
Under review as a conference paper at ICLR 2020

SPIKE-BASED CAUSAL INFERENCE FOR WEIGHT
ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

In artificial neural networks trained with gradient descent, the weights used for
processing stimuli are also used during backward passes to calculate gradients.
For the real brain to approximate gradients, gradient information would have to
be propagated separately, such that one set of synaptic weights is used for pro-
cessing and another set is used for backward passes. This produces the so-called
“weight transport problem” for biological models of learning, where the back-
ward weights used to calculate gradients need to mirror the forward weights used
to process stimuli. This weight transport problem has been considered so hard
that popular proposals for biological learning assume that the backward weights
are simply random, as in the feedback alignment algorithm. However, such ran-
dom weights do not appear to work well for large networks. Here we show how
the discontinuity introduced in a spiking system can lead to a solution to this
problem. The resulting algorithm is a special case of an estimator used for causal
inference in econometrics, regression discontinuity design. We show empirically
that this algorithm rapidly makes the backward weights approximate the forward
weights. As the backward weights become correct, this improves learning perfor-
mance over feedback alignment on tasks such as Fashion-MNIST and CIFAR-10.
Our results demonstrate that a simple learning rule in a spiking network can al-
low neurons to produce the right backward connections and thus solve the weight
transport problem.

1 INTRODUCTION

Any learning system that makes small changes to its parameters will only improve if the changes
are correlated to the gradient of the loss function. Given that people and animals can also show clear
behavioral improvements on specific tasks (Shadmehr et al., 2010), however the brain determines
its synaptic updates, on average, the changes in must also correlate with the gradients of some
loss function related to the task (Raman et al., 2019). As such, the brain may have some way of
calculating at least an estimator of gradients.

To-date, the bulk of models for how the brain may estimate gradients are framed in terms of setting
up a system where there are both bottom-up, feedforward and top-down, feedback connections.
The feedback connections are used for propagating activity that can be used to estimate a gradient
(Williams, 1992; Lillicrap et al., 2016; Akrout et al., 2019; Roelfsema & Ooyen, 2005; Lee et al.,
2015; Scellier & Bengio, 2017; Sacramento et al., 2018). In all such models, the gradient estimator
is less biased the more the feedback connections mirror the feedforward weights. For example, in
the REINFORCE algorithm (Williams, 1992), and related algorithms like AGREL (Roelfsema &
Ooyen, 2005), learning is optimal when the feedforward and feedback connections are perfectly
symmetric, such that for any two neurons i and j the synaptic weight from i to j equals the weight
from j to i, e.g. Wji = Wij (Figure 1). Some algorithms simply assume weight symmetry, such as
Equilibrium Propagation (Scellier & Bengio, 2017). The requirement for synaptic weight symmetry
is sometimes referred to as the “weight transport problem”, since it seems to mandate that the values
of the feedforward synaptic weights are somehow transported into the feedback weights, which is not
biologically realistic (Crick, 1989-01-12; Grossberg, 1987). Solving the weight transport problem
is crucial to biologically realistic gradient estimation algorithms (Lillicrap et al., 2016), and is thus
an important topic of study.

1

Under review as a conference paper at ICLR 2020

Several solutions to the weight transport problem have been proposed for biological models, includ-
ing hard-wired sign symmetry (Moskovitz et al., 2018), random fixed feedback weights (Lillicrap
et al., 2016), and learning to make the feedback weights symmetric (Lee et al., 2015; Sacramento
et al., 2018; Akrout et al., 2019; Kolen & Pollack, 1994). Learning to make the weights symmetric is
promising because it is both more biologically feasible than hard-wired sign symmetry (Moskovitz
et al., 2018) and it leads to less bias in the gradient estimator (and thereby, better training results)
than using fixed random feedback weights (Bartunov et al., 2018; Akrout et al., 2019). However, of
the current proposals for learning weight symmetry some do not actually work well in practice (Bar-
tunov et al., 2018) and others still rely on some biologically unrealistic assumptions, including scalar
value activation functions (as opposed to all-or-none spikes) and separate error feedback pathways
with one-to-one matching between processing neurons for the forward pass and error propagation
neurons for the backward pass Akrout et al. (2019); Sacramento et al. (2018).

Interestingly, learning weight symmetry is implicitly a causal inference problem—the feedback
weights need to represent the causal influence of the upstream neuron on its downstream partners.
As such, we may look to the causal infererence literature to develop better, more biologically realis-
tic algorithms for learning weight symmetry. In econometrics, which focuses on quasi-experiments,
researchers have developed various means of estimating causality without the need to actually ran-
domize and control the variables in question Angrist & Pischke (2008); Marinescu et al. (2018).
Among such quasi-experimental methods, regression discontinuity design (RDD) is particularly
promising. It uses the discontinuity introduced by a threshold to estimate causal effects. For ex-
ample, RDD can be used to estimate the causal impact of getting into a particular school (which
is a discontinuous, all-or-none variable) on later earning power. RDD is also potentially promising
for estimating causal impact in biological neural networks, because real neurons communicate with
discontinuous, all-or-none spikes. Indeed, it has been shown that the RDD approach can produce
unbiased estimators of causal effects in a system of spiking neurons Lansdell & Kording (2019).
Given that learning weight symmetry is fundamentally a causal estimation problem, we hypothe-
sized that RDD could be used to solve the weight transport problem in biologically realistic, spiking
neural networks.

Here, we present a learning rule for feedback synaptic weights that is a special case of the RDD algo-
rithm previously developed for spiking neural networks (Lansdell & Kording, 2019). Our algorithm
takes advantage of a neuron’s spiking discontinuity to infer the causal effect of its spiking on the
activity of downstream neurons. Since this causal effect is proportional to the feedforward synaptic
weight between the two neurons, by estimating it, feedback synapses can align their weights to be
symmetric with the reciprocal feedforward weights, thereby overcoming the weight transport prob-
lem. We demonstrate that this leads to the reduction of a cost function which measures the weight
symmetry (or the lack thereof), that it can lead to better weight symmetry in spiking neural networks
than other algorithms for weight alignment (Akrout et al., 2019) and it leads to better learning in
deep neural networks in comparison to the use of fixed feedback weights (Lillicrap et al., 2016). Al-
together, these results demonstrate a novel algorithm for solving the weight transport problem that
takes advantage of discontinuous spiking, and which could be used in future models of biologically
plausible gradient estimation.

2 RELATED WORK

Previous work has shown that even when feedback weights in a neural network are initialized ran-
domly and remain fixed throughout training, the feedforward weights learn to partially align them-
selves to the feedback weights, an algorithm known as feedback alignment (Lillicrap et al., 2016).
While feedback alignment is successful at matching the learning performance of true gradient de-
scent in relatively shallow networks, it does not scale well to deeper networks and performs poorly
on difficult computer vision tasks (Bartunov et al., 2018).

The gap in learning performance between feedback alignment and gradient descent can be overcome
if feedback weights are continually updated to match the sign of the reciprocal feedforward weights
(Moskovitz et al., 2018). Furthermore, learning the feedback weights in order to make them more
symmetric to the feedforward weights has been shown to improve learning over feedback alignment
(Akrout et al., 2019).

2

Under review as a conference paper at ICLR 2020

Figure 1: Illustration of weight symmetry in a neural network with feedforward and feedback con-
nections. Processing of inputs to outputs is mirrored by backward flow of gradient information. Gra-
dient estimation is best when feedback synapses have symmetric weights to feedforward synapses
(illustrated with colored circles).

To understand the underlying dynamics of learning weight symmetry, Kunin et al. (2019) define the
symmetric alignment cost function, RSA, as one possible cost function that, when minimized, leads
to weight symmetry:

RSA := ‖W − Y T ‖2F (1)

= ‖W‖2F + ‖Y ‖2F − 2tr(WY)

where W are feedforward weights and Y are feedback weights. The first two terms are simply
weight regularization terms that can be minimized using techniques like weight decay. But, the third
term is the critical one for ensuring weight alignment.

In this paper we present a biologically plausible method of minimizing the third term. This method
is based on the work of Lansdell & Kording (2019), who demonstrated that neurons can estimate
their causal effect on a global reward signal using the discontinuity introduced by spiking. This is
accomplished using RDD, wherein a piecewise linear model is fit around a discontinuity, and the
differences in the regression intercepts indicates the causal impact of the discontinuous variable. In
Lansdell & Kording (2019), neurons learn a piece-wise linear model of a reward signal as a function
of their input drive, and estimate the causal effect of spiking by looking at the discontinuity at the
spike threshold. Here, we modify this technique to perform causal inference on the effect of spiking
on downstream neurons, rather than a reward signal. We leverage this to develop a learning rule for
feedback weights that induces weight symmetry and improves training.

3 OUR CONTRIBUTIONS

The primary contributions of this paper are as follows:

3

Under review as a conference paper at ICLR 2020

• We demonstrate that spiking neurons can accurately estimate the causal effect of their spik-
ing on downstream neurons by using a piece-wise linear model of the feedback as a function
of the input drive to the neuron.

• We present a learning rule for feedback weights that uses the causal effect estimator to
encourage weight symmetry. We show that when feedback weights update using this algo-
rithm it minimizes the symmetric alignment cost function,RSA.

• We demonstrate that this learning weight symmetry rule improves training and test
accuracy over feedback alignment, approaching gradient-descent-level performance on
Fashion-MNIST and CIFAR-10 in deeper networks.

4 RESULTS

4.1 GENERAL APPROACH

In this work, we utilize a spiking neural network model for aligning feedforward and feedback
weights. However, due to the intense computational demands of spiking neural networks, we only
use spikes for the RDD algorithm. We then use the feedback weights learned by the RDD algorithm
for training a non-spiking convolutional neural network. We do this because the goal of our work
here is to develop an algorithm for aligning feedback weights in spiking networks, not for training
feedforward weights in spiking networks on other tasks. Hence, in the interest of computational
expediency, we only used spiking neurons when learning to align the weights. Additional details on
this procedure are given below.

4.2 RDD PRE-TRAINING PHASE

At the start of every training epoch of a convolutional neural network, we use an RDD pre-training
phase, during which all fully-connected sets of feedback weights in the network are updated. To
perform these updates, we simulate a separate network of leaky integrate-and-fire (LIF) neurons that
shares its feedforward weights with the convolutional network used for training (Figure 2A). LIF
neurons incorporate key elements of real neurons such as voltages, spiking thresholds and refractory
periods. This network then undergoes a training phase lasting 90 s of simulated time (30 s per set
of feedback weights) (Figure 2B). We find that the spiking network used for RDD pre-training and
the convolutional neural network are very closely matched in the activity of the units (Figure S1),
which gives us confidence that this approach of using a separate non-spiking network for training
the feedforward weights is legitimate.

During the pre-training phase, a small subset of neurons in the first layer receive driving input that
causes them to spike, while other neurons in this layer receive no input (see Appendix A.2). The sub-
set of neurons that receive driving input is randomly selected every 100 ms of simulated time. This
continues for 30 s in simulated time, after which the same process occurs for the subsequent hidden
layers in the network. This protocol enforces sparse, de-correlated firing patterns that improve the
causal inference procedure of RDD.

4.3 LIF DYNAMICS

During the RDD pre-training phase, each unit in the network is simulated as a leaky integrate-
and-fire neuron. Spiking inputs from the previous layer arrive at feedforward synapses, where
they are convolved with a temporal exponential kernel to simulate post-synaptic spike responses
p = [p1, p2, ..., pm] (see Appendix A.1). The neurons can also receive driving input p̃i, instead of
synaptic inputs. The total feedforward input to neuron i is thus defined as:

Ii :=

{
ωp̃i if p̃i > 0∑m
j=1Wijpj otherwise

(2)

where Wij is the feedforward weight to neuron i from neuron j in the previous layer, and ω is a
hyperparameter. The voltage of the neuron, vi, evolves as:

4

Under review as a conference paper at ICLR 2020

dvi
dt

= −gLvi + gD(Ii − vi) (3)

where gL and gD are leak and dendritic conductance constants, respectively. The input drive to the
neuron, ui, is similarly modeled:

dui
dt

= −gLui + gD(Ii − ui) (4)

If the voltage vi passes a spiking threshold θ, the neuron spikes and the voltage is reset to a value
vreset = −1 (Figure 2C). Note that the input drive does not reset. This helps us to perform regressions
both above and below the spike threshold.

In addition to feedforward inputs, spiking inputs from the downstream layer arrive at feedback
synapses, where they create post-synaptic spike responses q = [q1, q2, ..., qn]. These responses
are used in the causal effect estimation (see below).

4.4 RDD ALGORITHM

Whenever the voltage approaches the threshold θ (ie. |vi − θ| < α where α is a constant), an
RDD window is initiated, lasting T = 30 ms in simulated time (Figure 2C). At the end of this time
window, at each feedback synapse, the maximum input drive during the RDD window, umax

i , and
the average change in feedback from downstream neuron k during the RDD window, ∆qavg

k , are
recorded. ∆qavg

k is defined as the difference between the average feedback received during the RDD
window, qavg

k , and the feedback at the start of the RDD window, qpre
k :

∆qavg
k := qavg

k − q
pre
k (5)

Importantly, umax
i provides a measure of how strongly neuron iwas driven by its inputs (and whether

or not it passed the spiking threshold θ), while ∆qavg
k is a measure of how the input received as

feedback from neuron k changed after neuron i was driven close to its spiking threshold. These two
values are then used to fit a piece-wise linear model of ∆qavg

k as a function of umax
i (Figure 2D). This

piece-wise linear model is defined as:

fik(x) :=

{
c1ikx+ c2ik if x < θ

c3ikx+ c4ik if x ≥ θ (6)

The parameters c1ik, c2ik, c3ik and c4ik are updated to perform linear regression using gradient descent:

L =
1

2
‖fik(umax

i)−∆qavg
k ‖

2 (7)

∆clik ∝ −
∂L

∂clik
for l ∈ {1, 2, 3, 4} (8)

An estimate of the causal effect of neuron i spiking on the activity of neuron k, βik, is then defined
as the difference in the two sides of the piece-wise linear function at the spiking threshold:

βik := lim
x→θ+

fik(x)− lim
x→θ−

fik(x) (9)

Finally, the weight at the feedback synapse, Yik, is updated to be a scaled version of βik:

Yik = βik
γ

σ2
β

(10)

where γ is a hyperparameter and σ2
β is the standard deviation of β values for all feedback synapses

in the layer. This ensures that the scale of the full set of feedback weights between two layers in the
network remains stable during training.

5

Under review as a conference paper at ICLR 2020

Figure 2: A. Layers of the convolutional network trained on CIFAR-10 and the corresponding net-
work of LIF neurons that undergoes RDD pre-training. Fully-connected feedforward weights (blue)
and feedback weights (red) are shared between the two networks. B. RDD pre-training protocol.
Every 30 s, a different layer in the LIF network receives driving input and updates its feedback
weights (red) using the RDD algorithm. C. Top: Sample voltage (vi, solid line) and input drive (ui,
dashed line) traces. Whenever vi approaches the spiking threshold, an RDD window lasting T ms is
triggered. umax

i is the maximum input drive during this window of time. Bottom: Feedback received
at a synapse, qk. qpre

k is the feedback signal at the start of an RDD window, while qavg
k is the average

of the feedback signal during the time window. D. Samples of ∆qavg
k vs. umax

i are used to update a
piece-wise linear function of umax

i , and the causal effect βik is defined as the difference of the left
and right limits of the function at the spiking threshold.

4.5 ALIGNMENT OF FEEDBACK AND FEEDFORWARD WEIGHTS

To measure how well the causal effect estimate at each feedback synapse, βik, and thus the feed-
back weight Yik, reflects the reciprocal feedforward weight Wki, we can measure the percentage of
feedback weights that have the same sign as the reciprocal feedforward weights (Figure 3A). When
training on CIFAR-10 with no RDD pre-training phase (ie. feedback weights remain fixed through-
out training), the feedback alignment effect somewhat increases the sign alignment during training,
but it is ineffective at aligning the signs of weights in earlier layers in the network. Compared to
feedback alignment, the addition of an RDD pre-training phase greatly increases the sign aligmnent

6

Under review as a conference paper at ICLR 2020

between feedback and feedforward weights for all layers in the network, especially at earlier layers.
In addition, the RDD algorithm increases sign alignment throughout the hierarchy more than the
current state-of-the-art algorithm for weight alignment introduced recently by Akrout et al. Akrout
et al. (2019) (Figure 3A). Furthermore, RDD pre-training changes feedback weights to not only
match the sign but also the magnitude of the reciprocal feedforward weights (Figure 3B), which
makes it better for weight alignment than hard-wired sign symmetry (Moskovitz et al., 2018).

Figure 3: A. Evolution of sign alignment (the percent of feedforward and feedback weights that
have the same sign) for each fully-connected layer in the network when trained on CIFAR-10 using
RDD pre-training (blue), using the algorithm proposed by Akrout et al. (2019) (purple), and using
feedback alignment (red). B. Feedforward vs. feedback weights for each fully-connected layer
at the end of training, with RDD pre-training (blue), the Akrout algorithm (purple), and feedback
alignment (red).

4.6 DESCENDING THE SYMMETRIC ALIGNMENT COST FUNCTION

The symmetric alignment cost function (Kunin et al., 2019) (Equation 1) can be broken down as:

RSA = Rdecay +Rself (11)

7

Under review as a conference paper at ICLR 2020

where we defineRdecay andRself as:

Rdecay := ‖W‖2F + ‖Y ‖2F (12)
Rself := −2tr(WY) (13)

Rdecay is simply a weight regularization term that can be minimized using techniques like weight
decay. Rself, in contrast, measures how well aligned in direction the two matrices are. Our learning
rule for feedback weights minimizes the Rself term for weights throughout the network (Figure 4).
By comparison, feedback alignment decreases Rself to a smaller extent, and its ability to do so
diminishes at earlier layers in the network. This helps to explain why our algorithm induces weight
alignment, and can improve training performance (see below).

Figure 4: Evolution ofRself for each fully-connected layer in the network when trained on CIFAR-10
using RDD pre-training (solid lines) and using feedback alignment (dashed lines). RDD pre-training
dramatically decreases this loss compared to feedback alignment, especially in earlier layers.

4.7 PERFORMANCE ON FASHION-MNIST AND CIFAR-10

We trained the same network architecture (see Appendix A.3) on Fashion-MNIST and CIFAR-10 us-
ing standard autograd techniques (backprop), feedback alignment and our RDD pre-training phase.
RDD pre-training substantially improved the network’s performance over feedback alignment, and
led to backprop-level accuracy on the train and test sets (Figure 5, Table 1).

Figure 5: Fashion-MNIST (left) and CIFAR-10 (right) test error comparison. RDD pre-training
substantially improves test error performance over feedback alignment in both learning tasks.

8

Under review as a conference paper at ICLR 2020

Fashion-MNIST CIFAR-10
Method Train (%) Test (%) Train (%) Test (%)
Backprop 2.01 7.58 13.3 18.1
Feedback Alignment 5.74 9.16 31.1 34.1
RDD 2.45 8.19 18.8 23.8

Table 1: Comparison of final train and test errors on Fashion-MNIST and CIFAR-10 after 100
epochs. In both learning tasks, RDD pre-training enables better performance than feedback align-
ment.

5 DISCUSSION

In order to understand how the brain learns complex tasks that require coordinated plasticity across
many layers of synaptic connections, it is important to consider the weight transport problem. Here,
we presented an algorithm for updating feedback weights in a network of spiking neurons that takes
advantage of the spiking discontinuity to estimate the causal effect between two neurons (Figure 2).
We showed that this algorithm enforces weight alignment (Figure 3), and identified a loss function,
Rself, that is minimized by our algorithm (Figure 4). Finally, we demonstrated that our algorithm
allows deep neural networks to achieve better learning performance than feedback alignment on
Fashion-MNIST and CIFAR-10 (Figure 5). These results demonstrate the potential power of RDD
as a means for solving the weight transport problem in biologically plausible deep learning models.

One aspect of our algorithm that is still biologically implausible is that it does not adhere to Dale’s
principle, which states that a neuron performs the same action on all of its target cells (Strata & Har-
vey). This means that a neuron’s outgoing connections cannot include both positive and negative
weights. However, even under this constraint, a neuron can have an excitatory effect on one down-
stream target and an inhibitory effect on another, by activating intermediary inhibitory interneurons.
Because our algorithm provides a causal estimate of one neuron’s impact on another, theoretically,
it could capture such polysynaptic effects. Therefore, this algorithm is in theory compatible with
Dale’s principle. Future work should test the effects of this algorithm when implemented in a net-
work of neurons that are explicitly excitatory or inhibitory.

9

Under review as a conference paper at ICLR 2020

REFERENCES

Mohamed Akrout, Collin Wilson, Peter C Humphreys, Timothy Lillicrap, and Douglas Tweed. Us-
ing weight mirrors to improve feedback alignment. arXiv preprint arXiv:1904.05391, 2019.

Joshua D Angrist and Jörn-Steffen Pischke. Mostly harmless econometrics: An empiricist’s com-
panion. Princeton university press, 2008.

Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy
Lillicrap. Assessing the scalability of biologically-motivated deep learning algorithms and archi-
tectures. In Advances in Neural Information Processing Systems, pp. 9368–9378, 2018.

Francis Crick. The recent excitement about neural networks. 337(6203):129–132, 1989-01-12. doi:
10.1038/337129a0. URL http://dx.doi.org/10.1038/337129a0.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance. 11(1):
23–63, 1987. ISSN 1551-6709.

John F Kolen and Jordan B Pollack. Backpropagation without weight transport. In Proceedings of
1994 IEEE International Conference on Neural Networks (ICNN’94), volume 3, pp. 1375–1380.
IEEE, 1994.

Daniel Kunin, Jonathan M Bloom, Aleksandrina Goeva, and Cotton Seed. Loss landscapes of regu-
larized linear autoencoders. arXiv preprint arXiv:1901.08168, 2019.

Benjamin James Lansdell and Konrad Paul Kording. Spiking allows neurons to estimate their causal
effect. bioRxiv, pp. 253351, 2019.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Joint European conference on machine learning and knowledge discovery in databases, pp.
498–515. Springer, 2015.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature communications, 7:
13276, 2016.

Ioana E Marinescu, Patrick N Lawlor, and Konrad P Kording. Quasi-experimental causality in
neuroscience and behavioural research. Nature human behaviour, pp. 1, 2018.

Theodore H Moskovitz, Ashok Litwin-Kumar, and LF Abbott. Feedback alignment in deep convo-
lutional networks. arXiv preprint arXiv:1812.06488, 2018.

Dhruva Venkita Raman, Adriana Perez Rotondo, and Timothy O’Leary. Fundamental bounds on
learning performance in neural circuits. 116(21):10537–10546, 2019. ISSN 0027-8424.

Pieter R Roelfsema and Arjen van Ooyen. Attention-gated reinforcement learning of internal repre-
sentations for classification. Neural computation, 17(10):2176–2214, 2005.

João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic cortical microcir-
cuits approximate the backpropagation algorithm. pp. 8735–8746, 2018.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. 11:24, 2017. ISSN 1662-5188. doi: 10.3389/fncom.2017.
00024. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415673/.

Reza Shadmehr, Maurice A Smith, and John W Krakauer. Error correction, sensory prediction, and
adaptation in motor control. 33:89–108, 2010. ISSN 0147-006X.

Piergiorgio Strata and Robin Harvey. Dale’s principle. 50(5):349–350. ISSN 0361-9230. doi:
10.1016/S0361-9230(99)00100-8. URL http://www.sciencedirect.com/science/
article/pii/S0361923099001008.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

10

http://dx.doi.org/10.1038/337129a0
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415673/
http://www.sciencedirect.com/science/article/pii/S0361923099001008
http://www.sciencedirect.com/science/article/pii/S0361923099001008

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 LIF NEURON SIMULATION DETAILS

Post-synaptic spike responses at feedforward synapses, p, were calculated from pre-synaptic binary
spikes using an exponential kernel function κ:

pj(t) =
∑
k

κ(t− t̃jk) (14)

where t̃jk is the kth spike time of input neuron j and κ is given by:

κ(t) = (e−t/τL − e−t/τS)Θ(t)/(τL − τs) (15)

where τs = 0.003 s and τL = 0.01 s represent short and long time constants, and Θ is the Heaviside
step function. Post-synaptic spike responses at feedback synapses, q, were computed in the same
way.

A.2 RDD PRE-TRAINING IMPLEMENTATION

A.2.1 WEIGHT SCALING

Weights were shared between the convolutional network and the network of LIF neurons, but feed-
forward weights in the LIF network were scaled versions of the convolutional network weights:

W LIF
ij = ψmWConv

ij /σ2
W Conv (16)

where WConv is a feedforward weight matrix in the convolutional network, W LIF is the correspond-
ing weight matrix in the LIF network, m is the number of units in the upstream layer (ie. the number
of columns in WConv), σ2

W Conv is the standard deviation of WConv and ψ is a hyperparameter. This
rescaling ensures that spike rates in the LIF network stay within an optimal range for the RDD algo-
rithm to converge quickly, even if the scale of the feedforward weights in the convolutional network
changes during training. This avoids situations where the scale of feedforward weights is so small
that little or no spiking occurs in the LIF neurons.

A.2.2 PRE-TRAINING PARADIGM

The RDD pre-training paradigm is implemented as follows. We start by providing driving input to
the first layer in the network of LIF neurons. To create this driving input, we choose a subset of 20%
of the neurons in that layer, and create a unique input spike train for each of these neurons using a
Poisson process with a rate of 200 Hz. All other neurons in the layer receive no driving input. Every
100 ms, a new set of neurons to receive driving input is randomly chosen. After 30 s, this layer stops
receiving driving input, and the process repeats for the next layer in the network.

A.3 NETWORK AND TRAINING DETAILS

The network architectures used to train on Fashion-MNIST and CIFAR-10 are described in Table 2.

Inputs were randomly cropped and flipped during training, and batch normalization was used at each
layer. Networks were trained using a minibatch size of 32.

A.4 AKROUT ET AL. (2019) ALGORITHM IMPLEMENTATION

In experiments that compared sign alignment using our RDD algorithm with the Akrout et al. (2019)
algorithm, we kept the same RDD pre-training paradigm (ie. layers were sequentially driven, and a
small subset of neurons in each layer was active at once). However, rather than updating feedback
weights using RDD, we recorded the mean firing rates of the active neurons in the upstream layer,

11

Under review as a conference paper at ICLR 2020

Layer Fashion-MNIST CIFAR-10
Input 28× 28× 1 32× 32× 3
1 Conv2D 5× 5, 64 ReLU Conv2D 5× 5, 64 ReLU
2 MaxPool 2× 2, stride 2 MaxPool 2× 2, stride 2
3 Conv2D 5× 5, 64 ReLU Conv2D 5× 5, 64 ReLU
4 MaxPool 2× 2, stride 2 MaxPool 2× 2, stride 2
5 FC 384 ReLU FC 384 ReLU
6 FC 192 ReLU FC 192 ReLU
7 FC 10 ReLU FC 10 ReLU

Table 2: Network architectures used to train on Fashion-MNIST and CIFAR-10.

rl, and the mean firing rates in the downstream layer, rl+1. We then used the following feedback
weight update rule:

∆Y = ηrlr(l+1)T − λWDY (17)

where Y are the feedback weights between layers l + 1 and l, and η and λWD are learning rate and
weight decay hyperparameters, respectively.

Figure S1: Comparison of average spike rates in the fully-connected layers of the LIF network vs.
activities of the same layers in the convolutional network, when both sets of layers were fed the
same input. Spike rates in the LIF network are largely correlated with activities of units in the
convolutional network.

12

