(w) indicate flatness and high values indicate sharpness.

Linear regression with squared loss In the case of linear regression, f(x,w) = wx ∈ R (X =
Rd, g = id and φ = id), for any loss function `, we compute second derivatives with respect to the
parameters w ∈ Rd as

∂2`

∂wi∂wj
=

∂2`

∂(f(x,w))2
xixj (8)

If ` is the squared loss function `(ŷ, y) = (ŷ − y)2, then ∂2`/∂ŷ2 = 2 and the Hessian is independent
of the parameters w. In this case, κid = c · ||w||2 with a constant c = 2λmax(

∑
x∈S xx

t) and the
measure κid reduces to (a constant multiple of) the well-known Tikhonov (ridge) regression penalty.

Layers of Neural Networks We consider neural network functions

f(x) = wLσ(. . . σ(w2σ(w1x+ b1) + b2) . . .) + bL (9)

of a neural network of L layers with nonlinear activation function σ. We hide a possible non-linearity
at the output by integrating it in a loss function ` chosen for neural network training. By letting
φl(x) = σ(wl−1σ(. . . σ(w2σ(w1x+ b1) + b2) . . .) + bl−1) denote the output of the composition of
the first l−1 layers and gl(z) = wLσ(. . . σ(z+bl) . . .)+bL the composition of the activation function
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of the l-th layer together with the rest of layers, we can write for each layer l, f(x,wl) = gl(wlφ
l(x)).

Using (7) we obtain for each layer of the neural network a measure of flatness at parameter values w:

κl(w) := ||wl||2 · λH,lmax(wl) (10)

with λH,lmax(wl) the largest eigenvalue of the Hessian of the empirical error with respect to the
parameters of the l-th layer. By Theorem 2, κl is related to small changes of feature values in layer l.

Corollary 4. Let f denote a neural network function of an L-layer fully connected neural network.
For each layer l, 1 ≤ l ≤ L of size nl, let A ∈ Rnl×nl with ||A|| ≤ 1 correspond to feature selections
of features in the l-th layer of the neural network. Let wl∗ denote weights of the l-th layer at a local
minimum of the empirical error.
Then the neural network is ((δ, S,A), ε)- feature robust in layer l at w∗ for ε = δ2

2 κ
l(w∗) +O(δ3).

For an everywhere well-defined Hessian of the loss function, we assumed our network function
to be twice differentiable. With the usual adjustments (equations only hold almost everywhere in
parameter space), we can also consider neural networks with ReLU activation functions. In this
case, Dinh et al. (2017) noted that a linear reparameterization of one layer, wl → λwl for λ > 0,
can lead to the same network function by simultaneously multiplying another layer by the inverse of
λ, wk → 1/λwk, k 6= l. Representing the same function, the generalization performance remains
unchanged. However, this linear reparameterization changes all common measures of the Hessian
of the loss. This constitutes an issue in relating flatness of the loss curve to generalization. We
counteract this behavior by the multiplication with ||wl||2.

Theorem 5. Let f = f(w1,w2, . . . ,wL) denote a neural network function parameterized
by weights wl of the l-th layer. Suppose there are positive numbers λ1, . . . , λL such that
f(w1,w2, . . . ,wL) = f(λ1w1, λ2w2, . . . , λLwL) for all wl. Then, with w = (w1,w2, . . . ,wL)
and wλ = (λ1w1, λ2w2, . . . , λLwL), we have

κl(w) = κl(wλ) for all 1 ≤ l ≤ L. (11)

We provide a proof in Appendix A.2.

Remark 6. During the process of writing, we came across a recent preprint by Rangamani et al.
(2019) proposing a similar measure of flatness by considering the Riemmannian metric on the quotient
manifold obtained from the equivalence relation given by the refactorization of layers as above.

An Averaging Alternative Experimental work (Ghorbani et al., 2019) suggests that the spectrum
of the Hessian has a lot of small values and only a few large outliers. In this case, our flatness
measure serving as an upper bound for feature robustness is governed by the outlier. However,
feature robustness for different feature selections is governed by different eigenvalues of the Hessian,
according to (5). We therefore consider the trace as an average of the spectrum. We will show
that this tracial averaging corresponds to feature robustness on average over all orthogonal feature
selection matrices. The following theorem specifies this connection between feature robustness and
the unnormalized trace Tr(HEemp(w∗)) of the empirical error at a local minimum w∗. The details
and the proof can be found in Appendix A.3.

Theorem 7. Let ` : Y × Y → R+ denote a loss function, δ a strictly positive (small) real number,
and let f(x,w) = g(wφ(x)) be a model with g an arbitrary twice differentiable function on a
matrix product of parameters w ∈ Rd×m and the image of x under a (feature) function φ. Let w∗
denote a local minimum of the empirical error on a dataset S and Om ⊂ Rm×m denote the set
of orthogonal matrices. Then, (i) for each feature selection matrix ||A|| ≤ 1 the model f(w∗) is
((δ, S,A), ε)-feature robust for ε = δ2

2 ||w∗||
2
F Tr(HEemp(w∗)) +O(δ3), and (ii) the model f(w∗)

is ((δ, S,Om), ε)-feature robust on average over Om for ε = δ2

2m ||w∗||
2
F Tr(HEemp(w∗)) +O(δ3).

We therefore consider the unnormalized trace as a suitable and efficiently computable measure of
flatness and define for each layer l of a neural network

κlTr(w) := ||wl||2F · Tr(HEemp(wl, S)). (12)

The same arguments as those used to prove Theorem 5 also show the measure κlTr to be independent
with respect to the same layer-wise reparameterizations. The analogue of Corollary 4 is as follows.
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Corollary 8. Let f denote a neural network function of an L-layer fully connected neural network.
For each layer l, 1 ≤ l ≤ L of size nl, let Onl ⊂ Rnl×nl denote the set of orthogonal feature
selections in the l-th layer of the neural network. Let wl∗ ∈ Rnl+1×nl denote weights of the l-th layer
at a local minimum of the empirical error. Then the neural network is ((δ, S,On), ε)- feature robust
in layer l on average over On at w∗ for ε = δ2

2nl
κlTr(w∗) +O(δ3).

5 FEATURE ROBUSTNESS AND GENERALIZATION

In this section we consider the relation between feature robustness and the generalization error
(defined in (1)). Since feature robustness is a local property in neighborhoods around the points
(x, y) ∈ S, to connect feature robustness to generalization we necessarily need an assumption of
representativeness of the given data samples S. A simple computation shows that

Egen(f) = EA∼A [F(δ, S,A)]

+

E(x,y)∼D [`(f(x), y)]− 1

|S|
∑

(xi,yi)∈S

EA∼A [`(ψ(φ(xi) + δAφ(xi)), yi)]

 (13)

The first term is exactly feature robustness on average over a probability distribution A of feature
matrices. For the second term, we accordingly define a notion on datasets S that describes how
well the loss on the true distribution can be approximated by certain probability distributions. The
distributions we consider are composed of a dataset and (local) probability distributions around its
points suitably restricted to local distributions λi and νi centered around the origin 0.
Definition 9. Let ψ : Rm → Y be a model, ` : Y × Y → R+ denote a loss function, ε a
strictly positive (small) real number, and S = {(xi, yi) | i = 1, . . . , N} ⊆ X × Y a set. Let
Λ = (λi, νi)1≤i≤N denote a family of pairs of probability distributions on Rm × Y , where each
λi and νi have support contained in a neighborhood of the origin 0. (i) The pair (S,Λ) is called
εεε-representative for ψψψ (with respect to the loss ` and distribution D) if |Rep(S,Λ)| ≤ ε, where

Rep(S,Λ) := E(x,y)∼D [`(ψ(x), y)]− 1

|S|
∑

(xi,yi)∈S

E(ξx,ξy)∼(λi×νi) [`(ψ(xi + ξx), yi + ξy)] .

(14)
(ii) With Ω a collection of families Λ as above and H a hypothesis space, we say that S is (ε,Ω)(ε,Ω)(ε,Ω)-
representative forH if for all ψ ∈ H there is Λψ ∈ Ω such that (S,Λψ) is ε-representative for ψ.

Interestingly, we naturally derived a definition of representativeness which is a generalization of
classical ε-representativeness (see e.g. Definition 4.1 in (Shalev-Shwartz & Ben-David, 2014)),
justifying the terminology. Indeed, let Λ0 denote the family of probability distributions where
each λi = δ0 and νi = δ0 have full weight on the origin. Then S is (ε, {Λ0})-representative
exactly when S is ε-representative in the classical sense. Further, if S is ε-representative and S is
(ε′,Ω)-representative for some Ω containing Λ0, then ε′ ≤ ε.
In our setting of a model f(x) = (ψ◦φ)(x), which is split up into a feature extractor φ and a model ψ,
we consider (φ(S),Λ)-representativeness for model ψ and specific choices for Λ = Λδ,A. Here, Λδ,A
is a family of probability distributions induced by a distribution A on feature matrices A such that
||A|| ≤ δ as follows: We assume that a Borel measure µA is defined by a probability distribution A
on matrices Rm×m. We then define Borel measures µi on Rm by µi(C) = µA({A | Aφ(xi) ∈ C})
for Borel sets C ⊆ Rm. Then λi is the probability distribution defined by µi. We fix the distributions
νi = δ0 and denote the set containing all families of distributions (λi, νi) that can be generated this
way by Aδ . The following result is a direct consequence of Equation 13 and our Definition 9.
Theorem 10. Let f(x) = (ψ ◦ φ)(x) be a model composed of functions φ : X → Rm and
ψ : Rm → Y . If f is ((δ, S,A), ε)-feature robust for all ||A|| ≤ 1 and φ(S) is (ε′,Aδ)-representative
for someH containing ψ, then the generalization error of f is bounded by Egen(f) ≤ ε+ ε′.

Hence, for generalization we need a model that is feature-robust and training data that is sampled
densely enough. In the trivial case with A = δ0 the distribution with full weight on the 0-matrix, we
can choose δ = 0 to obtain ε = 0 and Egen ≤ ε′. The more feature robust a model is, the larger δ we
can consider to use the flexibility of choosing a nontrivial A to lower the bound on representativeness
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Figure 2: LeNet5 characteristics after training on CIFAR10. Each color corresponds to a different
setup of training, characterized by initialization strategy, mini batch size and learning rate. The setups
are ordered in ascending order by the mini batch size, with the largest corresponding to the brightest
color of the displayed points.

and therefore the generalization error. We hope that in future work it will be possible to find suitable
distributions A that lead to computable generalization bounds.

6 EMPIRICAL EVALUATION

In this section we empirically validate the practical usefulness of the proposed flatness measure. A
correlation between generalization and Hessian-based flatness measures at local minima has been
observed previously, but the results of Dinh et al. (2017) questioned the usefulness of these measures.
We show that our measure does not only overcome the theoretical issues, but also preserves the strong
correlation with the generalization error. Previous works mostly use accuracy of the trained model
on the testing dataset (Rangamani et al., 2019; Keskar et al., 2016) for evaluating the generalization
properties of the achieved minimum. Nevertheless this does not directly correspond to the theoretical
definition of the generalization error (1). For measuring the generalization error, we employ a Monte
Carlo approximation of the target distribution defined by the testing dataset and measure the difference
between loss value on this approximation and empirical error. In order to track the correlation of
the flatness measure to the generalization error, sufficiently different minima should be achieved by
training. The most popular technique is to train the model with small and large batch size (Rangamani
et al., 2019; Keskar et al., 2016; Novak et al., 2018; Wang et al., 2018), which we also employed.

A neural network (LeNet5 (LeCun et al.)) is trained on CIFAR10 multiple times until convergence
with various training setups. This way, we obtain network configurations in multiple local minima. In
particular four different initialization schemes were considered (Xavier normal, Kaiming uniform,
uniform in (−0.1, 0.1), normal with µ = 0 and σ2 = 0.1), with four different mini-batch sizes (4, 32,
64, 512) and corresponding learning rates to keep the ration between them equal (0.001, 0.008, 0.02,
0.1) for the standard SGD optimizer. Each of the setups was run for 9 times with different random
initializations.

Here the generalization error is the difference between summed error values on test samples multiplied
by 5 (since the size of the training set is 5 times larger) and summed error values on the training
examples. Figure 2 shows the approximated generalization error with respect to the flatness measure
(for both κl and κlTr with l = 5 corresponding to the last hidden layer) for all network configurations.
The correlation is significant for both measures, and it is stronger (with ρ = 0.91) for κ5

Tr. This
indicates that taking into account the full spectrum of the Hessian is beneficial. To investigate
the invariance of the proposed measure to reparameterization, we apply the reparameterization
discussed in Sec. 4 to all networks using random factors in the interval [5, 25]. The impact of the
reparameterization on the proposed flatness measure based on the trace in comparison to the traditional
one is shown in Figure 3. While the proposed flatness measure is not affected, the one purely based
on the Hessian has very weak correlation with the generalization error after the modifications. To
verify the relation described by Equation 6, we also compared feature robustness with δ = 0.001
and feature matrices A that have only one non-zero value 1 on the diagonal. Figure 4 shows that
up to outliers the robustness is bound by the flatness measure. Additional experiments conducted
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Figure 3: LeNet5 configurations trained on CI-
FAR10 with random reparameterizations. The cor-
relation stays the same for the proposed measure,
while it breaks for classic Hessian-based measure.

Figure 4: Robustness and flatness for LeNet5 con-
figurations trained on CIFAR10. Results ordered
by flatness, showing that robustness is bound by
our flatness measure.

on MNIST dataset are described in Appendix E, where we obtain correlation factors between the
generalization error and tracial flatness κlTr of 0.73, 0.70, 0.72, 0.71 for the network’s hidden layers
l = 1, 2, 3, 4 respectively.

7 DISCUSSION AND CONCLUSION

We established a theoretical connection between flatness, feature robustness and, under the assumption
of representative data, the generalization error. The relation between feature robustness and Hessian-
based flatness measures has been established for κl, which takes into account the maximum eigenvalue
of the Hessian, and κlTr, which uses the trace instead. Empirically, the measure κlTr based on the
trace of the Hessian shows a stronger correlation with the generalization error. This is not surprising,
since it takes into account the whole spectrum of the Hessian and every eigenvalue corresponds to a
feature selection matrix of feature robustness. The tracial measure can be related to feature robustness
by either bounding the maximum eigenvalue of the loss Hessian by its unnormalized trace or by
averaging feature robustness over all orthogonal matrices A ∈ Om. It is interesting to note that strong
feature robustness does not exclude the possibility of adversarial examples, first observed by Szegedy
et al. (2013), since large changes of loss for individual samples (i.e. adversarial examples) may be
hidden in the mean in the definition of feature robustness. In Appendix C.2 we briefly discuss the
freedom of perturbing individual points by suitable feature selection matrices A.

In contrast to existing measures of flatness, our proposed measure is invariant to layer-wise reparame-
terizations of ReLU networks. However, we note that other reparameterizations are possible, e.g., we
can use the positive homogeneity and multiply all incoming weights into a single neuron by a positive
number λ > 0 and multiply all outgoing weights of the same neuron by 1/λ. Our proposed measures
of flatness κl and κlTr are in general not invariant to such reparameterizations. In principle, other
flatness measures can be found that are invariant to such reparameterizations as well (see Appendix B)
but their analysis, except for some empirical evaluations in Appendix E, is left for future work.

The second term in the generalization bound of Theorem 10 is given by our notion of representa-
tiveness. In order to find specific bounds for the ε-representativeness of (S,Aδ), a distribution over
matrices is required that induces a distribution which is similar to a localized kernel density estimation
(KDE). While our notion of representativeness is a generalization of classical representativeness, it
remains open whether it is efficiently computable. The more feature robust a model is, the more free-
dom there is to finding specific distributions over matrices that lead to bounds on the generalization
error. In Appendix D we give a computation of representativeness for a KDE with Gaussian kernels.

Taking things together, we proposed a novel and practically useful flatness measure that strongly
correlates with the generalization error. We theoretically investigated this connection by relating
this measure to feature robustness. This notion of robustness, together with a novel notion of
representativeness provides a link to the generalization error. To the best of our knowledge, this
yields the first theoretical connection between a notion of robustness, flatness of the loss surface, and
generalization error and can help to better understand the performance of deep neural networks.

8
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A PROOFS OF MAIN RESULTS

A.1 PROOF OF EQUATION 6

First note that for ||A|| ≤ 1,

||wA||F =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


w1

w2

...
wm

A

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


w1A
w2A

...
wmA


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
F

=

√√√√ m∑
j=1

||wjA||22 ≤

√√√√ m∑
j=1

||wj ||22

= ||w||F .

(15)

From (4) and (5) we get

max
||A||≤1

F(δ, S,A)
(4),(5)
= max

||A||≤1

δ2

2
〈w∗A, HEemp(w∗, S) · (w∗A)〉+O(δ3)

(15)
≤ max
||z||2≤||w∗||F

δ2

2
zTHEemp(w∗, S)z +O(δ3)

= max
||z||2=1

δ2

2
||w∗||2F zTHEemp(w∗, S)z +O(δ3)

=
δ2

2
||w∗||2F λHmax(w∗) +O(δ3),

where we used the identity that max||x||=1 x
TMx = λMmax for any symmetric matrix M .

A.2 PROOF OF THEOREM 5

In this section, we discuss the proof to Theorem 5. Before starting with the formal proof, we discuss
the idea in a simplified setting to separate the essential insight from the complicated notation in the
setting of neural networks.

Let F, F̃ : Rd → R denote twice differentiable functions such that F (w) = F̃ (λw) for all w and
all λ > 0. Later, w will correspond to weights of a specific layer of the neural network and the
functions F and F̃ will correspond respectively to the neural network functions before and after
reparameterizations of possibly all layers of the network. We show that

1

λ2
H(F (w)) = H(F̃ (λw)).

Indeed, the second derivative of F̃ at λw with respect to coordinates wi, wj is given by the differential
quotient as

∂2F̃ (λw)

∂wi∂wj
= lim
h→0

F̃ (λw + hei + hej)− F̃ (λw + hei)− F̃ (λw + hej) + F̃ (λw)

h2

= lim
h→0

F̃ (λ(w + h
λei + h

λej))− F̃ (λ(w + h
λei))− F̃ (λ(w + h

λej)) + F̃ (λw)(
h
λ

)2
λ2

=
1

λ2
lim
h→0

F (w + h
λei + h

λej)− F (w + h
λei)− F (w + h

λej) + F (w)(
h
λ

)2
=

1

λ2

∂2F (w)

∂wi∂wj
.

10
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Since this holds for all combinations of coordinates, we see that HF̃ (λw) = 1/λ2HF (w) for the
Hessians of F and F̃ , and hence

||λw||2HF̃ (λw) = λ2||w||2 1

λ2
HF (w) = ||w||2HF (w).

Formal Proof of Theorem 5 We are given a neural network function f(x;w1,w2, . . . ,wL)
parameterized by weights wi of the i-th layer and positive numbers λ1, . . . , λL such that
f(x;w1,w2, . . . ,wL) = f(x;λ1w1, λ2w2, . . . , λLwL) for all wi and all x. With w defined by
w = (w1,w2, . . . ,wL), wλ

l = λlwl and wλ = (wλ
1 ,w

λ
2 , . . . ,w

λ
L), we aim to show that

κl(w) = κl(wλ),

where κl(w) = ||wl||2 λH,lmax(wl) is the product of the squared norm of vectorized weight matrix wl

with the maximal eigenvalue of the Hessian of the empirical error at w with respect to parameters wl.

Let F (u) :=
∑

(x,y)∈S `(f(x;w1,w2, . . . ,u, . . . ,wL), y) denote the loss as a function on
the parameters of the l-th layer before reparameterization. Further, we let F̃ (v) :=∑

(x,y)∈S `(f(x;wλ
1 ,w

λ
2 , . . . ,v, . . . ,w

λ
L), y) denote the loss as a function on the parameters of

the l-th layer after reparameterization. We define a linear function η by η(u) = λlu. By assumption,
we have that F̃ (η(wl)) = F (wl) for all wl. By the chain rule, we compute for any variable u(i,j) of
u,

∂F (u)

∂u(i,j)

∣∣∣
u=wl

=
∂F̃ (η(u))

∂u(i,j)

∣∣∣
u=wl

=
∑
k,m

∂F̃ (η(u))

∂(η(u)(k,m))

∣∣∣
η(u)=η(wl)

· ∂(η(u)(k,m))

∂u(i,j)

∣∣∣
η(u)=η(wl)

=
∂F̃ (v)

∂v(i,j)

∣∣∣
v=λlwl

· λl.

Similarily, for second derivatives, we get for all i, j, s, t,

∂2F (u)

∂u(i,j)∂u(s,t)

∣∣∣
u=wl

= λ2
l

∂F̃ (v)

∂v(i,j)∂v(s,t)

∣∣∣
v=λlwl

,

Consequently, the Hessian H of the empirical error before reparameterization and the Hessian H̃
after reparameterization satisfyH(wl, S) = λ2

l ·H̃(λlwl, S) and also λH,lmax(wl) = λ2
l ·λH̃,lmax(λlwl).

Therefore,

κl(w) = ||wl||2λH,lmax(wl) = ||wl||2λ2
l · λH̃,lmax(λlwl) = ||λlw||2λH̃,lmax(λlwl) = κl(wλ).

A.3 PROOF OF THEOREM 7

Proof. (i) This is just a corollary of Theorem 2 using the trivial bound that the maximal eigenvalue is
bounded by the unnormalized trace (sum of eigenvalues) for positive semidefinte matrices (where all
eigenvalues are positive).
(ii) We consider the set of orthogonal matrices A ∈ Om as equipped with the (unique) normalized
Haar measure. (For the definition of the Haar measure, see e.g. Krantz & Parks (2008).) We need to
show that EA∼Om [F(δ, S,A)] ≤ · δ

2

2m ||w∗||
2
F Tr(HEemp(w∗)) + O(δ3) with F(δ, S,A) defined

as in (2). Using (4) and (5) we get, similarly to (6),

EA∼Om [F(δ, S,A)] ≤ EA∼Om
[
δ2

2
〈w∗A, HEemp(w∗, S) · (w∗A)〉+O(δ3)

]
with 〈·, ·〉 the scalar product with vectorized versions of vector

w∗A =

 w1∗
...

wd∗

A =

 w1∗A
...

wd∗A

 , wi∗ ∈ R1×m.

11



Under review as a conference paper at ICLR 2020

We consider the vectorization of w∗A ∈ Rdm given by (w1∗, . . . ,wd∗)
T . By Lemma 11 below, we

get

EA∼Om [F(δ, S,A)] ≤ EA∼Om

δ2

2
·

d∑
i,j=1

(wi∗A)HEemp(wj∗, S)(wi∗A)T +O(δ3)


=
δ2

2
·

d∑
i,j=1

EA∼Om
[
(wi∗A)HEemp(wj∗, S)(wi∗A)T

]
+O(δ3)

(16)

Here, the notation HEemp(wj∗, S) refers to the empirical error at w∗ but the derivatives are only
taken over the parameters in the row wj∗.

If wi∗ 6= 0, then by Proposition 3.2.1 of Krantz & Parks (2008) and the change of variables formula
for measures, we get

EA∼Om
[
(wi∗A)HEemp(wj∗, S)(wi∗A)T

]
= ||wi∗||2 Ez∈Rm,||z||=1

[
zTHEemp(wj∗, S)z

]
(17)

for all 1 ≤ i, j ≤ d, where the latter expectation is taken over the normalized (uniform) Hausdorff
measure over the sphere Sm−1 ⊂ Rm. Now, using the unnormalized trace Tr([hi,j ]) =

∑
i hi,i we

compute with the help of the so-called Hutchinson’s trick:

Ez∈Rm,||z||=1

[
zTHEemp(wj∗, S)z

]
= E||z||=1

[
Tr(zTHEemp(wj∗, S)z)

]
= E||z||=1

[
Tr(HEemp(wj∗, S)zzT )

]
= Tr(HEemp(wj∗, S)E||z||=1

[
zzT

]
).

(18)

Note that zzT = [zizj ]i,j and due to symmetry E||z||=1 [zizj ] = E||z||=1 [zi(−zj)] for i 6= j,
hence E||z||=1 [zizj ] = 0 whenever i 6= j. Further E||z||=1

[
z2
i

]
= 1

m E||z||=1

[∑m
i=1 z

2
i

]
=

1
m E||z||=1

[
||z||2

]
= 1

m for all i. Therefore E||z||=1

[
zzT

]
= 1

m · Im is a constant multiple of
the identity matrix. Putting things together we have

EA∼Om [F(δ, S,A)]
(16)
≤ δ2

2
·

d∑
i,j=1

EA∼Om
[
(wi∗A)HEemp(wj∗, S)(wi∗A)T

]
+O(δ3)

(17)
≤ δ2

2
·
d∑
i=1

||wi∗||2 E||z||=1

[
zTHEemp(wj∗, S)z

]
+O(δ3)

(18)
=

δ2

2
·

d∑
i,j=1

||wi∗||2
1

m
· Tr(HEemp(wj∗, S)) +O(δ3)

=
δ2

2
·

(
d∑
i=1

||wi∗||2
)
·

 d∑
j=1

1

m
· Tr(HEemp(wj∗, S))

+O(δ3)

=
δ2

2

(
||w∗||2F

)
·
(

1

m
Tr(HEemp(w∗, S))

)
+O(δ3)

=
δ2

2m
||w∗||2F · Tr(HEemp(w∗, S)) +O(δ3).

Lemma 11. (i) Let H = [Hi,j ]i,j be a positive semidefinite matrix in R2m×2m that consists of

submatrices Hi,j ∈ Rm×m, 1 ≤ i, j ≤ 2. Then for all x =

(
x1

x2

)
∈ R2m with xi ∈ Rm, we have

2xT1 H1,2x2 ≤ xT1 H2,2x1 + xT2 H1,1x2.
(ii) Let d,m ∈ N and H = [Hi,j ]i,j be a positive definite matrix in Rdm×dm that consists of
submatrices Hi,j ∈ Rm×m, 1 ≤ i, j ≤ d. Then for all x = (x1, . . . , xd) ∈ Rdm with xi ∈ Rm, we
have xTHx ≤

∑d
i,j=1 x

T
j Hi,ixj .

12



Under review as a conference paper at ICLR 2020

Proof. (i) By definition, H is positive semidefinite if (H is symmetric and) zTHz ≥ 0 for all z.
Choosing z = (−x2, x1) gives xT2 H1,1x2 + xT1 H2,2x1 − 2xT1 H1, 2x2 ≥ 0, hence 2xT1 H1,2x2 ≤
xT1 H2,2x1 + xT2 H1,1x2.

(ii) Using that every submatrix Ha,b =

(
Ha,a Ha,b

HT
a,b Hb,b

)
is positive definite together with (i), we

obtain
xTHx =

∑
i

xTi Hi,ixi +
∑
i 6=j

2xTi Hi,jxj

≤
∑
i

xTi Hi,ixi +
∑
i 6=j

(
xTi Hj,jxi + xTj Hi,ixj

)
=
∑
i,j

xTi Hj,jxi

A.4 PROOF OF THEOREM 10

We are given a function f(x) = (ψ ◦ φ)(x). By assumption, f is ((δ, S,A), ε)-feature robust for all
matrices ||A|| ≤ 1, which implies that∣∣∣∣∣∣ 1

|S|
∑

(xi,yi)∈S

[`(ψ(φ(xi) + δAφ(xi)), yi)− `(f(xi), yi)]

∣∣∣∣∣∣ ≤ ε for all ||A|| ≤ 1. (19)

Further, we are given that φ(S) is (ε′,Aδ)-representative for a hypothesis spaceH such that ψ ∈ H.
By Definition 9 (ii) this means that there is some Λδ,A = (λi, δ0)i ∈ Aδ such that (S,Λδ,A) is
ε′-representative for ψ. That is, by Definition 9 (i),∣∣∣∣∣∣E(x,y)∼D [`(f(x), y)]− 1

|S|
∑

(xi,yi)∈S

Eξx∼λi [`(ψ(φ(xi) + ξx), yi)]

∣∣∣∣∣∣ ≤ ε′. (20)

Since Λδ,A = (λi, δ0)i ∈ Aδ, there exists a probability distribution A of matrices ||A|| ≤ 1 (so that
||δA|| ≤ δ) such that

1

|S|
∑

(xi,yi)∈S

Eξx∼λi [`(f(φ(xi) + ξx), yi)] =
1

|S|
∑

(xi,yi)∈S

EA∼A [`(ψ(φ(xi) + δAφ(xi)), yi)]

= EA∼A

 1

|S|
∑

(xi,yi)∈S

`(ψ(φ(xi) + δAφ(xi)), yi)

 .
(21)

Putting things together, we get for the generalization error Egen(f) of model f ,

Egen(f) =

∣∣∣∣∣∣E(x,y)∼D [`(f(x), y)]− 1

|S|
∑

(xi,yi)∈S

`(f(xi), yi)

∣∣∣∣∣∣
(21)
≤

∣∣∣∣∣∣E(x,y)∼D [`(f(x), y)]− 1

|S|
∑

(xi,yi)∈S

Ezi∼λi [`(ψ(φ(xi) + zi), yi)]

∣∣∣∣∣∣
+

∣∣∣∣∣∣EA∼A
 1

|S|
∑

(xi,yi)∈S

`(ψ(φ(xi) + δAφ(xi)), yi)

− 1

|S|
∑

(xi,yi)∈S

`(f(xi), yi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣E(x,y)∼D [`(f(x), y)]− 1

|S|
∑

(xi,yi)∈S

Ezi∼λi [`(ψ(φ(xi) + zi), yi)]

∣∣∣∣∣∣
+

∣∣∣∣∣∣EA∼A
 1

|S|
∑

(xi,yi)∈S

[`(ψ(φ(xi) + δAφ(xi)), yi)− `(f(xi), yi)

∣∣∣∣∣∣
(19),(20)
≤ ε′ + ε.

13
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B ADDITIONAL MEASURES OF FLATNESS

We present additional measures of flatness we have considered during our study. The original
motivation to study additional measures was given by the observation that there are other possible
reparameterizations of a fully connected ReLU network than suitable multiplication of layers by
positive scalars: We can use the positive homogeneity and multiply all incoming weights into a
single neuron by a positive number λ > 0 and multiply all outgoing weights of the same neuron
by 1/λ. Our previous measures of flatness κl and κlTr are in general not independent of the latter
reparameterizations. We therefore consider, for a layer l of size nl, feature robustness only for
projection matrices Ej ∈ Rnl×nl having zeros everywhere except a one at position (j, j). At a local
minimum w∗ of the empirical error, this leads to

Eemp(wl∗ + δwl∗Ej , S)− Eemp(wl∗, S) =
δ2

2
wl∗(j)

THEemp(wl∗(j), S)wl∗(j) +O(δ3)

where wl∗(j) denotes the j-th column vector of weight matrix wl of layer l, and we only consider
the Hessian with respect to these weight parameters. We define for each layer l and neuron j in that
layer a flatness measure by

ρl(j)(w∗) := wl∗(j)
THEemp(wl∗(j))wl∗(j)

For each l and j, this measure is invariant under all linear reparameterizations that do not change the
network function. The proof of the following theorem is given in Section B.1
Theorem 12. Let f = f(w1,w2, . . . ,wL) denote a neural network function parameterized by
weights wi of the i-th layer. Suppose there are positive numbers λ(i,j)

1 , . . . , λ
(i,j)
L such that the

products wλ
l obtained from multiplying weight w(i,j)

l at matrix position (i, j) in layer l by λ(i,j)
l

satisfy that f(w1,w2, . . . ,wL) = f(wλ
1 ,w

λ
2 , . . . ,w

λ
L) for all wi. Then ρl(j)(w) = ρl(j)(wλ) for

each j and l.

We define a measure of flatness for a full layer by combinations of the measures of flatness for each
individual neuron.

ρl(w∗) := max
j
ρl(j)(w∗) and ρlσ(w∗) :=

∑
j

ρl(j)(w∗)

Since each of the individual expressions is invariant under all linear reparameterizations, so are the
maximum and sum.

Analogous to Theorem 2, we get an upper bound for feature robustness for projection matrices Ej .
Theorem 13. Let f denote a neural network function of a L-layer fully connected neural network.
For each layer l, 1 ≤ l ≤ L of size nl let Ej ∈ Rnl×nl denote the projection matrix containing only
zeros except a 1 at position (j, j). Let wl∗ denote weights of the l-th layer at a local minimum of the
empirical error.

Then the neural network is
(
(δ, S,Ej), δ

2/2ρl(w∗) +O(δ3)
)
- feature robust for all j at w∗.

One Value for all layers Our measure of flatness are strongly related to feature robustness, which
evaluates the sensitivity toward small changes of features. In a good predictor, generalization behavior
should correlate with the amount of change of the loss under changes of discriminating features. For
neural networks, we can consider the output of each layer as a feature representation. Each flatness
measure κl is then related by Corollary 13 to changes of the features of the l-th layer. It is however
clear that a low value of κl for a specific layer l alone cannot explain good performance. We therefore
specify a common bound for all layers.

Denoting by w∗ the set of weights from all layers combined, we have ||wl
∗||F ≤ ||w∗||F for all l.

Further, if H(l) denotes the Hessian of the loss with respect to only the weights of the l-th layer, and
H the Hessian with respect to the weights of all layers, then λH(l),l

max (wl
∗) ≤ λHmax(w∗). (This holds

since

λ(A) = max
||v||=1

vTAv and (v, 0)T

(
A D

DT B

)(
v

0

)
= vTAv.)

14
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Table 1: Hessian based measures of flatness

Notation Definition One value per Invariance

κ ||~w||2 · λHmax(~w) network none
κl ||wl||2 · λH,lmax(wl) layer layer-wise mult. by pos scalar
κlTr ||w||2 · Tr(HEemp(wl, S)) layer layer-wise mult. by pos scalar
κmax maxl κ

l(w) network layer-wise mult. by pos scalar
κΣ

∑L
l=1 κ

l(w) network layer-wise mult. by pos scalar
κmaxTr maxl κ

l
Tr(w) network layer-wise mult. by pos scalar

κΣ
Tr

∑L
l=1 κ

l
Tr(w) network layer-wise mult. by pos scalar

ρl(j) wl(j)
THEemp(wl(j), S)wl(j) neuron all linear reparameterizations

ρl maxj ρ
l(j)(w) layer all linear reparameterizations

ρlσ
∑
j ρ

l(j)(w) layer all linear reparameterizations
ρmax maxl ρ

l(w) network all linear reparameterizations
ρΣ

∑L
l=1 ρ

l
σ(w) network all linear reparameterizations

Therefore, no matter which layer with activation values φl(xi) for each xi ∈ S we are perturbing
with a matrix ||Al|| ≤ 1 to φl(xi) + δAl · φl(xi), we have that

F(δ, S,A) ≤ δ2

2
||w∗||2F · λHmax(w∗) +O(δ3),

and κ(w∗) = ||w∗||2F · λHmax(w∗) can be considered as a common measure for all layers.

However, κ(w∗) is not invariant under the reparameterizations considered in Theorem 5. We therefore
consider more simple common bounds by combinations of the individual terms κl, e.g. by taking the
maximum of κl over all layers, κmax(w∗) := maxl κ

l(w∗), or the sum κΣ(w∗) :=
∑L
l=1 κ

l(w∗).
Since each of the individual expressions are invariant under linear reparameterizations of full layers,
so are the maximum and sum.

Finally, we define ρmax(w∗) := maxl ρ
l(w∗) and ρΣ(w∗) :=

∑L
l=1 ρ

l
σ(w∗).

Table 1 summarizes all our measures of flatness, specifying whether each measure is defined per
network, layer or neuron, and whether it is invariant layer-wise multiplication by a positive scalar
(as considered in Theorem 5) or invariant under all linear reparameterization (as considered in
Theorem 12).

B.1 PROOF OF THEOREM 12

As in Subsection A.2, we first present the idea in a simplified setting.

For the proof of Theorem 12 we need to consider the case when we multiply coordinates by different
scalars. Let F : R2 → R denote twice differentiable functions such that F (v, w) = F̃ (λv, µw)
for all v ∈ R, w ∈ R and all λ, µ > 0. In the formal proof, v, w will correspond to two outgoing
weights for a specific neuron, while again F and F̃ correspond to network functions before and after
reparameterizations of all possibly all weights of the neural network. Then

(v, w) ·HF (v, w) ·

(
v

w

)
= (λv, µw) ·HF (λv, µw) ·

(
λv

µw

)

for all v, w and all λ, µ > 0.
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Indeed, the second derivative of F̃ at (λv, µw) with respect to coordinates v, w is given by the
differential quotient as

∂2F̃ (λv, µw)

∂v∂w
= lim
h,k→0

F̃ (λv + h, µw + ke)− F̃ (λv + h, µw)− F̃ (λv, µw + k) + F̃ (λv,w)

hk

= lim
h,k→0

F̃ (λ(v + h
λ ), µ(w + k

µ ))− F̃ (λ(v + h
λ , µw))− F̃ (λv, µ(w + k

λ )) + F̃ (λv, µw)(
h
λ

) (
k
µ

)
λµ

=
1

λµ
lim
h,k→0

F (v + h
λ , w + k

µ )− F (v + h
λ , w)− F (v, w + k

µ ) + F (v, w)
h
λ
k
µ

=
1

λµ

∂2F (v, w)

∂v∂w
.

From the calculation above, we also see that

∂2F̃ (λv, µw)

∂v∂v
=

1

λ2

∂2F (v, w)

∂v∂v
, and

∂2F̃ (λv, µw)

∂w∂w
=

1

µ2

∂2F (v, w)

∂w∂w
.

It follows that

(v, w) ·HF (v, w) ·

(
v

w

)
= v2 ∂

2F (v, w)

∂v∂v
+ 2vw

∂2F (v, w)

∂v∂w
+ w2 ∂

2F (v, w)

∂w∂w

= (λv)2 ∂
2F̃ (v, w)

∂v∂v
+ 2(λv)(µw)

∂2F̃ (v, w)

∂v∂w
+ (µw)2 ∂

2F̃ (v, w)

∂w∂w

= (λv, µw) ·HF (λv, µw) ·

(
λv

µw

)
.

Formal Proof of Theorem 12 We are given a neural network function f(x;w1,w2, . . . ,wL)

parameterized by weights wi of the i-th layer and positive numbers λ(i,j)
1 , . . . , λ

(i,j)
L such that the

products wλ
l obtained from multiplying weight w(i,j)

l at matrix position (i, j) in layer l by λ(i,j)
l

satisfies that f(x;w1,w2, . . . ,wL) = f(x;wλ
1 ,w

λ
2 , . . . ,w

λ
L) for all wi and all x. We aim to show

that
ρl(j)(w) = ρl(j)(wλ)

for each j and l where ρl(j)(w) = wl(j)
THEemp(wl(j), S)wl(j), wl(j) denotes the j-th column

of the weight matrix at the l-th layer and HEemp(wl(j), S) denotes the Hessian of the empirical
error with respect to the weight parameters in wl(j). Similar to the above, we denote by wl(j)

λ

the product obtained from multiplying weight wl(j)i = w
(i,j)
l at matrix position (i, j) in layer l by

λ(i,j).

The proof is very similar to the proof of Theorem 5, only this time we have to take the different
parameters λ(i,j)

l into account. For fixed layer l, we denote the j-th column of wl and wl(j).

Let

F (u) :=
∑

(x,y)∈S

`(f(x;w1,w2, . . . , [wl(1), . . . ,wl(j − 1),u,wl(j + 1), . . .wl(nl)],

. . . ,wL), y)

denote the loss as a function on the parameters of the j-th column in the l-th layer before reparame-
terization and

F̃ (v) :=
∑

(x,y)∈S

`(f(xi;w
λ1
1 ,wλ2

2 , . . . , [wl(1)λ, . . . ,wl(j − 1)λ,v,wl(j + 1)λ, . . . wl(nl)
λ],

. . . ,wL
λL), y)
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denote the loss as a function on the parameters of the j-th neuron in the l-th layer after reparameteri-
zation.

We define a linear function η by

η(u) = η(u1, u2, . . . unl) = η(u1λ
(1,j)
l , u2λ

(2,j)
l , . . . unlλ

(n,j)
l ).

By assumption, we have that F̃ (η(wl(j))) = F (wl(j)) for all wl(j). By the chain rule, we compute
for any variable ui of u,

∂F (u)

∂ui

∣∣∣
u=wl(j)

=
∂F̃ (η(u))

∂ui

∣∣∣
u=wl(j)

=
∑
k

∂F̃ (η(u))

∂(η(u)k)

∣∣∣
η(u)=η(wl(j))

· ∂(η(u)k)

∂ui

∣∣∣
η(u)=η(wl(j))

=
∂F̃ (v)

∂vi

∣∣∣
v=wl(j)λ

· λ(i,j)
l .

Similarily, for second derivatives, we get for all i, s,

∂2F (u)

∂ui∂us

∣∣∣
u=wl(j)

= λ
(i,j)
l λ

(s,j)
l

∂F̃ (v)

∂vi∂vj

∣∣∣
v=wl(j)λ

.

Consequently, the Hessian HF of the empirical error before reparameterization and the Hessian HF̃
after reparameterization satisfy that at position (i, s) of the Hessian matrix,

HF (wl)(i,s) = λ
(i,j)
l λ

(s,j)
l ·HF̃ (wλ

l )(i,s).

Therefore,

ρl(j)(w) = wl(j)
T ·HF (wl) ·wl(j) =

∑
i,s

w
(i,j)
l w

(s,j)
l HF (wl)(i,s)

=
∑
i,s

w
(i,j)
l w

(s,j)
l λ

(i,j)
l λ

(s,j)
l ·HF̃ (wλ

l )(i,s)

=
∑
i,s

λ
((i,j)
l w

i,j)
l λ

(s,j)
l w

(s,j)
l ·HF̃ (wλ

l )(i,s)

= (wl(j)
λ)T ·HF̃ (wλ

l ) ·wl(j)
λ = ρl(j)(wλ)

C ADDITIONAL PROPERTIES OF FEATURE ROBUSTNESS

C.1 RELATION TO NOISE INJECTION AT THE FEATURE SPACE

Feature robustness is related to noise injection in the layer of consideration. By defining a probability
measure PA on matrices A ∈ Rm×m of norm ||A|| ≤ 1, we can take expectations over matrices. An
expectation over such matrices induces for each sample x ∈ X an expectation over a probability
distribution of vectors ξ ∈ Rm with ||ξ|| ≤ ||φ(x)||. We find the induced probability distribution Px
from the measure Px defined by Px(T ) = PA({A | Aφ(x) ∈ T}) for a measurable subset T ⊆ Rm.
Then,

EA∼PA [F(δ, S,A)] = EA∼PA

 1

|S|
∑

(x,y)∈S

[`(ψ(φ(x) + δAφ(x), y))− `(f(x), y)]


=

1

|S|
∑

(x,y)∈S

Eξx∈Px [ `(ψ(φ(x) + δξx)− `(f(x), y) ] .

The latter is robustness to noise injection according to noise distribution Px for sample x in the
feature space defined by φ.
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C.2 ADVERSARIAL EXAMPLES

Large changes of loss (adversarial examples) can be hidden in the mean in the definition of
feature robustness. We have seen that flatness of the loss curve with respect to some weights is
related to the mean change in loss value when perturbing all data points xi into directions Axi for
some matrix A. For a common bound over different directions governed by the matrix A, we restrict
ourselves to matrices ||A|| ≤ 1. One may therefore wonder, what freedom of perturbing individual
points do we have?

At first, note that for each fixed sample xi0 and direction zi0 there is a matrix A such that Axi0 = zi0 ,
so each direction for each datapoint can be considered within a bound as above. We get little insight
over the change of loss for this perturbation however, since a larger change of the loss may go missing
in the mean change of loss over all data points considered in the same bound.

The bound involving κ(w∗) from above does not directly allow to check the change of the loss
when perturbing the samples xi independently into arbitrary directions . For example, suppose we
have two samples close to each other and we are interested in the change of loss when perturbing
them into directions orthogonal to each other. Specifically, suppose our dataset contains the points
(1, 0, 0, . . . , 0) and (1, ε, 0, . . . , 0) for some small ε, and we aim to check how the loss changes
when perturbing (1, 0, 0, . . . , 0) into direction (1, 0, 0, . . . , 0) and (1, ε, 0, . . . , 0) orthogonally into
direction (0, 1, 0, . . . , 0). To allow for this simultaneous change, our matrix A has to be of the form

A =


1 − 1

ε . . .

0 1
ε . . .

0
...

...
0 0 . . .

 .

Then

||A|| ≥ ||A ·


0

1

0
...,
0

 || = ||(−
1

ε
,

1

ε
, 0, . . .)|| =

√
2

ε
.

Hence, our desired alterations of the input necessarily lead to a large matrix norm ||A|| and our
attainable bound with ||A||2κ(w∗) becomes almost vacuous.

C.3 CONVOLUTIONAL LAYERS

Feature robustness is not restricted to fully connected neural networks. In this section, we briefly
consider convolutional layers w ∗ x. Using linearity, we get w ∗ (x+ δx) = (w + δw) ∗ x. What
about changes (w + δwA) for some matrix A? Since convolution is a linear function, there is a
matrix W such that −−−→w ∗ x = Wx and there is a matrix WA such that

−−−−→
wA ∗ x = WAx. We assume

that the convolutional layer is dimensionality-reducing, W ∈ Rn×m,m < n and that the matrix W
has full rank, so that there is a matrix V with WV = Im.1 Then

(w + δwA) ∗ x = Wx+ δWAx = Wx+ δWVWBx = W (x+ δV WBx).

As a consequence, similar considerations of flatness and feature robustness can be considered for
convolutional layers.

1This holds for example for a convolutional filter with stride one without padding, as in this case W has a
Toeplitz submatrix of size (m×m).
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D A LINK BETWEEN ε-REPRESENTATIVENESS AND KERNEL DENSITY
ESTIMATION

Compared to classical representativeness, the definition of ε-representativeness is far more general,
allowing the choice of a family of distributions Λ = (λi, νi)1≤i≤N . A suitable restriction is to
consider only local distributions λi and νi centered around the origin 0. With this, the following
connection to kernel density estimation can be established: If a distribution can be approximated with
error ε by a kernel density estimation then this sample is representative.

Proposition 14. (i) If a distribution D can be ε-approximated by a Kernel Density Estimator with
Gaussian kernels and a diagonal bandwidth matrix using a sample S of size N ∈ N and if the loss
` : Y ×Y → R+ is bounded by L, then for any such sample S there is some ΛN such that (S,ΛN ) is
Lε-representative for f with respect to D and `. (ii) If the probability density function of D lies inside
a d-dimensional kernel Hilbert space with Gaussian kernel Kh, i.e., PD(x, y) ∈ Hd, then (S,ΛN ) is
Lε-representative with ε ∈ O

(
N−

1/4
)
.

Before we proof this proposition it is important to note that this result—in its current form—cannot
be used to obtain a generalization bound using Theorem 10: In Proposition 14, Λ = (λi × νi) is
chosen such that P(λi×νi)(z) = Kh(z), where Kh denotes the Gaussian kernel. Theorem 10 requires
the distribution to be induced by a probability distribution A on feature matrices A with ‖A‖ ≤ δ.
However, since Gaussians have support everywhere, the assumption that ‖A‖ ≤ δ for any finite δ > 0
does not hold. A possible solution would be to use truncated Gaussian kernels, for which ‖A‖ ≤ δ
can be ensured. However, it remains an open question whether there exists a probability distribution
A over feature matrices A that induces suitable truncated Gaussian distributions which would allow
to compute practical bounds on the generalization error.

We now provide the proof to Proposition 14.

Proof. Given a sample S ∼ D with |S| = N , its representativeness is defined as

Rep(S) =

∣∣∣∣∣∣E(x,y)∼D [`(f(x), y)]− 1

N

∑
(xi,yi)∈S

E(ξx,ξy)∼(λi,νi) [`(f(xi + ξx), yi + ξy)]

∣∣∣∣∣∣ .
We can rewrite E(x,y)∼D [`(f(x), y)] as

E(x,y)∼D [`(f(x), y)] =

∫
(x,y)∈X×Y

`(f(x), y)PD(x, y)d(x, y) =

∫
z∈Z

`(z)PD(z)dz ,

where we abbreviate X × Y = Z , z = (x, y), and with slight abuse of notation write `(f(x), y) =
`f (x, y) = `(z) for fixed f . Furthermore, since λi and νi are independent we can rewrite

1

N

∑
(xi,yi)∼S

E(ξx,ξy)∼(λi,νi) [`(f(xi + ξx), yi + ξy)]

=
1

N

∑
(xi,yi)∈S

∫
(ξx,ξy)∈X×Y

`(f(xi + ξx), yi + ξy)P(λi×νi)(ξx, ξy)d(ξx, ξy) .

=
1

N

∑
zi∈S

∫
ξ∈Z

` (zi + ξ))P(λi×νi)(ξ)dξ

By assumption, a Kernel Density Estimator on sample S, i.e.,

P̂ (z) =
1

N

∑
zi∈S

Kh(z − zi)
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with kernel Kh, approximates PD(z) with approximation error ε. Thus, we get that∣∣∣∣∣
∫
z∈Z

`(z)PD(z)dz − 1

N

∑
zi∈S

∫
ξ∈Z

`(zi + ξ)P(λi×νi)(ξ)dξ

∣∣∣∣∣
≤

∣∣∣∣∣
∫
z∈Z

`(z)P̂ (z)dz − 1

N

∑
zi∈S

∫
ξ∈Z

`(zi + ξ)P(λi×νi)(ξ)dξ

∣∣∣∣∣+ εmax
z∈Z

(`(z))

≤

∣∣∣∣∣
∫
z∈Z

`(z)
1

N

∑
zi∈S

Kh(z − zi)dz −
1

N

∑
zi∈S

∫
ξ∈Z

`(zi + ξ)P(λi×νi)(ξ)dξ

∣∣∣∣∣+ εmax
z∈Z

(`(z))

≤ 1

N

∑
zi∈S

∣∣∣∣∫
z∈Z

`(z)Kh(z − zi)dz −
∫
ξ∈Z

`(zi + ξ)P(λi×νi)(ξ)dξ

∣∣∣∣+ εL .

By substituting ζ = z − zi and choosing the (λi × νi) such that P(λi×νi)(z) = Kh(z) (which is
possible since we assumed the bandwidth matrix to be diagonal), we can further rewrite this as

Rep(S) ≤ 1

N

∑
zi∈S

∣∣∣∣∫
z∈Z

`(z)Kh(z − zi)dz −
∫
ξ∈Z

`(zi + ξ)P(λi×νi)(ξ)dξ

∣∣∣∣+ εL

=
1

N

∑
zi∈S

∣∣∣∣∫
ζ∈Z

`(ζ + zi)Kh(ζ)dζ −
∫
ξ∈Z

`(zi + ξ)P(λi×νi)(ξ)dξ

∣∣∣∣+ εL

≤ 1

N

∑
zi∈S

∣∣∣∣∣∣∣
∫
ζ∈Z

`(ζ + zi)
(
Kh(ζ)− P(λi,νi)(ζ)

)︸ ︷︷ ︸
=0

dζ

∣∣∣∣∣∣∣+ εL = εL

If the probability density function ofD lies inside a d-dimensional kernel Hilbert space with Gaussian
kernel Kh, i.e., PD(x, y) ∈ Hd, then it follows from Theorem 4 in Fasshauer et al. (2012) that

ε ≤
√

2

n−
1
4

(
1 +

1

2n−
1
2

) 1
2

∈ O
(
n−

1
4

)

E ADDITIONAL EXPERIMENTS

In addition to the evaluation on the CIFAR10 dataset with LeNet5 network, we also conducted
experiments on the MNIST dataset. For learning with this data, we employed a custom fully
connected network with ReLU activations containing 4 hidden layers with 50, 50, 50, and 30 neurons
correspondingly. The output layer has 10 neurons with softmax activation. The networks were trained
till convergence on the training dataset of MNIST, moreover, the configurations that achieved larger
than 0.07 training error were filtered out. All the networks were initialized according to Xavier normal
scheme with random seed. For obtaining different convergence minima the batch size was varied
between 1000, 2000, 4000, 8000 with learning rate changed from 0.02 to 1.6 correspondingly to
keep the ratio constant. All the configurations were trained with SGD. Figure 5 shows the correlation
between the layer-wise flatness measure based on the trace of the Hessian for the corresponding layer.
The values for all four hidden layers are calculated (the trace is not normalized) and aligned with
values of generalization error (difference between normalized test error and train error). The observed
correlation is strong (with ρ ≥ 0.7) and varies slightly for different layers, nevertheless it is hard to
identify the most influential layer for identifying generalization properties.

We also calculated neuron-wise flatness measures described in Sec. B for this network configurations.
In Figure 6 we depicted correlation between ρlσ and generalization loss for each of the layers, and
in Figure 7–between ρl and generalization loss. The observed correlation is again significant, but
compared to the previous measure we can see that it might differ considerably depending on the layer.

The network-wise flatness measures can based both on layer-wise and neuron-wise measures as
defined in Sec. B. We computed κmaxτ , κΣ

τ , ρmax, and ρΣ and depicted them in Figure 8. Interesting
to note, that each of the network-wise measures has a larger correlation with generalization loss than
the original neuron-wise and layer-wise measures.
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Figure 5: Layer-wise flatness measure calculated for MNIST trained fully-connected network. Four
plots correspond to four hidden layers of the network. For each of the layers a strong correlation with
generalization error can be observed.

Figure 6: Neuron-wise flatness measure ρlσ calculated for each of the hidden layers for the fully-
connected network trained on MNIST dataset. Each plot corresponds to a layer.
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Figure 7: Neuron-wise flatness measure ρl calculated for each of the hidden layers for the fully-
connected network trained on MNIST dataset. Each plot corresponds to a layer.

Figure 8: Network-wise flatness measures based on various neuron-wise and trace layer-wise mea-
sures for the fully-connected network trained on MNIST dataset.
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