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ABSTRACT

Can the success of reinforcement learning methods for simple combinatorial op-
timization problems be extended to multi-robot sequential assignment planning?
In addition to the challenge of achieving near-optimal performance in large prob-
lems, transferability to an unseen number of robots and tasks is another key chal-
lenge for real-world applications. In this paper, we suggest a method that achieves
the first success in both challenges for robot/machine scheduling problems.
Our method comprises of three components. First, we show a robot schedul-
ing problem can be expressed as a random probabilistic graphical model (PGM).
We develop a mean-field inference method for random PGM and use it for Q-
function inference. Second, we show that transferability can be achieved by care-
fully designing two-step sequential encoding of problem state. Third, we resolve
the computational scalability issue of fitted Q-iteration by suggesting a heuristic
auction-based Q-iteration fitting method enabled by transferability we achieved.
We apply our method to discrete-time, discrete space problems (Multi-Robot Re-
ward Collection (MRRC)) and scalably achieve 97% optimality with transferabil-
ity. This optimality is maintained under stochastic contexts. By extending our
method to continuous time, continuous space formulation, we claim to be the first
learning-based method with scalable performance among multi-machine schedul-
ing problems; our method scalability achieves comparable performance to popular
metaheuristics in Identical parallel machine scheduling (IPMS) problems.

1 INTRODUCTION

Imagine we are given a set of robots and want to service a set of spatially distributed tasks. A reward
is given when serving each task fast (decaying reward collection), or when finishing the whole task
fast (makespan minimization). As physical control and routing of individual robots are becoming
highly capable [Li (2017)], efficient orchestration of robots arises as the important remaining issue.
Recent advances in probabilistic inference [Agha-mohammadi et al. (2014)] allows us to infer the
probabilistic distribution of time required for controlling and routing a robot to complete a task.
We will call the random variable with this probability distribution task completion time. Using task
completion time information, this orchestration problem can be formulated as a stochastic schedul-
ing planning problem with sequential decision making [Omidshafiei et al. (2017)]. As pointed in
[Omidshafiei et al. (2017)], one of the most important bottleneck in this problem is inscalability; as
the number of robots and tasks increases, existing methods suffer from either exponentially increas-
ing computation time or significant performance loss [Rossi et al. (2018)].

Recently, there has been some seminar works in learning-based algorithms that scalably solve trav-
eling salesman problem (TSP) [Bello et al. (2016); Dai et al. (2017); Kool et al. (2018)]. They
formulate TSP as single-robot sequential assignment decision-making problems minimizing trav-
eling cost. However, there has not yet been reported success in multi-robot scheduling problem
except for special cases when the problem can be extended as a variant of single-robot traveling cost
minimization method with multiple routing of a single robot [Nazari et al. (2018)].

Near-optimal performance with scalability. In this paper, we introduce a general type of prob-
lem called Multi-Robot Reward Collection (MRRC) problems and show that this type of problems
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can be scalably solved by our method with near-optimal performance. While learning-based meth-
ods are generally believed to suffer exponentially increasing training requirements as problem size
(number of robots and tasks) increases, our method’s training requirement is empirically shown not
to scale while maintaining near-optimal performance. While MRRC was simulated under discrete
state/time space in this paper, this success extends to problems with continuous state/time space;
our method claims to be the first learning-based method with scalable performance among machine
scheduling problems; our method achieves scalability (e.g. 10 machines, 100 tasks) with comparable
performance to popular heuristics in Identical Parallel Machine Scheduling (IPMS).

Transferability. In addition to scalability, we claim that our method possesses transferability. Trans-
ferability means that a trained policy can be applied to new environments with a small loss of perfor-
mance [Wang et al. (2018)]. In real-world applications, engineers aren’t given a whole real system
for training, but rather given a small testbed environment for training; even if the whole system
is given for training, system design or the number of robots would be frequently changed during
operation. We show that our method achieves transferability with almost no performance loss.

Our method stems from the work of [Dai et al. (2017)]. In this seminar paper, they observe that
combinatorial optimization problems such as TSP can be formulated as a sequential decision mak-
ing problem: at each decision step, they grow a partial solution s by choosing increment a with
minimum future cost estimate Q(s, a). Under this observation, [Dai et al. (2017)]’s solution frame-
work can be described by the following three aspects. 1) For each combinatorial optimization prob-
lem, one can carefully find a heuristic way to induce a graph representation of (s, a) (in case of
TSP, the paper induces a fully connected graph for every possible next increment). 2) This in-
duced graph representation can be considered as a probabilistic graphical model (PGM) [Koller &
Friedman (2009)]). This model can be used for a graph-based mean-field inference method called
structure2vec [Dai et al. (2016)] to infer Q(s, a) and solve a combinatorial optimization problem.
3) Inference of Q(s, a) can be learned by reinforcement framework called fitted Q-iteration.

Our method shares the overall solution framework with [Dai et al. (2017)], but designed specifically
to achieve scalability and transferability in multi-robot sequential assignment decision making prob-
lems. To be specific, our method differs from [Dai et al. (2017)] in the following aspects:
1. State representation and theory of mean-field inference with random PGM. Instead of heuris-
tically inducing a PGM, we analytically show that a robot scheduling problem exactly induces a type
of random PGM. Since there exists no mean-field inference theory for random PGM, we develop
the theory and corresponding new structure2vec equation with simple extra inference task.
2. Sequential encoding of information for transferability. To achieve transferability in terms of
the number of robots and tasks, we carefully design a two-step hierarchical mean-field inference
[Ranganath et al. (2015)]. Each inference step is designed to infer certain information: the first step
is designed to infer ‘each task’s relative graphical distance from robots’; the second step is designed
to infer Q(s, a) (a here means a joint assignment of robots). While the first step is by its nature
transferable to any number of tasks and robots, the transferability in inference of the second step is
achieved by scale-free characteristic of fitted Q-iteration [van Hasselt et al. (2015)]; relative magni-
tudes of Q(s, a) values instead of their actual magnitudes is important in selecting action a.
3. Auction-based assignment. Even if we can infer Q(s, a) precisely, the computation time for
finding action a with maximum Q(s, a) exponentially increases as robots and task increases. To
solve this issue, we suggest a heuristic auction that is enabled by transferability of Q(s, a) infer-
ence. While this heuristic auction selects a with polynomial computation complexity, it also gives a
surprisingly good choice of a (In fact this heuristic auction increases the performance empirically).
4. Auction-fitted Q-iteration. The heuristic auction-based action selection can be incorporated into
learning (fitting) Q(s, a) with approximation. To be specific, we use the auction-based action se-
lection scheme, instead of typical max-operator based action selection, in Bellman equation during
fitted Q-iteration. We call this new learning framework as auction-fitted Q-iteration.

2 MULTI-ROBOT/MACHINE SCHEDULING PROBLEM FORMULATION

Throughout this study, we formulate problems as centralized sequential assignment planning prob-
lem: we assume an assignment decision maker who instantaneously achieves necessary information
to infer the distribution of all possible task completion times (this indicates perfect communication).
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2.1 MULTI-ROBOT REWARD COLLECTION (MRRC)

Here we formulate MRRC in a discrete-state, discrete-time sequential assignment decision mak-
ing problem (In appendix A, we discuss how MRRC can be formulated with continuous-state and
continuous-time space and can be solved by using our method). The initial location and ending
location of robots and tasks are arbitrary on a grid (e.g., grid world). We assume that task is serviced
immediately after a robot arrives (In appendix A, we extend how our method can be easily extended
to address setup time and processing time). Under these assumptions, at each time-step, we can
assign every robot to every remaining task. This problem can be cast as a Markov Decision Problem
(MDP) whose state, action, and reward are defined as follows:

State. State st at time step t is a directed graph Gt = (Rt ∪Tt, Et): Rt is the set of all robots and Tt
is the set of all tasks; The set of directed edges Et = ERTt ∪ ETTt where a directed edge εritj ∈ ERTt
is a random variable which denotes task completion time of robot i inRt to service task j in Tt and
a directed edge εtitj ∈ ETTt denotes a task completion time of a robot which just finished serving
task i in Tt to service task j in Tt.
Action. The action at at time step t is the joint assignment of robots given the current state st = Gt.
The feasible action should satisfy the two constraints: No two robots can be assigned to a task; some
robots may not be assigned when number of robots are more than remaining tasks. To best address
those restrictions, we define an action at at time t as a maximal bipartite matching in bipartite sub-
graph ((Rt, Tt), ERTt ) of graph Gt. For example, robot i in Rt is matched with task j in Tt in an
action at if we assign robot i to task j at time-step t. We denote the set of all possible actions at
time-step t as At.
Reward. In MRRC, Each task has an arbitrarily determined initial age. At each time-step, the age
of each task increases by one. When a task is serviced, a reward is determined only by its age when
serviced. Denote this reward rule as R(t). One can easily see that whether a task is served at time-
step t is completely determined by st, at and st+1. Therefore, we can denote the reward we get with
st, at and st+1 as R(st, at, st+1).

Objective. We can now define an assignment policy φ as a function that maps a state st to an action
at. Given s0 initial state, an MRRC problem can be expressed as a problem of finding an optimal
assignment policy φ∗ such that

φ∗ = argmax
φ

E

[ ∞∑
t=0

R (st, at, st+1) |s0

]
.

2.2 IDENTICAL PARALLEL MACHINE SCHEDULING (IPMS) MAKE-SPAN MINIMIZATION

IPMS is a problem defined in continuous state/continuous time space. Machines are all identical, but
processing times of tasks are all different. In this paper, we discuss IPMS with ‘sequence-dependent
setup time’. In this case, a machine’s setup time required for servicing a task i is determined by
its previously served task j. In this case, the task completion time is the sum of setup time and
processing time. Under this setting, we solve IPMS problem for make-span minimization objective
discussed in [Kurz et al. (2001)]; That is, minimizing the total time spent from start to end to finish
all tasks. IPMS formulation resembles MRRC formulation in continuous time space with continuous
state space (Appendix B) and we relegate the detailed formulation to the Appendix.

3 ROBOT ASSIGNMENT AT EACH TIME-STEP

As in [Dai et al. (2017)], we employ Q-function based action choice; at state st, we choose action
at using Q(st, at) inference. However, even if we can infer Q(st, at) well, Q-function based action
choice suffers from exponentially increasing computational complexity with the number of agents.
This section introduces 1) how we can express (st, at) as a graph representation 2) how we can
make inference about Q(st, at) in a transferable way using the sequential graph embedding 3) how
we can select a joint assignment of robots with polynomial computation complexity by using the
heuristic auction and the transferable inference on Q(st, at).
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3.1 RANDOM PGM-REPRESENTATION AND A NEW THEORY FOR MEAN-FIELD INFERENCE

This section discusses how our problems can be represented as a random probabilistic graphical
model (PGM) for structure2vec inference method. While one can heuristically induce a PGM as
[Dai et al. (2017)] for structure2vec, we illustrate that a robot scheduling problem induces an exact
graphical model we call ’random’ PGM. Since there is no mean-field inference theory for random
PGM, we develop a new theory and corresponding new structure2vec in this section.

While PGM-based mean-field inference methods require prior knowledge of whole probabilistic
relationships (called cliques) of PGM, structure2vec requires only the structure (existence of each
possible cliques) of PGM with learning of neural networks (in fixed point iterations that surrogates
the fixed-point iterations of mean-field inference with PGM). The observation we make is that in
robot scheduling problems the structure of PGM itself is random. Suppose that we know the future
path of all robots from a given state. For each task ti ∈ Tt, define a random variable Xi as ‘some
characteristic of task ti’ (e.g. when task i is served). Given the future path, the relationship among
{Xi} is a well-defined PGM (a Bayesian Network - see Appendix C). However, this future path will
be random because of the randomness of task completion times. We thus define ‘random’ PGM: A
probabilistic model of how a PGM is randomly chosen from a set of possible PGMs with {Xi} and
set of all possible probabilistic relationships C (we call them ‘semi-cliques’). In robot scheduling
problem, a semi-clique Dij ∈ C is a conditional dependence Xi|Xj . The semi-clique Dij presents
as an actual clique if and only if the robot which finishes task ti chooses task tj as next task.

Note that inference of probability model for all possible future path of robots with random task
completion times is challenging. The following theorem for mean-field inference with random PGM
is an extension of mean-field inference with PGM [Koller & Friedman (2009)] and suggests that only
a simple inference task is required: inferring the presence probability of each semi-cliques.

Theorem 1. Mean field inference with random PGM. Suppose that a PGM is to be randomly
chosen among PGMs with {Xk} and semi-cliques C. Denote the presence probability of semi-
clique Dm ∈ C as pm. The latent variable distribution {qk(xk)} in mean-field inference is locally
optimal only if

qk (xk) =
1

Zk
exp

{ ∑
m:Xk∈Dm

pmE(Dm−{Xk})∼q [lnφm (Dm, xk)]

}
where Zk is a normalizing constant and φm is the probabilistic relationship for clique m.

From this new theory, we can derive the structure2vec inference method with random PGM. As in
[Dai et al. (2016)], we restrict our discussion to when every semi-clique is between two random
variables. In this case, a semi-clique can be written as Dij with its presence probability pij .

Lemma 1. Structure2vec for random PGM Suppose we are given a random PGM with {Xk} and
semi-cliques C = {Dij} with {pij}. The fixed point iteration in Theorem 1 for posterior marginal
p({Hk}|{xk}) can be embedded in a nonliner function mapping with embedding vector µ̃k (which
summarizes the latent variable distribution qk(xk)) and Xk as:

µ̃k = σ

W1xk +W2

∑
j 6=k

pkj µ̃j

 .

Proof of Theorem 1 and lemma 1. For brevity, proofs are relegated to the Appendix D and E (We
use a neural network as a nonlinear function approximator with W1 and W2 trainable parameters)

Corollary 1. For a robot scheduling problem with set of tasks ti ∈ Tt, the random PGM represen-
tation for structure2vec in lemma 1 is ((Tt, ETTt ), {pij}) where {pij} denotes the probability of a
robot choosing task ti after serving tj .

{pij} inference procedure employed in this paper is as follows. Denote ages of task i, j as agei,
agej . Note that if we generate M samples of εij as {ekij}Mk=1, then 1

M

∑M
k=1 f(ekij , agei, agej) is an

unbiased and consistent estimator of E[f(εij , agei, agej)]. For each sample k, for each task i and
task j, we form a vector of ukij = (ekij , agei, agej) and compute gij =

∑M
k=1

1
MW1(relu(W2u

k
ij).

We obtain {pij} from {gij} using softmax. Algorithm details are in Appendix F.
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Figure 1: Illustration of overall pipeline of our method

3.2 TRANSFERABLE INFERENCE OF Q-FUNCTION USING STRUCTURE2VEC

The key to transferable inference for Q(st, at) is the two-step sequential state embedding with hier-
archical variational inference [Ranganath et al. (2015)]. We here suppose that we are given a graph
representation ((Tt, ETTt ), {pij}). Then we can apply Corollary 1 of section 3.1 to infer Q(st, at).
For brevity, we illustrate the inference procedure for the special case when task completion time
is not a random variable, but a value in R (Appendix G illustrates how we can combine random
sampling to inference procedure to deal with task completion times as a random variable).

Step 1. Distance Embedding. The first step is designed to infer each task’s ‘relative graphical
distance’ from all robots. As illustrated in Dai et al. (2016), the output vectors {µ̃1

k} of structure2vec
embeds a local graph structure around that vector node. As the input of first structure2vec ({xk}
in lemma 1), we only use robot assignment information (if tk is an assigned task, we set xk as ‘task
completion time of assignment’; if tk is not an assigned task:, we set xk = 0). This procedure is
illustrated in Figure ??. According to [Dai et al. (2016)], the output vectors {µ̃1

k} of structure2vec
will include sufficient information about the relative graphical distance from all robots to each task.

Step 2. Value Embedding. The second step is designed to infer ’How much value is likely in the
local graph around each task’. Remind that vectors {µ̃1

k}, output vectors of the first step, carries
information about the relative graphical distance from all robots to each task. We concatenate ‘age’
of each tasks {agek} to each corresponding vector in {µ̃1

k} and use the resulting graph as an input
({xk} in lemma 1) of second structure2vec, as illustrated in Figure ??. Again, vectors {µ̃2

k} of the
output graph of second structure2vec operation embeds a local graph structure around each node.
Our intuition is that {µ̃2

k} includes sufficient information about ’How much value is likely in the
local graph around each task’.

Step 3. ComputingQ(st, at). To inferQ(st, at), we aggregate the embedding vectors for all nodes,
i.e., µ̃2 =

∑
k µ̃

2
k to get one vector µ̃2 which embeds the ‘value likeliness’ of the global graph. We

then use a layer of neural network to map µ̃2 into Q(st, at). The detailed algorithm of above whole
procedure (combined with random task completion times) is illustrated in Appendix G.

Why are each inference steps transferable? For the first step, it is trivial; the inference problem is
a scale-free task. In the second step, the ‘value likeliness’ will be underestimated or overestimated
according to the ratio of (number of robots/number of tasks) in a local graph: underestimated if ratio
in training environment is smaller than the ratio in the testing environment; overestimated otherwise.
The key idea solving this problem is that this over/under-estimation does not matter in Q-function
based action decision [van Hasselt et al. (2015)] as long as the order of Q-function value among
actions are the same. While analytic justification of this order invariance is beyond this paper’s
scope, the fact that there is no over/underestimation issue in the first step inference problem helps
this justification.
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3.3 ACTION SELECTION USING HEURISTIC AUCTION

In Q-function based action choice, at each time-step t, we find an action with largest Q(st, at).
We call this action choice operation ’max-operation’. The problem in max-operation in multi-robot
setting is that the number of computation exponentially increases as the number of robots and tasks
increases. In this section, we show that transferability of Q-function inference enables designing an
efficient heuristic auction that replaces max operation. We call it auction-based policy(ADP) and
denote it as φQθ , where Qθ indicates that we compute φQθ using current Qθ estimator.

At time-step t, a state st is a graph Gt = (Rt∪Tt, Et) as defined in section 2.1. Our ADP, φQθ , finds
an action at (which is a matching in bipartite graph ((Rt, Tt), ERTt ) of graph Gt) through iterations
between two phases: the bidding phase and the consensus phase. We start with a bidding phase. All
robots initially know the matching determined in previous iterations. We denote this matching as Y ,
a bipartite subgraph of ((Rt, Tt), ERTt ). When making a bid, a robot ri ignores all other unassigned
robots. For example, suppose robot ri considers tj for bidding. For ri, Y ∪ εij is a proper action
(according to definition in section 2.1) in a ‘unassigned robot-ignored’ problem. Robot ri thus can
compute Q(st,Y ∪ εritj ) of ‘unassigned robot-ignored’ problem for all unassigned task tj . If task
t∗ is with the highest value, robot ri bids {εrit∗ , Q(st,Y ∪ εrit∗)} to auctioneer. Since number of
robots ignored by ri is different at each iteration, transferability of Q-function inference plays key
role. The consensus phase is simple. The auctioneer finds the bid with the best value, say {ε∗, bid
value with ε∗}. Then auctioneer updates everyone’s Y as Y ∪ {ε∗}.
These bidding and consensus phases are iterated until we can’t add an edge to Y anymore. Then
the central decision maker chooses Y as φQθ (sk). One can easily verify that the computational
complexity of computing φQθ is O (|LR| |LT |), which is only polynomial. While theoretical per-
formance guarantee of this heuristic auction is out of this paper’s scope, in section 5 we show that
empirically this heuristic achieves near-optimal performance.

4 LEARNING ALGORITHM

4.1 AUCTION-FITTED Q-ITERATION FRAMEWORK

In fitted Q-iteration, we fit θ of Qθ(st, at) with stored data using Bellman optimality equation. That
is, chooses θ that makes E

[
Qθ (sk, ak)−

[
r (sk, ak) + γmaxa′

(
Qθ
(
s′k+1, a

′
k+1

))]
small. Note

that every update of θ needs at least one max-operation.

To solve this issue, we suggest a learning framework we call auction-fitted Q-iteration.
What we do is simple: when we update θ, we use auction-based policy(ADP) defined in
section 3.3 instead of max-operation. That is, we seek the parameter θ that minimizes
E
[
Qθ (sk, ak)−

[
r (sk, ak) + γ

(
Qθ
(
s′k+1, φQθ

(
s′k+1

)))]
.

4.2 EXPLORATION FOR AUCTION-FITTED Q-ITERATION

How can we conduct exploration in Auction-fitted Q-iteration framework? Unfortunately, we can’t
use ε-greedy method since such randomly altered assignment is very likely to cause a catastrophic
result in problems with combinatorial nature.

In this paper, we suggest that parameter space exploration [Plappert et al. (2017)] can be applied.
Recall that we useQθ (sk, ak) to get policy φQθ (sk). Note that θ denotes all neural network param-
eters used in the structure2vec iterations introduced in Section 5. Since Qθ (sk, ak) is parametrized
by θ, exploration with φQθ (sk) can be performed by exploration with parameter θ. Such exploration
in parameter space has been introduced in the policy gradient RL literature. While this method was
originally developed for policy gradient based methods, exploration in parameter space can be par-
ticularly useful in auction-fitted Q-iteration.

The detailed application is as follows. When conducting exploration, apply a random perturbation
on the neural network parameters θ in structure2vec. The resulting a perturbation in the Q-function
used for decision making via the auction-based policy φQθ (sk) throughout that problem. Similarly,
when conducting exploitation, the current surrogate Q-function is used throughout the problem.
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Table 1: Performance test (50 trials of training for each cases)

Reward Environment Baseline Robots (R) / Tasks (T)
2R/20T 3R/20T 3R/30T 5R/30T 5R/40T 8R/40T 8R/50T

Linear
Deterministic Optimal 98.31% 97.50% 97.80% 95.35% 96.99% 96.11% 96.85%

±4.23 ±4.71 ±5.14 ±5.28 ±5.42 ±4.56 ±3.40
(%SGA) (137.3) (120.6) (129.7) (110.4) (123.0) (119.9) (119.8)

Stochastic Optimal N/A
(%SGA) (130.9) (115.7) (122.8) (115.6) (122.3) (113.3) (115.9)

Nonlinear
Deterministic Optimal N/A

(%SGA) (111.5) (118.1) (118.0) (110.9) (118.7) (111.2) (112.6)

Stochastic Optimal N/A
(%SGA) (110.8) (117.4) (119.7) (111.9) (120.0) (110.4) (112.4)

Updates for the surrogate Q-function may only occur after each problem is complete (and typically
after a group of problems).

5 EXPERIMENT

5.1 MRRC

For MRRC, we conduct a simulation experiment for a discrete time, discrete state environment. We
use maze (see Figure ??) generator of UC Berkeley CS188 Pacman project [Neller et al. (2010)] to
generate large size mazes. We generated a new maze for every training and testing experiments.

Under the deterministic environment, the robot succeeds its movement 100%. Under stochastic
environment, a robot succeeds its intended movement in 55% on the grid with dots and for every
other direction 15% each; on the grid without dots, the rates are 70% and 10%. As described
in section 2, routing problems are already solved. That is, each robot knows how to optimally
(in expectation) reach a task. To find an optimal routing policy, we use Dijkstra’s algorithm for
deterministic environments and dynamic programming for stochastic environments. The central
assignment decision maker has enough samples of task completion time for every possible route.

We consider two reward rules: Linearly decaying rewards obey f(age) = 200− age until reaching
0, where age is the task age when served; For nonlinearly decaying rewards, f(t) = λt for λ = 0.99.
Initial age of tasks were uniformly distributed in the interval [0, 100].

Performance test. We tested the performance under four environments: deterministic/linear re-
wards, deterministic/nonlinear rewards, stochastic/ linear rewards, stochastic/nonlinear rewards.

There are two baselines used for performance test: exact baseline and indirect baseline. For the
experiment with deterministic with linearly decaying rewards, an exact optimal solution for mixed-
integer linear program exists and can be used as a baseline. We solve this program using Gurobi
with 60-min cut to get the baseline. For any other experiments with nonlinearly decaying rewards
or stochastic environment, such an exact optimal solution or other heuristics methods does not ex-
ist. In these cases, we should be conservative when talking about performance. Our strategy is to
construct a indirect baseline using a universally applicable algorithm called Sequential greedy al-
gorithm (SGA) [Han-Lim Choi et al. (2009)]. SGA is a polynomial-time task allocation algorithm
that shows decent scalable performance to both linear and non-linear rewards. For stochastic en-
vironments, we use mean task completion time for task allocation and re-allocate the whole tasks
at every time-steps. We construct our indirect baseline as ‘ratio between our method and SGA for
experiments with deterministic-linearly decaying rewards’. Showing that this ratio is maintained
for stochastic environments in both linear/nonlinear rewards suffices our purpose.

Table 1 shows experiment results for (# of robots, # of tasks) = (2, 20), (3, 20), (3, 30), (5, 30),
(5, 40), (8, 40), (8, 50); For linear/deterministic rewards, our proposed method achieves near-
optimality (all above 95% optimality). While there is no exact or comparable performance base-
line for experiments under other environments, indirect baseline (%SGA) at least shows that our
method does not lose %SGA for stochastic environments compared with %SGA for deterministic
environments in both linear and nonlinear rewards.
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Table 2: Scalability test (mean of 20 trials of training, linear & deterministic env.)

Linear & Deterministic Testing size (Robot (R) / Task (T))
2R/20T 3R/20T 3R/30T 5R/30T 5R/40T 8R/40T 8R/50T

Performance with full training 98.31% 97.50% 97.80% 95.35% 96.99% 96.11% 96.85%
# Training for 93% optimality 19261.2 61034.0 99032.7 48675.3 48217.5 45360.0 47244.2

Table 3: Transferability test (50 trials of training for each cases, linear & deterministic env.)

Testing size (Robot (R) / Task (T))
Training size 2R/20T 3R/20T (3R/30T) 5R/30T 5R/40T 8R/40T 8R/50T

Same size as testing size 98.31% 97.50% (97.80%) 95.35% 96.99% 96.11% 96.85%
Only 3R/30T 97.72% 94.58% (97.80%) 94.68% 97.38% 95.05% 96.95%

Scalability test. We count the training requirements for 93% optimality for seven problem sizes
(# of robots NR, # of tasks NT ) = (2, 20), (3, 20), (5, 30), (5, 40), (8, 40), (8, 50) with determinis-
tic/linearly decaying rewards (we can compare optimality only in this case). As we can see in Table
2, the training requirement shown not to scale as problem size increases.

Transferability test. Suppose that we trained our learning algorithm with problems of three robots
and 30 Tasks. We can claim transferability of our algorithm if our algorithm achieves similar per-
formance for testing with problems of 8 robots and 50 tasks when compared with the algorithm
specifically trained with problems of 8 robots and 50 tasks, the same size as testing. Table 3 shows
the experiment result trained with three robots and 30 tasks and tested with six combinations (#
of robots NR, # of tasks NT ) = (2, 20), (3, 20), (5, 30), (5, 40), (8, 40), (8, 50) with determinis-
tic/linearly decaying rewards (we can compare optimality only in this case). Values in ‘Same size as
testing size’ are from table 1 and shown here for comparison purposes. As we can see in table 3, we
achieve transferability within 3% loss (in large problems nearly 0% loss or better).

Ablation study. There are three components in our proposed method: 1) a careful encoding of
information using two-layers of structure2vec, 2) new structure2vec equation with random PGM
and 3) an auction-based assignment. Each component was removed from the full method and tested
to check the necessity of the component.

We test the performance in a deterministic/linearly decaying rewards (so that there is an optimal
solution available for comparison). The experimental results are shown in Figure ??. While the full
method requires more training steps, only the full method achieves near-optimal performance.

Figure 2: Tested with 1) single layer, 2) heuristic PGM 3) Max-operation

5.2 IPMS

For IPMS, we test it with continuous time, continuous state environment. While there have been
many learning-based methods proposed for (single) robot scheduling problems, to the best our
knowledge our method is the first learning method to claim scalable performance among machine-
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Table 4: IPMS test results for makespan minimization (our algorithm / best Google OR tool result)

Makespan minimization for # Machines
Deterministic environment 3 5 7 10

# Tasks
50 106.7% 117.0% 119.8% 116.7%
75 105.2% 109.6% 113.9% 111.3%

100 100.7% 111.0% 109.1% 109.0%

scheduling problems. Hence, in this case, we focus on showing comparable performance for large
problems, instead of attempting to show the superiority of our method compared with heuristics
specifically designed for IPMS (actually no heuristic was specifically designed to solve our exact
problem (makespan minimization, sequence-dependent setup with no restriction on setup times))

For each task, processing times is determined using uniform [16, 64]. For every (task i, task j)
ordered pair, a unique setup time is determined using uniform [0, 32]. As illustrated in section
2, we want to minimize make-span. As a benchmark for IPMS, we use Google OR-Tools library
Google (2012). This library provides metaheuristics such as Greedy Descent, Guided Local Search,
Simulated Annealing, Tabu Search. We compare our algorithm’s result with the heuristic with the
best result for each experiment. We consider cases with 3, 5, 7, 10 machines and 50, 75, 100 jobs.

The results are provided in Table 4. Makespan obtained by our method divided by the makespan
obtained in the baseline is provided. Although our method has limitations in problems with a small
number of tasks, it shows comparable performance to a large number of tasks and shows its value as
the first learning-based machine scheduling method that achieves scalable performance.

6 CONCLUSIONS

We presented a learning-based method that achieves the first success for multi-robot/machine
scheduling problems in both challenges: scalable performance and tranferability. We identified that
robot scheduling problems have an exact representation as random PGM. We developed a mean-
field inference theory for random PGM and extended structure2vec method of Dai et al. (2016).
To overcome the limitations of fitted Q-iteration, a heuristic auction that was enabled by transfer-
ability is suggested. Through experimental evaluation, we demonstrate our method’s success for
MRRC problems under deterministic/stochastic environment. Our method also claims to be the first
learning-based algorithm that achieves scalable performance among machine scheduling algorithms;
our method achieves a comparable performance in a scalable manner.
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A MRRC WITH CONTINUOUS STATE/CONTINUOUS TIME SPACE
FORMULATION, OR WITH SETUP TIME AND PROCESSING TIME

In continuous state/continuous time space formulation, the initial location and ending location of
robots and tasks are arbitrary on R2. At every moment at least a robot finishes a task, we make
assignment decision for a free robot(s). We call this moments as ‘decision epochs’ and express them
as an ordered set (t1, t2, . . . , tk, . . . ). Abusing this notation slightly, we use (·)tk = (·)k.

Task completion time can consist of three components: travel time, setup time and processing time.
While a robot in the travel phase or setup phase may be reassigned to other tasks, we can’t reassign
a robot in the processing phase. Under these assumptions, at each decision epoch robot ri is given
a set of tasks it can assign itself: if it is in the traveling phase or setup phase, it can be assigned to
any tasks or not assigned; if it is in the processing phase, it must be reassigned to its unfinished task.
This problem can be cast as a Markov Decision Problem (MDP) whose state, action, and reward are
defined as follows:

State. State sk at decision epoch k is a directed graph Gk = (Rk ∪ Tk, Ek): Rk is the set of all
robots and Tk is the set of all tasks; The set of directed edges Ek = ERTk ∪ETTk where a directed edge
εritj ∈ ERTk is a random variable which denotes task completion time of robot i in Rk to service
task j in Tk and a directed edge εtitj ∈ ETTk denotes a task completion time of a robot which just
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finished serving task i in Tk to service task j in Tk. ERTk contains information about each robot’s
possible assignments: ERTk = ∪iErik , where Erit is a singleton set if robot i is in the processing phase
and it must be assigned to its unfinished task, and otherwise it is the set of possible assignments from
robot ri to remaining tasks that are not in the processing phase.

Action. The action ak at decision epoch k is the joint assignment of robots given the current state
sk = Gk. The feasible action should satisfy the two constraints: No two robots can be assigned to a
task; some robots may not be assigned when number of robots are more than remaining tasks. To
best address those restrictions, we define an action ak at time t as a maximal bipartite matching in
bipartite sub-graph ((Rk, Tk), ERTk ) of graph Gk. For example, robot i in Rk is matched with task
j in Tk in an action ak if we assign robot i to task j at decision epoch t. We denote the set of all
possible actions at epoch k as Ak.

Reward. In MRRC, Each task has an arbitrarily determined initial age. At each decision epoch, the
age of each task increases by one. When a task is serviced, a reward is determined only by its age
when serviced. Denote this reward rule as R(k). One can easily see that whether a task is served at
epoch k is completely determined by sk, ak and sk+1. Therefore, we can denote the reward we get
with sk, ak and sk+1 as R(sk, ak, sk+1).

Objective. We can now define an assignment policy φ as a function that maps a state sk to action
ak. Given s0 initial state, an MRRC problem can be expressed as a problem of finding an optimal
assignment policy φ∗ such that

φ∗ = argmax
φ

E

[ ∞∑
k=0

R (sk, ak, sk+1) |s0

]
.

B IDENTICAL PARALLEL MACHINE SCHEDULING PROBLEM FORMULATION

As written in 2.2, IPMS is a problem defined in continuous state/continuous time space. Machines
are all identical, but processing times of tasks are all different. In this paper, we discuss IPMS
with ‘sequence-dependent setup time’. A machine’s setup time required for servicing a task i is
determined by its previously served task j. In this case, the task completion time is the sum of setup
time and processing time. Under this setting, we solve IPMS problem for make-span minimization
objective discussed in [Kurz et al. (2001)] (The constraints are different in this problem though);
That is, minimizing total time spent from start to end to finish all tasks.

Every time there is a finished task, we make assignment decision for a free machine. We call this
times as ‘decision epochs’ and express them as an ordered set (t1, t2, . . . , tk, . . . ). Abusing this
notation slightly, we use (·)tk = (·)k.

Task completion time for a machine to a task consists of two components: processing time and
setup time. While a machine in setup phase may be reassigned to another task, we can’t reassign a
machine in the processing phase. Under these assumptions, at each epoch, a machine ri is given a
set of tasks it can assign: if it is in the setup phase, it can be assigned to any tasks or not assigned; if
it is in the processing phase, it must be reassigned to its unfinished task. This problem can be cast
as a Markov Decision Problem (MDP) whose state, action, and reward are defined as follows:

State. State sk at decision epoch k is a directed graph Gk = (Rk ∪ Tk, Ek): Rk is the set of all
machines and Tk is the set of all tasks; The set of directed edges Ek = ERTk ∪ ETTk where a directed
edge εritj ∈ ERTk is a random variable which denotes task completion time of machine i in Rk to
service task j in Tk and a directed edge εtitj ∈ ETTk denotes a task completion time of a machine
which just finished serving task i in Tk to service task j in Tk. ERTk contains information about
each robot’s possible assignments: ERTk = ∪iErik , where Erik is a singleton set if machine i is in the
processing phase and it must be assigned to its unfinished task, and otherwise it is the set of possible
assignments from machine ri to remaining tasks that are not in the processing phase.

Action. Defined the same as MRRC with continuous state/time space.

Reward. In IPMS, time passes between decision epoch t and decision epoch t+1. Denote this time
as Tt. One can easily see that Tt is completely determined by sk, ak and sk+1. Therefore, we can
denote the reward we get with sk, ak and sk+1 as T (sk, ak, sk+1).
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Objective. We can now define an assignment policy φ as a function that maps a state sk to action
ak. Given s0 initial state, an MRRC problem can be expressed as a problem of finding an optimal
assignment policy φ∗ such that

φ∗ = argmin
φ

E

[ ∞∑
k=0

T (sk, ak, sk+1) |s0

]
.

C BAYESIAN NETWORK REPRESENTATION

Here we analytically show that robot scheduling problem randomly induces a random Bayesian
Network from state st. To do this, we first define a concept ‘scenario at st, at with policy φ’. Given
starting state st and action at, a person can may repeat a random experiment of sequential decision
making from st, at using φ. In this random experiment, we can define events ‘How robots serve all
remaining tasks in which sequence’. We call such an event a ‘scenario’. For example, suppose that
at time-step t we are given robots {A,B}, tasks {1, 2, 3, 4, 5}, and policy φ. One possible scenario
S∗ can be {robot A serves task 3→ 1→ 2 and robot B serves task 5→ 4}. Define random variable
Xk a task characteristic, e.g. ‘The time when task k is serviced’. The question is, ‘Given a scenario
S∗, what is the relationship among random variables {Xk}’? Recall that in our sequential decision
making formulation we are given all the ‘task completion time’ information in the st description.
Note that, task completion time is only dependent on the previous task and assigned task. In our
example above, under scenario S∗ ‘when task 2 is served’ is only dependent on ‘when task 1 is
served’. That is, P (X2|X1, X3, S

∗) = P (X2|X1, S
∗). This relationship is called ‘conditional

independence’. Given a scenario S∗, every relationship among {Xi|S∗} can be expressed using
this kind of relationship among random variables. A graph with this special relationship is called
‘Bayesian Network’ [Koller & Friedman (2009)], a probabilistic graphical model.

D PROOF OF THEOREM 1.

We start from formally stating what a probabilistic graphical model is. Given a set of random
variables {Xk} and set of semi-cliques C, suppose that we can express the joint distribution of
{Xk} as

P (X1, . . . , Xn) =
1

Z

∏
i

φi
(
Di
)
, (1)

where φi clique potential for clique Di ∈ C and Z is a normalizing constant. Sometimes, we will
suppress the explicit dependence on Di and write simply φi. These functions φi are often referred
to as clique potentials. The collectionDi is referred to as the scope of clique potential φi. The set of
cliques in a probabilistic graphical model is called a factorization and expressed as notation S ⊆ C.

In a random graphical model, a PGM is chosen among PGMs with {Xk} and semi-cliques C. Denote
the set of all possible factorization as F = {S1,S2, ...,SN} where a factorization with index k is
denoted as Sk ⊆ C. Suppose we are given P (Sm).

For each semi-clique Di in C, define a binary random variable V i: F 7→ {0, 1} with value
0 for the factorization that does not include semi-clique Di and value 1 for the factorization
that include semi-clique Di. Let V be a random vector V =

(
V 1, V 2, . . . , V |C|

)
. Then we

can express P (X1, . . . , Xn|V ) ∝
∏|C|
i=1

[
φi
(
Di
)]V i

. In other words, {
[
φi
(
Di
)]V i}|C|i=1 factors

P (X1, . . . , Xn|V ). We denote
[
φi
(
Di
)]V i

as ψ(Di).

Given {P (Sk)}, each semi-clique Di’s presence probability pi can be simply calculated; clique i’s
presence probability pi is simply the sum of probabilities of all factorizations which include clique
i, that is, pi =

∑
m:Di∈Sm P (Sm).

Now we prove Theorem 1.

In mean-field inference, we want to find a distribution Q (X1, . . . , Xn) =
∏n
i=1Qi(Xi) such that

the cross-entropy between it and a target distribution is minimized. Following the notation in Koller
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& Friedman (2009), the mean field inference problem can written as the following optimization
problem.

min
Q

D

(∏
i

Qi |P (X1, . . . , Xn|V ))

)
s.t.

∑
xi

Qi (xi) = 1 ∀i

Here D (
∏
iQi | P (X1, . . . , Xn|V )) can be expressed as D (

∏
iQi | P (X1, . . . , Xn|V )) =

EQ [ln (
∏
iQi)]− EQ [ln (P (X1, . . . , Xn|V ))].

Note that

EQ [ln (P (X1, . . . , Xn|V ))] = EQ
[
ln

(
1

z
Π
|C|
i=1ψ

i
(
Di, V

))]

= EQ

ln

1

z

|C|∏
i=1

ψi
(
Di, V

)
= EQ

 |C|∑
i=1

V i ln
(
φi
(
Di
))− EQ[ln(Z)]

=

|C|∑
i=1

EQ
[
V i ln

(
φi
(
Di
))]
− EQ[ln(Z)]

=

|C|∑
i=1

EV i
[
EQ
[
V i ln

(
φi
(
Di
))
|V i
]]
− EQ[ln(Z)]

=

|C|∑
i=1

P
(
V i = 1

) [
EQ
[
ln
(
φi
(
Di
))]]
− EQ[ln(Z)]

=

|C|∑
i=1

pi
[
EQ
[
ln
(
φi
(
Di
))]]
− EQ[ln(Z)].

Hence, the above optimization problem can be written as

max
Q

EQ

 |C|∑
i=1

pi ln
(
φi
(
Di
))+ EQ

n∑
i=1

(lnQi)

s.t.
∑
xi

Qi (xi) = 1 ∀i
(2)

In Koller & Friedman (2009), the fixed point equation is derived by solving an analogous equation
to (2) without the presence of the pi. Theorem 1 follows by proceeding as in Koller & Friedman
(2009) with straightforward accounting for pi.

E PROOF OF LEMMA 1.

Since we assume semi-cliques are only between two random variables, we can denote C = Dij and
presence probabilities as {pij} where i, j are node indexes. Denote the set of nodes as V .
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From here, we follow the approach of Dai et al. (2016) and assume that the joint distribution of
random variables can be written as

p ({Hk} , {Xk}) ∝
∏
k∈V

ψi (Hk|Xk)
∏
k,i∈V

ψi (Hk|Hi) .

Expanding the fixed-point equation for the mean field inference from Theorem 1, we obtain:

Qk (hk) =
1

Zk
exp

 ∑
ψi:Hk∈Di

E(Di−{Hk})∼Q
[
lnψi

(
Hk = hk|Di

)]
=

1

Zk
exp

{
lnφ (Hk = hk|xk) +

∑
i∈V

∫
H
pkiQi (hi) lnφ (Hk = hk|Hi) dhi

}
.

This fixed-point equation for Qk (hk) is a function of {Qj (hj)}j 6=k such that

Qk (hk) = f
(
hk, xk, {pkjQj (hj)}j 6=k

)
.

As in Dai et al. (2016), this equation can be expressed as a Hilbert space embedding of the form

µ̃k = T̃ ◦
(
xk, {pkj µ̃j}j 6=i

)
,

where µ̃k indicates a vector that encodes Qk (hk) . In this paper, we use the nonlinear mapping T̃
(based on a neural network form ) suggested in Dai et al. (2016):

µ̃k = σ

W1xk +W2

∑
j 6=k

pkj µ̃j


F PRESENCE PROBABILITY INFERENCE

Let V denote the set of nodes. In lines 1 and 2, the likelihood of the existence of a directed edge
from each node m to node n is computed by calculating W1

(
relu

(
W2u

k
mn

))
and averaging over

the M samples. In lines 3 and 4, we use the soft-max function to obtain pm,n.

1 For m,n ∈ V do
2 gmn = 1

M

∑M
k=1W1

(
relu

(
W2u

k
mn

))
3 For m,n ∈ V do
4 pm,n = egmn/τ∑

j∈v e
gmn/τ

.

G TASK COMPLETION TIME AS A RANDOM VARIABLE

We combine random sampling and inference procedure suggested in section 3.2 and Figure ??.
Denote the set of task with a robot assigned to it as T A. Denote a task in T A as ti and the robot
assigned to ti as rti . The corresponding edge in ERT for this assignment is εrti ti . The key idea is
to use samples of εrti ti to generate N number of sampled Q(s, a) value and average them to get the
estimate of E(Q(s, a)). First, for l = 1 . . . N we conduct the following procedure. For each task ti
in T A, we sample one data elrti ti . Using those samples and {pij}, we follow the whole procedure
illustrated in section 3.2 to get Q(s, a)l. Second, we get the average of {Q(s, a)l}l=Nl=1 to get the
estimate of E(Q(s, a)), 1

N

∑l=N
l=1 Q(s, a)l.

The complete algorithm of section 3.2 with task completion time as a random variable is given as
below.

1 agei = age of node i
2 The set of nodes for assigned tasks ≡ TA
3 Initialize {µ(0)

i }, {γ
(0)
i }
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4 for l = 1 to N :
5 for ti ∈ T :
5 if ti ∈ T A do:
6 sample elrti ti from εrti ti
7 xi = elrti ti
9 else: xi = 0
10 for t = 1 to T1 do
11 for i ∈ V do
12 li =

∑
j∈V pjiµ

(t−1)
j

13 µ
(t)
i = relu (W3li +W4xi)

14 µ̃l = Concatenate
(
µ
(T1)
i , agei

)
15 for t = 1 to T2 do
16 for i ∈ V do
17 li =

∑
j∈V pjiγ

(t−1)
j

18 γ
(t)
j = relu (W5li +W6µ̃i)

19 Ql = W7

∑
i∈V γ

(T )
i

20 Qavg = 1
N

∑N
l=1Ql
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