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ABSTRACT

The understanding of sensor data has been greatly improved by advanced deep
learning methods with big data. However, available sensor data in the real world
are still limited, which is called the opportunistic sensor problem. This paper
proposes a new variant of neural machine translation seq2seq to deal with con-
tinuous signal waves by introducing the window-based (inverse-) representation
to adaptively represent partial shapes of waves and the iterative back-translation
model for high-dimensional data. Experimental results are shown for two real-life
data: earthquake and activity translation. The performance improvements of one-
dimensional data was about 46 % in test loss and that of high-dimensional data
was about 1625 % in perplexity with regard to the original seq2seq.

1 INTRODUCTION

The problem of shortage of training data but can be supplied by other sensor data is called an
opportunistic sensor problem (Roggen et al.,|2013). For example in human activity logs, the video
data can be missing in bathrooms by ethical reasons but can be supplied by environmental sensors
which have less ethical problems. For this purpose we propose to extend the sequence-to-sequence
(seq2seq) model (Cho et al., 2014; |Sutskever et al.l [2014}; Dzmitry Bahdanau, 2014; [Luong et al.,
2015) to translate signal wave x (continuous time-series signals) into other signal wave y. The
straight-forward extension does not apply by two reasons: (1) the lengths of = and y are radically
different, and (2) both x and y are high dimensionals.

First, while most of the conventional seq2seq models handle the input and output signals whose
lengths are in the same order, we need to handle the output signals whose length are sometimes con-
siderably different than the input signals. For example, the sampling rate of ground motion sensor
is 100Hz and the duration of an earthquake is about 10sec. That is, the length of the output signal
wave is 10000 times longer in this case. Therefore, the segmentation along temporal axis and dis-
carding uninformative signal waves are required. Second, signal waves could be high dimensionals;
motion capture data has 129 dimensions and acceleormeter data has 18 dimensions. While most of
the conventional seq2seq does not require the high-dimensional settings, meaning that it is not usual
to translate multiple languages simultaneously, we need to translate signal waves in high dimensions
into other signal waves in high dimensions simultaneously.

To overcome these two problems we propose 1) the window-based representation function and 2)
the wave2wave iterative back-translation model in this paper. Our contributions are the following:

* We propose a sliding window-based seq2seq model wave2wave (Section d.1)),

* We propose the wave2wave iterative back-translation model (Section [.2)) which is the key
to outperform for high-dimensional data.

2 RELATED WORKS

Related works include various encoder-decoder architectures and generative adversarial networks
(GANSs). First, the encoder-decoder architecture has several variations: (1) CNNs in both sides
(Badrinarayanan et al., [2015), (2) RNNs in both sides (Cho et al. 2014} |Sutskever et al., 2014;
Dzmitry Bahdanau, [2014; |Luong et al.| [2015), or (3) one side is CNN and the other is RNN (Xu
et al., [2015). When one side is related to autoregressive model (van den Oord et al.l |2016)), further
variations are appeared. These architectures are considered to be distinctive. The pros of CNN is an
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efficient extraction of features and overall execution while the pros of RNN is its excellent handling
of time-series or sequential data. CNN is relatively weak in handling time-series data. In this reason,
the time domain is often handled by RNN. The encoder-decoder architecture using CNNs in both
sides is used for semantic segmentation (Badrinarayanan et al.,[2015), image denoising (Mao et al.,
2016)), and super-resolution (Chen et al., 2018)), which are often not related to time-series. In the
context of time-series, GluonTS (Alexandrov et al.,[2019)) uses the encoder-decoder approach which
aims at time-series prediction task where parameters in encoder and decoder are shared. Apart from
the difference of tasks, our approach does not share the parameters in encoder and those in decoder.
All the more our model assumes that the time-series multi-modal data are related to the multi-view
of the same targeted object which results in multiple modalities. Second, among various GAN
architectures, several GANs aims at handling time-series aspect. Vid2vid (Wang et al.| |2018) is an
extension of pix2pix (Isola et al.l|2016) which aims at handling video signals. ForGAN (Koochali
et al.| 2019) aims at time-series prediction task.

3 SEQ2SEQ

Architecture with context vector Let x1.¢ denotes a source sentence consisting of time-series
S words, ie., 1.5 = (x1,x2,...,z5). Meanwhile, y;.7 = (y1,...,yr) denotes a target sen-
tence corresponding to x1.g. With the assumption of a Markov property, the conditional probability
p(y1.7|71.5), translation from a source sentence to a target sentence, is decomposed into a time-step
translation p(y|z) as in (1)

T
log p(y1.7|21:5) = Zlogp(yt|y<t,ct) 1

where y.s = (y1,92,--.,Ys—1) and ¢ is a context vector representing the information of source
sentence x1.s to generate an output word y;.

To realize such time-step translation, the seq2seq architecture consists of (a) a RNN (Reccurent
Neural Network) encoder and (b) a RNN decoder. The RNN encoder computes the current hidden
state hg" given the previous hidden state h$" and the current input x, as in (2):

h{™® = RNNenc (2, h™) 2)
where RNNepc denotes a multi-layered RNN unit.

The RNN decoder computes a current hidden state h{*® given the previous hidden state and then
compute an output y;.

h{*® = RNNge (hi9) (3)
po(Yt|y<t, ct) = softmax (gg(hfec, ct)) 4)
where RNN 4, denotes a conditional RNN unit, gg(-) is the output function to convert h¢e¢ and ¢,

to the logit of y;, and € denotes parameters in RNN units.

With training data D = {y} 7, 2.5}, , the parameters 6 are optimized so as to minimize the loss
function £(#) of log-likelihood:

N T
1
L(0) == D_ D _logpe(u}lyZs, o) )
n=1t=1
or squared error:
1 L Z n 2
£0) = 5 3 (v — 900" e)) ©)
n=1t=1

Global Attention To obtain the context vector c,, we use global attention mechanism (Luong
et all 2015). The global attention considers an alignment mapping in a global manner, between
encoder hidden states h®"® and a decoder hidden step h{ec.

at(s) = align(hdec, h"°) @)
exp(score(hgec, hene)

= ¥
Zf exp(score(hgec henc))
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Figure 1: Overall architecture of our method, wave2wave, consisting RNN encoder and decoder with
context vector and sliding window representation. Input and output time-series data are toy examples
where the input is generated by combining sine waves with random magnitudes and periods. The
output is the version of the input flipped horizontally.

where the score is computed by weighted inner product as follows
score(h{'*", h{") = h{t* W, h(™ ©)

where the weight parameter W, is obtained so as to minimize the loss function £(). Then, the
context vector c; is obtained as a weighted average of encoder hidden states as

S
¢ = a(s)hd™ (10)
s=1

4 PROPOSED METHOD: WAVE2WAVE

The problems of global attention model are that (1) the lengths of input and output are radically
different, and that (2) both input and output sequences are high dimensionals. For example in activity
translation, there are 48 motion sensors and 3 accelerometer sensors. Their frequency rates are
as high as 50Hz and 30Hz respectively. Therefore, the number of steps .S, T' in both encoder
and decoders are prohibitively large so that the capturing information of source sentence x1.g is
precluded in the context vector c.

4.1 WINDOW-BASED REPRESENTATION

Let us consider the case that source and target sentences are multi-dimensional continuous time-
series, signal waves, as shown in Figure E That is, each signal at time-step x1.g is expressed as
dx-dimensional vector x,—there are dx sensors in the source side. Then a source signal wave x;.g
consists of S-step dx-dimensional signal vectors, i.e., X1.5 = (X1,Xa2,...,Xgs).

"We note that signal waves in Figureare depicted as one-dimensional waves for clear visualization.
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To capture an important shape informaion from complex signal waves (see Figure[I)), we introduce
trainable window-based representation function R(-) as

renc — R( enc) (11)

s’ s’

where WS¢ is a s’-th window with fixed window-width w®"°, expressed as dy x w°°-matrix as

Wse/nc = [Xwenc(5/71)+1,Xwexlc(s/71)+2, ce ,Xwexxc(s/,1)+wenc} 5 (12)
and rgi° is extracted representation vector inputted to the seq2seq encoder as shown in Figure []

—the dimension of r¢"¢ is the same as the one of the hidden vector P

Similarly, to approximate the complex target waves well, we introduce inverse representation func-
tion, R™1(-) which is separately trained from R~*(-) as

Wgee = R (rfe) (13)
where rdec is the ¢’-th output vector from seq2seq decoder as shown in Figure |1} and Wdec is a
window rnatrix which is corresponding to a partial wave of target waves y1.7 = (y1, . - - 7yT)

The advantage of window-based architecture are three-fold: firstly, the number of steps in both
encoder and decoder could be largely reduced and make the seq2seq with context vector work stably.
Secondly, the complexity and variation in the shape inside windows are also largely reduced in
comparison with the entire waves. Thus, important information could be extracted from source
waves and the output sequence could be accurately approximated by relatively simple representation
R(-) and inverse-representation R~!(-) functions respectively. Thirdly, both representation R(-) and
inverse-representation R~1(-) functions are trained end-to-end manner by minimizing the loss £(6)
where both functions are modeled by fully-connected (FC) networks.

Figure [I] depicts the overall architecture of our wave2wave with an example of toy-data. The
wave2wave consists of encoder and decoder with long-short term memory (LSTM) nodes in their
inside, representation function R(WZ™°) and inverse- representatlon function R™H(W3e°). In this
figure, one-dimensional 10000-time-step continuous time-series are considered as an input and an
output and the width of window is set to 2000— there are 5 window steps for both encoder and de-
coder, i.e., w = w® = 2000 and S’ = T’ = 5. Then, 1 x 2000 encoder-window-matrix W ¢
is converted to d, dimensional encoder-representation vector r¢’¢ by the representation functlon
R(WERS) . Meanwhile, the output decoder, d, dimensional decoder-representation r°, is con-
verted to 1 x 2000 decoder-window-matrix W3¢ by the inverse representation function R~ (rdec).

4.2 WAVE2WAVE ITERATIVE MODEL

We consider two different ways to tackle with high-dimensional sensor data. Since NMT for ma-
chine translation handles embeddings of words, the straightforward extention to high-dimensional
settings uses the dy-dimensional source signal at the same time step as source embeddings, and the
d,-dimensional target signal at the same time step as target embeddings. We call this a wave2wave
model, i.e. our standard model. Alternatively, we can build d,, independent embeddings separately
for corresponding individual 1-dimensional target signal at each time step while we use the same
dx-dimensional source signal embeddings. We call this a Wave2Wavelterative model. We suppose
that the former model would be effective when sensor data are correlated while the latter model
would be effective when sensor data are independent. Algorithm 1 shows the latter algorithm.

Algorithm 1: Wave2wavelterative model

Data: srcq, 5, tgta, x T €sre X, €4gs, y;-ly
def trainWave2Wavelterative(egc X S, ergr x T):
for j = (1,dy) do
| f(j) = trainWave2Wave(es. X S,erge, XT);
end

Note that the embedding eg... is equivalent to dy-dimensionally decomposed representation of r¢ic,

and e is equlvalent to dy-dimensionally decomposed representation of rj; dec The back- translatlon
is a technique to improve the performance by bi-directional translation removing the noise under
a neutral-biased translation (Hoang et al., 2018). We deploy this technique which we call the
wave2wave iterative back-translation model.
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method \ train loss  test loss

simple encoder-decoder d, = 100 1.13 0.53
simple encoder-decoder d, = 500 0.90 0.47
simple encoder-decoder d, = 1000 0.41 0.63
simple seq2seq w™¢ = W = 500 9.27 2.87
simple seq2seq w°™¢ = W = 1000 9.87 2.79
simple seq2sequ®™® = W9 = 2000 6.82 2.60
wave2wave w®™ = W = 500 0.67 0.44
wave2wave w®¢ = W = 1000 0.17 0.34
wave2wave w¢ = e = 2000 0.25 0.43

Table 1: Mean squared loss of simple encoder-decoder methods, simple seq2seq methods and our
wave2wave in earthquake ground motion data

5 EVALUATION ON REAL-LIFE DATA: GROUND MOTION TRANSLATION

In this section, we apply our proposed method, wave2wave, to predict a broadband-ground mo-
tion from only its long-period motion, caused by the same earthquake. In this section, wave2wave
translates one dimensional signal wave into one dimensional signal wave.

Ground motions of earthquakes cause fatal damages on buildings and infrastructures. Physics-based
numerical simulators are used to generate ground motions at a specific place, given the property of
earthquake, e.g., location and scale to estimate the damages on buildings and infrastructures (Iwaki
& Fujiwaral 2013). However, the motion generated by simulators are limited only long periods,
longer than 1 second due to heavy computational costs, and the lack of detailed knowledge of the
subsurface structure.

A large amount of ground motion data have been collected by K(kyosin)-NET over the past 20 years
in Japan. Machine learning approaches would be effective to predict broadband-ground motions
including periods less than 1 second, from simulated long period motions. From this perspective,
we apply our method wave2wave to this problem by setting long-ground motion as an input and
broadband-ground motion as an output, with the squared loss function £(6).

As for training data, we use 365 ground motion data collected at the observation station, IBRO11,
located at Ibaraki prefecture, Japan from Jan. 1, 2000 to Dec. 31, 2017—originally there are 374
data but 10 data related Tohoku earthquakes and the source deeper than 300m are removed. As for
testing, we use 9 ground-motion data of earthquakes occurred at the beginning of 2018.

In addition, both long and broadband ground motion data are cropped to the fixed length, i.e., s =
t = 10000ms and its amplitude is smoothed using RMS (Root Mean Square) envelope with 200ms
windows to capture essential property of earthquake motion. Moreover, as for data augmentation, in-
phase and quadrature components, and those absolute values are extracted from each ground motion.
That is, there are totally 365 x 3 training data. Figure [2a]shows an example of 3 components of a
ground motion of earthquake occurred on May 17, 2018, Chiba in Japan, and corresponding RMS
envelopes.

Table 1| depicts the mean-squared loss of training of three methods, simple encoder-decoder, simple
seq2seq, and our proposed method with the same setting as the toy data except h°*"¢ = hdec =
50. This table shows that our wave2wave methods basically outperform other methods although
wave2wave with the small window-width w®"¢ = wde¢ = 500 is lost by simple encoder-decoder
with large hidden layer d, = 1000 in train loss. This indicates that window-based representation

and inverse-representation functions are helpful similarly in toy data.

Figure [2b]depicts examples of predicted broadband ground motions of earthquakes occurred on Jan.
24 and May 17, 2018. These show that our method wave2wave predict enveloped broadband ground
motion well given long-period ground motion although there is little overfitting due to small training
data.

It is expected that predicted broadband-motion combined with simulated long-period motion could
be used for more accurate estimation of the damages on buildings and infrastructures.
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(b) Predicted broadband ground motion on Jan. 24, 2018
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(c) Predicted broadband ground motion on May. 17, 2018

Figure 2: fop: Example of original and enveloped ground motion data with in-phase, quadrature
components and these absolute values. middle and bottom: predicted broadband ground motion by
our methods wave2wave for earthquakes occurred on Jan. 24, 2018 and May. 17, 2018.

6 EVALUATION ON REAL-LIFE DATA: ACTIVITY TRANSLATION

This section deploys wave2wave for activity translation (Refer Figure[3). Until the previous section,
the signals were one dimensions. The signals in this section are high-dimensional in their inputs
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as well as outputs. The dimensions of motion capture, video, and accelerometer are 129, 48, and
18 dimensions, respectively, in the case of MHAD dataseﬂ Under the mild assumption that the

Activity translation task

video Motion capture

Figure 3: Figure shows activity translation task and activity recognition task which we conduct
experiments.

targeted person which are recorded in three different modalities, including motion capture, video,
and accelerometer, are synchronized and the noise such as the effect of other surrounding persons is
eliminated. Hence, we assume that each signal shows one of the multi-view projections of a single
person. That is, we can intuitively think that they are equivalent. Under this condition, we do a
translation from motion capture to video (Similarly, accelerometer to motion capture, and video to
accelerometer, and these inverse directions).

6.0.1 OVERALL ARCHITECTURE

Wave Signal Figure [3| shows that motion capture and video can be considered as wave signal.
When video is input, W"¢ takes the form of pose vectors which are converted by OpenPose li-
brary (Cao et al., 2017). Then, this representation is convereted into the window representation by
R(WEP). When motion capture is input, WW"° takes the form of motion capture vectors. In this way
we used these signals for input as well as output for wave2wave. The raw output are reconstructed
by R™(W3e°) for the output of representation W J¢°.

Wave Signal Dimensionality Reduction As an alternative to use FC layer before the input, we
use the clustering algorithm, specifically an affinity propagation (Frey & Dueck, [2007), in order
to reduce the size of representation as a whole. While most clustering algorithms need to supply
the number of clusters beforehand, this affinity propagation algorithm solves the appropriate cluster
number as a result.

Multi-Resolution Spatial Pyramid Additinaly structures in wave2wave is the multi-scalability
since the frame rate of multimodal data are considerably different. We adopted the approach of
multi-resolution spatial pyramid by a dynamic pose (Neverova et al.l 2014). We assume that the
sequence of frames across modalities is synchronized and sampled at a given temporal step v and
concatenated to form a spatio-temporal 3-d volume.

6.0.2 EXPERIMENTAL EVALUATION

Experimental Setups We used the MHAD dataset from Berkeley. We used video, accelerometer,
and mocap modalities. We used video with Cluster-01/Cam01-02 subsets, and the whole mocap
(optical) and accelerometer data with 12 persons/5 trials. Video input was preprocessed by Open-
Pose which identifies 48 dimensions of vectors. Optical mocap had the position of the keypoints
whose dimension was 129. Accelerometer were placed in 6 places in the body whose dimension

was 18. We used the parameters in wave2wave with cross entropy loss function £(f) = —+; 25:1
log po (y7.7|xT.g) with LSTM modules 500, embedding size 500, dropout 3, maximum sentence
length 400, and batch size 100. We used Adam optimizer. We used v = 2, 3, 4 for multi-resolution
spatial pyramid. We used the same parameter set for wave2wave interactive model. We use Titan
Xp.

http://tele-immersion.citris-uc.org/berkeley mhad.
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(wenC,WdeC) ppl d, = |ppl dz = |ppld, = |ppl d. = |ppl dz = | ppl d,
1 129 1 129 1 129

[ seq2seq baseline [ seq2seq clustering [

[58000.42 | 52000.33 | 5.20 [30.22 |

\ wave2wave \ wave2wavelte | wave2wavelteBacktrans
1,16) 213 19.74 9.13 172 2.13 473
(5,80) 0.33 10.73 0.33 3.44 0.32 3.40
(10,160) 0.42 11.28 0.42 3.49 0.42 3.48
(20,320) 0.72 13.67 0.72 3.78 0.72 3.75
(30,480) 1.21 15.03 1.21 4.11 1.21 4.11
(60,960) 4.30 35.98 4.30 6.81 4.30 6.82

Table 2: Figure shows major experimental results for acc2moc.

Human Understandability One characteristic of activity translation can be observed in the direc-
tion of wave2wave translation with accelerometer to video, e.g. acc2cam. That is, the accelerometer
data takes the form that is not understandable by human beings by its nature but translation to video
makes this visible. By selecting 50 test cases, the human could understand 48 cases. 96 % is fairly
good. The second characteristic of activity translation is opportunistic sensor problem, e.g. when
we cannot use video camera in bathrooms, we use other sensor modality, e.g. accelerometer, and
then translate it to video which can use at this opportunity. This corresponds to the case of ac-
celeromter to video, e.g. acc2cam. We conduct this experiments. Upon watching the video signals
on a screen we could observe the basic human movements. By selecting 50 test cases, the human
could understand 43 cases.

Experimental Results Major experimental results are shown in Table We used w®¢ =
{1,5,10,20,30,60}. For each window size we measured one target with perplexity (ppl) and the
whole target with perplexity (ppl). We compared several wave2wave results with (1) the seq2seq
model without dimensionality reduction (via clustering), (2) the seq2seq model with dimensionality
reduction. All the experiments are done with the direction from accelerometer to motion capture
(acc2moc).

Firstly, the original seq2seq model did not work well without dimensionality reduction of input
space. The perplexity was 58000.42. This figure suggests that the optimization of deep learning did
not go progress due to the complexity of the training data or the bad initialization. However, the
results were improved fairly well if we do dimensionality reduction using clustering. This figure is
close to the results by wave2wave (iterative) with w*"*® = 60.

Secondly, w**¢ = 5 performed better than other window size for perplexity when d, = 1. When
this became high dimensional, the wave2wave iterative model performed better than the wave2wave
mode: 3.44 vs 10.73 in perplexity. Since motion capture has d, = 129 dimensions, the representa-
tion space becomes R% when we let R denote the parameter space of one point in motion capture.
Compared with this the wave2wave iterative model equipped with the representation space linear
with R. The wave2wave iterative model has an advantage in this point. Moreover, the wave2wave
iterative back-translation model made the best score in perplexity when d, = 1 as well as d, = 129.

7 CONCLUSION

We proposed a method to translate between waves wave2wave with a sliding window-based mech-
anism and iterative back-translation model for high-dimensional data. Experimental results for two
real-life data show that this is positive. Performance improvements were about 46 % in test loss for
one dimensional case and about 1625 % in perplexity for high-dimensional case using the iterative
back-translation model.
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