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ABSTRACT

Deep neural networks represent data as projections on trained weights in a high
dimensional manifold. This is a first-order based absolute representation that is
widely used due to its interpretable nature and simple mathematical functionality.
However, in the application of visual recognition, first-order representations trained
on pristine images have shown a vulnerability to distortions. Visual distortions
including imaging acquisition errors and challenging environmental conditions like
blur, exposure, snow and frost cause incorrect classification in first-order neural
nets. To eliminate vulnerabilities under such distortions, we propose representing
data points by their relative positioning in a high dimensional manifold instead
of their absolute positions. Such a positioning scheme is based on a data point’s
second-order property. We obtain a data point’s second-order representation by
creating adversarial examples to all possible decision boundaries and tracking the
movement of corresponding boundaries. We compare our representation against
first-order methods and show that there is an increase of more than 14% under
severe distortions for ResNet-18. We test the generalizability of the proposed
representation on larger networks and on 19 complex and real-world distortions
from CIFAR-10-C. Furthermore, we show how our proposed representation can be
used as a plug-in approach on top of any network. We also provide methodologies
to scale our proposed representation to larger datasets.

1 INTRODUCTION

In recent years, artificial intelligence systems achieved state-of-the-art performances in image clas-
sification tasks (Russakovsky et al., 2015)(Krizhevsky et al., 2012)(He et al., 2016). Specifically,
classification algorithms surpassed top-5 human error rate of 5.1% on ImageNet (Russakovsky et al.,
2015). Even though these advancements are promising, images in these datasets do not cover diverse
real-world scenarios. For instance, ImageNet consists of photographs parsed from Flickr, a popular
image hosting service. The images on Flickr are generally high quality since users tend not to share
distorted photographs. Distortions may include perceptually unpleasant camera related issues like
blur, motion blur, overexposure, underexposure, and noise. Moreover, environmental conditions such
as rain, snow, and frost can affect the field of view. These non-ideal conditions impact the performance
of artificial intelligence (AI) algorithms (Dodge & Karam, 2017)(Hendrycks & Dietterich, 2019).

These AI algorithms are primarily driven by deep neural nets that learn non-linear transformations to
obtain discriminate representation spaces. Deep neural networks are trained to transform a data point
into a representation space where linear classifiers can discriminate between classes (Goodfellow
et al., 2016)(Krizhevsky et al., 2012)(He et al., 2016). All the hidden layers are supervised to
maximize the interclass distance while minimizing the intraclass distance to obtain linearly separable
representations in the last layer. We formulate the inherent mechanisms behind the classification
process as follows: Let f be an L layered neural network trained to distinguish between N classes. If
x is any input to the network, the output for a classification application is given by f(x) = y where
y is a (N × 1) vector. The class of x is the index of the maxima of y. Consider only the final fully
connected layer fL parameterized by weights (WL) and bias (bL). We obtain y as,

y =WT
L fL−1(x) + bL,

∀y ∈ <N×1,WL ∈ <dL−1×N , fL−1(x) ∈ <dL−1×1, bL ∈ <N×1,
(1)
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where fL−1 is the flattened output of the network just before the final fully connected layer. All the
data points that span fL−1 representation space should be linearly separable for a well trained fL.
Note that Eq. 1 is a filtering operation between the weight vectors and the representation. Hence, the
final fully connected layer in a network can be considered as a linear filter set with N filters onto
which the representations (fL−1) are linearly projected (Wang et al., 2019). Projection refers to a
dot product between the data point and the filters. The filter W i

L,∀i ∈ [1, N ] that has the largest
projection or is maximally correlated with the data point represents the corresponding class.

In the above setting, the original data point x is represented by its projection intensity fL−1(x). This
representation can be analyzed as a first-order point process (Dorai-Raj et al., 2001). As an example,
consider cities in the USA. All cities can be located on a map using their latitudes and longitudes
as shown in Fig.1a. This is an instance of directly using the intensity - in this case the latitude and
longitude - to represent a data point - in this case a city. The first-order representation is widely used
for its intuitive nature, interpretability and ease of mathematical operation.

Figure 1: (a) Cities located using first order point representation - Latitudes and Longitudes. (b)
Cities located based on second order point representation - Pairwise Distance.

However, under distortions and perturbations, this representation is not stable (Azulay & Weiss,
2018)(Goodfellow et al., 2014). The authors in Goodfellow et al. (2014) show the instability of
such systems with adversarial images. In Azulay & Weiss (2018), the authors demonstrate that
when images are translated by a few pixels, the network output and the hidden layer representations
change drastically. We show that this change holds for distortions as well in Fig.2. Consider an
image taken from MNIST (LeCun et al., 1998) dataset. The image is subjected to five levels of
progressive blurring all of which are visualized in Fig.2a. Fig.2b shows the t-SNE (Maaten & Hinton,
2008) feature visualization of first order point representations of corresponding fL−1(xBlurLvl) for
10000 images in MNIST test set. The individual shapes and absolute locations of each cluster get
progressively distorted with increasing levels of blur. Hence, it is natural that a network trained on
original data performs poorly on distorted data.

An alternative to representing a point by its intensity is by representing its influence on every other
point in the subspace (Dorai-Raj et al., 2001). This is the second-order property of data points.
Consider the same example as before from Fig.1a. However, instead of latitudes and longitudes, the
pairwise distance between all cities is provided. A Multi-Dimensional Scaling (MDS) algorithm
is used to obtain the relative positioning of the cities with respect to each other as shown in Fig.1b.
MDS algorithms (Mead, 1992) are a class of algorithms that use second-order point representations
to translate pairwise distances of N objects into an abstract cartesian space.

In Sections 2 and 3 , we provide an intuitive methodology to extract the second-order representation
of any data point. In Section 4, we categorize the existing literature for classification under distortion
and organize them into frameworks based on data dependency. We describe the experimental setup
and discuss the results in Section 5 and conclude our work in Section 6.

2 SECOND ORDER POINT REPRESENTATIONS

Second-order point representations have been utilized in popular ML algorithms like k-Nearest
Neighbor (kNN) classification. kNN classifies a data point based on the classes of k of its nearest
neighbors, nearest being determined by a predefined distance metric. However, these algorithms are
computationally expensive. Similarly, classical MDS algorithms (Hout et al., 2013)(Mead, 1992) on
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Figure 2: (a) Progressive blurring of a sample image from MNIST dataset (b) t-SNE maps of
corresponding blurry MNIST testset for first-order representation (c) t-SNE maps of corresponding
blurry MNIST testset for proposed second-order representation.

M datapoints, require formation of a pairwise distance matrix of size M ×M , which is not feasible
for large-scale datasets.

In this paper, we propose a proxy method for representing a data point using its second-order property.
Instead of representing a data point as pairwise distance against other points, we represent it as a
cumulative distance to all decision boundaries. We use adversarial image generation along with
gradients of the final fully connected layer to obtain this cumulative distance. Consider Fig. 3a where
the data point is projected onto a filter from the final fully connected layer, W i

L, ∀i ∈ [1, N ]. This
provides a projection Pi, ∀i ∈ [1, N ]. During backpropagation, if i is the given class for data point
x, the filter moves in a direction that maximizes x’s new projection P ′i . The movement of the filter
is controlled by gradients. Hence, gradients provide the negative direction of a data point to a filter
W i

L. Our goal is to not just get the direction to the maximum projection class but to all the classes.
Hence, by backpropagating over all i ∈ [1, N ] for a datapoint, we obtain the direction of that data
point to every filter W i

L. However, one iteration of backpropagation is not sufficient to obtain the
distance between a datapoint to the decision boundary of a filter W i

L. Hence, we generate a targeted
adversarial image with class i, ∀i ∈ [1, N ] for the datapoint x and absolute sum the gradients over
the required iterations. This cumulative gradient provides the distance from a datapoint to a decision
boundary. Creating adversarial images for every class i ∈ [1, N ] provides multidirectional features.
This concept is shown in Fig 3b. We create N adversarial images for every datapoint and track their
individual movement until they hit a decision boundary.

These features form a proxy second-order representation for a datapoint. The benefits of this
representation are illustrated in the t-SNE maps for the MNIST testset in Fig. 2c. The relative shapes
of the class clusters are preserved for the proposed representation in Fig. 2c compared to first-order
representations in Fig. 2b. Further stability results are discussed in Appendix A.1

3 MULTI-DIRECTIONAL FEATURE GENERATION

Continuing the notations established in Secs. 1 and 2, a L layered network f is trained to distinguish
between N classes using original distortion free images. For every image x in the distortion free
dataset, targeted Fast Gradient Sign Method (Goodfellow et al., 2014) (FGSM) is applied to create
N adversarial images to obtain x’s distance to decision boundaries. For a target i ∈ [1, N ], an
adversarial noise εsign(∇xJ(W,x, i)) is added to the image x. J(W,x, i) refers to the cost function
used to train the network with parameters W . ∇x is the gradient of the cost function w.r.t. the
input x. ε of 0.1 is used in this work. Adversarial noise is added to the input over k iterations
until the classification changes to i, i.e f(xk−1 + εsign(∇xJ(W,xk, i))) = i. The absolute value
of the gradient of the cost function with respect to filter W i

L is summed up over k iterations, i.e
ri =

∑k−1
j=0 abs(∇W i

L
J(W,xj , i)) where ri is the feature for ith class. i is then iterated over all N
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Figure 3: (a) Motivation for using gradients as directional information. (b) Motivation for constructing
multi-target adversarial images.

classes to obtain multi-directional features of x to all decision boundaries. All corresponding ri are
concatenated to obtain the final feature rx = [r1r2 . . . rN ]. Hence the final multi-directional feature
is given by,

rx =

[
k−1∑
j=0

abs(∇W 1
L
J(W,xj , 1))

k−1∑
j=0

abs(∇W 2
L
J(W,xj , 2)) · · ·

k−1∑
j=0

abs(∇WN
L
J(W,xj , N))

]
(2)

rx is the proposed proxy second-order representation of x. Note that if the dimensionality of the
(L−1)th layer from Eq.1 is dL−1×1, then the dimensionality of every subfeature ri is also dL−1×1.
The concatenated final feature has a dimensionality (N ∗ dL−1)× 1. For reference, if the network fL
is VGG-16 trained on CIFAR-10, dL−1 is 512× 1 and rx is 5120× 1. This representation can get
prohibitive with increased number of classes. Simple methods to offset this increase and speed up rx
generation are discussed in Sec. 5.3.

The multi-directional features rx are as analogous to fl−1(x) as pairwise distances are to longitudes
and latitudes in Fig. 1. Hence, rx is used in the same way as fL−1(x). However because of change in
values and dimensionality, the same final fully connected layer fL cannot be used to discriminate rx.
Instead we train a new classifier gL on top of rx. gL is a new network whose parameter dimensions
depend on inputs. For instance, in Sec. 5.1, gL is a 3 layer fully connected network separated by
ReLU non-linearity for ResNet-18 whose rx dimensions are 640× 1. For ResNet-101 in Sec. 5.2,
whose rx dimensions are 2560× 1, gL is a 5 layered fully connected network. On a NVIDIA 1080TI
GPU, gL for ResNet-101 trains within 320 secs.

The second-order representation of any data point is obtained from Eq.2. Note that the generation of
gradients is a deterministic procedure and does not change over repeated experiments for the same
network. However, the generation procedure is tied to a specific network and hence the representation
of the same x differs for different networks. In Section 5, we implement 5 networks and show that the
proposed second order representation is robust compared to its first order counterpart in all of them.
Moreover, the cost function J(W,x, i) used to obtain gradients, impacts the value of said gradients
and creates differences in rx. In our experiments, we use MSE loss function to define J . Results
comparing multiple loss functions on distorted CIFAR dataset is shown in Appendix A.2.

4 EXISTING FRAMEWORK AND RELATED WORKS

All the existing literature for alleviating the effects of distortions for classification use first-order
representations to describe a data point. Moreover, a majority of the algorithms use some form of
distorted data during training. The authors in Vasiljevic et al. (2016) show that finetuning VGG-16
using blurry training images increases the performance of classification under blurry conditions.
However, performance between different types of blurs is not generalized and knowledge of type
of blur is required for good performance. The authors in Zhou et al. (2017) propose finetuning and
retraining early feature extraction layers of the network to increase classification accuracy. Temel et al.
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(2017) propose utilizing distorted virtual images to boost performance accuracy. All these works
require knowledge of distortion and large amounts of distorted data during training that makes them
impractical in real life scenarios like in autonomous driving. We categorize methods that require
distorted data while training into a Full-Reference (FR) framework. Retraining, finetuning and data
augmentation techniques that utilize distorted data during training fall under the FR framework.

In contrast, any framework that does not require distorted images during training will be termed as
No-Reference (NR) framework. The authors in Hendrycks & Dietterich (2019) show adversarial
defense schemes can increase distortion robustness. Most of the existing NR approaches generally
try to denoise (Buades et al., 2005) the distorted test image before feeding into a network. These
include Hossain et al. (2018) where the authors use a DCT module to remove high frequency
components from every image. Generally, these denoising algorithms are both computationally
expensive and time consuming (Vasiljevic et al., 2016). Moreover, denoising algorithms require
parameter tuning that varies by distortion types, levels and image resolutions. The proposed second
order representation can be applied on top of any network, trained in either FR or NR fashion. Hence,
by definition our approach follows a NR framework. Even when f is trained in a FR framework, we
obtain rx from undistorted x and train gL in a NR fashion.

Additionally, we propose a new framework between the FR and NR frameworks called Reduced-
Reference (RR). RR framework require only a few statistics of the distorted images for training gL.
RR framework differs from domain adaptation since it does not need test domain images during
training but only their statistics. Such a framework is more appropriate in practical applications
where it is impractical to anticipate, obtain or record all possible distortions. While the results of
RR approaches may not exceed FR techniques, they come at a much cheaper data price. In our
case, we convert our NR framework to RR by normalizing rx with mean and standard deviation
statistics of distorted data. The terminologies of FR, NR, and RR are borrowed from the Image
Quality Assessment community (Prabhushankar et al., 2017).

Figure 4: Results on CIFAR-10. Original is the first-order ResNet-18. NR is the proposed second-
order representation and RR is a statistics enhanced proposed second-order representation.

5 RESULTS

The performance of second-order over first-order representations is validated in this section.

5.1 MULTI-DIRECTIONAL FEATURES VS FIRST-ORDER FEATURES

Comparison against first order representation: CIFAR-10 (Krizhevsky & Hinton, 2009) dataset is
used to evaluate the effectiveness of the proposed second-order representation space against first-order
methods. We consider six distortions - gaussian blur, salt and pepper, gaussian noise, overexposure,
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motion blur, and underexposure. Five progressively worsening levels of all six distortions are created
on CIFAR-10 dataset similar to the procedure followed by Temel et al. (2018). ResNet-18 is chosen
as the original model f , trained on undistorted data. The accuracy on progressively worsening
distortions for f are visualized in Fig. 4 in blue where the y-axis shows the drop in performance
and x-axis shows the corresponding distortion level. Level 0 indicates that there is no distortion.
A significant performance drop is noticed across distortions for f . In contrast, when the original
model’s first-order representation is converted to proposed second-order, the results increase by an
average of 5.21% across levels and distortions. This is shown in the green NR curve. The difference
is more pronounced under level 5 severe distortions where the average accuracy across distortions
increases by 10.04%. The red curve is the proposed RR second-order representation. The proposed
RR outperforms the original by an average 7.72% across all distortions and levels. When there are
no distortions, the level 0 results in the plots suggest that the proposed second-order representation
performs similar to the first-order original representation.

Comparison against NR models: We compare the proposed second-order representation against 2
NR methods. NR1 technique denoises distorted test data by Non Local Means (NLM) before feeding
into f . Explicit denoising by NLM (Buades et al., 2005) was analyzed by Hendrycks & Dietterich
(2019). Because of the small resolution of CIFAR-10 images, NLM significantly blurs the distorted
images, thereby adding additional artifacts into the already distorted images. Hence it performs worse
than the original model under all distortions. Similar results were obtained using Hossain et al. (2018)
where a drop of 8% was observed even on pristine images. NR2 is an adversarially robust classifier
trained using undistorted images and untargeted FGSM images. Except in blur distortion, NR2 under
performs the proposed NR in all other distortions performing even worse than the original model in
Gaussian noise and underexposure.

Comparison against FR models: The original model’s second-order performance gains are com-
pared against 3 FR models - FR1 (Zhou et al., 2017), FR2 (Vasiljevic et al., 2016), and FR3, a data
augmentation technique. The performance of the proposed RR and NR methods slot near the middle
of the original and FR1 and FR2 models. The performance gain of proposed RR vs the original
is 7.72% while the gain of FR1 over proposed RR is 7.70%. Note that both FR1 and FR2 require
separate models for every distortion and distortion level i.e there are 31 trained models for each of FR1
and FR2 to produce the plots in Fig. 4. This shows that the proposed second-order representation can
be a useful tool in practical applications to enhance the original model’s performance where distorted
images are not easily obtainable during training. FR3 is trained on distortion free images augmented
with 1000 images each from all 6 distortions. It can be seen that the proposed RR representation
performs similarly to FR3 in all but SP noise. Moreover, for pristine data at level 0, FR3 performs
worse than the second-order representations.

Comparison against other second order methods :We compare our proxy second-order representa-
tion against true second-order representations. All existing networks utilize first-order representations
to make decisions. To simulate a second-order scenario, We construct k-Nearest Neighbor (kNN)
classifier on activations from fL−1(x). We do so for four k values - 5, 25, 50, 500. Our proxy second-
order NR outperforms all kNN classifiers by 6.37% averaged over all 6 distortions among all 5 levels
on ResNet-18. This is because instead of calculating pairwise distance between simultaneously
moving distorted data, we calculate distance between fixed (decision boundary) and one moving
distorted data. Such a proxy method provides more robustness than its true second-order counterpart.

5.2 MULTI-DIRECTIONAL FEATURE ROBUSTNESS

Robustness on multiple architectures: The significance of the second-order representation derives
from its broad utility and applicability as a "plug-in" on any gradient-based neural network. In
Section 5.1, the proposed representation performs similar to FR3. But once FR3 is trained and
deployed, the proposed representation can be plugged on top of FR3 to obtain additional performance
increase. Fig.5a shows two bars for every distortion. The left bar in each distortion indicates the
performance of model ResNet-18 trained only on undistorted data using first-order representation
(in blue) and f(x)’s corresponding increase for RR (in red) on level 5 distortions. The right bar
shows model FR3’s first-order results in blue and it’s corresponding increase (in red) when converted
to the proposed second-order representation. The "plug-in" functionality is not unique to ResNet-
18 and works on multiple networks. Fig.5b shows other common networks (x-axis) all of whose
averaged original results (in blue) across levels and distortions are improved using NR (in green) and
additionally by RR (in red). From the results, a NR ResNet-18 is as robust as ResNet-101.
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Figure 5: Robustness of accuracy gains of using second-order representation over first order represen-
tation.

Figure 6: Robustness of accuracy gains of using second-order representation over first order represen-
tation on 19 distortions in CIFAR-10-C.

Robustness on complex distortions: The proposed representation is validated on CIFAR-10-
C (Hendrycks & Dietterich, 2019). This dataset is corrupted by 19 distortions. ResNet-18 trained on
undistorted CIFAR-10 images is used as baseline original architecture. The averaged accuracy across
5 levels of progressive distortion on all 19 distortions is shown in Fig. 6a. The average increase in
accuracy for proposed second order NR representation over all distortions and distortion levels is
3.54%. In 7 of the 19 distortions, there is an accuracy improvement of 5% or more. Only in brightness
and saturation distortions, the average accuracy of proposed NR decreases by 0.23% and 0.59%
respectively. The level-wise accuracy gain of proposed second-order representation over original
first-order representation averaged over all distortions is visualized in Fig. 6b. The proposed method
provides just under 10% increase during severe distortion. Note that since there are no distorted
images, there are no statistics to be measured and used to obtain RR representation. Further analysis
and distortion-level plots are presented in Appendix A.5.

Robustness on higher resolution images: The proposed approach is implemented on higher resolu-
tion images of size 96× 96× 3 in STL-10 dataset (Coates et al., 2011). ResNet-18 architecture is
adopted with an extra linear layer to account for change in resolution. STL-10 is corrupted by the
6 distortions from Sec. 5.1. The results of both NR and RR approaches increase by an average of
2.56% in all but underexposure distortion. In underexposure, the accuracy drops by 1.05%. In level 5
of both blur categories, the RR increase is 6.89%. Additional results are provided in Appendix A.4.

5.3 MULTI-DIRECTIONAL FEATURE COST ENHANCEMENT

As indicated in Sec. 3 the dimensionality and time cost for generation of rx may become prohibitive
on large datasets for large networks. We propose two enhancements to mitigate these costs without a
substantial loss in performance.
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Table 1: Accuracy comparison : Feature Generation Time Analysis.

Gaussian
Blur

Salt and
Pepper

Gaussian
Noise

Over
Exposure

Motion
Blur

Under
Exposure

∇x RR 82.96% 60.94% 78.99% 70.34% 71.22% 84.95%

∇fL−1(x) RR 80.38% 60.37% 76.06% 69.76% 69.32% 84.05%

∇x NR 80.31% 56.55% 76.88% 67.68% 66.84% 83.76%

∇fL−1(x) NR 80.21% 60.33% 75.83% 69.70% 67.53% 84.21%

Table 2: Accuracy comparison : Dimensionality Reduction.

Gaussian
Blur

Salt and
Pepper

Gaussian
Noise

Over
Exposure

Motion
Blur

Under
Exposure

Original rx 82.96% 60.94% 78.99% 70.34% 71.22% 84.95%

rx dim = 1024 82.00% 58.54% 77.48% 69.06% 69.70% 84.52%

rx dim = 512 82.14% 58.06% 77.76% 69.26% 69.94% 84.68%

rx dim = 256 82.08% 57.93% 77.84% 68.67% 69.70% 84.44%

Feature generation time analysis : The proposed representation requires generating adversarial
images over all possible N classes during testing phase. Generating rx in this fashion takes around
0.28s for every image on VGG-16. The reason for the large cost is the multiple backpropagation
that happen over all 16 feature extraction modules to create adversarial noise in x domain. However,
the generation of perceptually similar adversarial images in the spatial x domain is not our goal.
Instead of generating adversarial images as x+ εsign(∇xJ(W,x, i)), we generate adversarial data
points in the fL−1 domain. That is, instead of backpropagating to x and taking the partial derivative
∇xJ(W,x, i)) w.r.t x, we backpropagate only one layer to fL−1 and obtain the partial derivative
w.r.t fL−1(x). Hence, in place of adversarial images, we create adversarial data points in fL−1(x)
to obtain rx. Generating rx in this fashion takes 0.0056s for every image. The average accuracies
across levels for all six distortions is presented in Table 1. The performance of the ∇fL−1(x) RR
and NR representations are comparable to their ∇x counterparts among all distortions. Additionally,
rx generation for ResNet-18 and ResNet-101 in Fig.5b takes 0.4 and 0.98s respectively. However,
creating advesarial datapoints and obtaining rx takes 0.042 and 0.036s respectively. Hence, this
alternate feature generation can be used on networks with large feature extraction modules.

Dimensionality Reduction: The dimensionality of the second order representation rx is (N ∗
dL−1) × 1. However, this feature is derived from a representation space where a linear classifier
can discriminate between N classes. On such a representation space, the application of simple
dimensionality reduction techniques yield subspaces that are themselves discriminative. Here, we
use PCA on rx derived from VGG-16 from Section 5.2. The original rx from VGG-16 is a vector of
length 5120× 1. PCA algorithm is applied on all rx. From 5120, we decrease the dimensionality to
1024, 512, and 256. The distortion level averaged results of RR method show only a small decrease
in performance displayed in Table 2.

6 CONCLUSION

In this paper, we analyzed the representations of deep learning methods from the perspective of
point processes. Our construction of a second-order representation space is analogous to existing
representations. Features in the second-order representation space are based on relative positioning
between data points and trained decision boundaries. Such features were utilized to reduce the
vulnerability of deep learning methods to distortions and real-world challenging conditions. Validation
was conducted on 5 architectures, 19 distortions and 2 image resolutions. The proposed second-order
representation, which is a plug-in approach, enhances robustness performance in neural networks.
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A APPENDIX

A.1 STABILITY OF PROPOSED REPRESENTATION VS FIRST-ORDER REPRESENTATION

In this section, we compare stability of first-order and second-order representations under distortion.
In Azulay & Weiss (2018), the authors demonstrate the instability of neural nets. They do so by
translating an image by a few pixels, and showing that the network output and the hidden layer
representation changes drastically. We show that this instability holds for distortions as well in Fig.7.
Borrowing the notations from Sec.1, the pristine image from MNIST dataset is subjected to five
levels of progressive blurring all of which are visualized in Fig.7a. Fig.7b shows the difference in the
first-order point representation of fL−1(xBlurLvl) to the original fL−1(xorig) i.e. each of the maps
shown in Fig.7b is the abs(fL−1(xBlurLvl)− fL−1(xorig)) for the corresponding image in Fig.7a.
Ideally, every map in Fig.7b must be zero, or in this case, must be visualized in blue. However, as can
be seen, the representation has values nearing 1 (orange). The representation also varies significantly
across blur levels.

We extract the second-order features from the distortion-free image as well as the blurry images
using Eq. 2. We then obtain the difference between the rx of original distortion-free image and the
blurred images, which are visualized in Fig.7d. Perceptually, the relative difference between blur
and original maps are less in proposed representation (more pixels are blue compared to orange) in
Fig. 7d compared to the first-order representation in Fig.7b. The t-SNE representations from Fig. 2
are also visualized in Figs. 7c and e.

A.2 LOSS FUNCTIONS FOR MULTI-DIRECTIONAL FEATURE GENERATION

In Sec.3, we describe the generation procedure for the multi-directional feature rx. The fea-
ture is a concatenation of multiple gradient directions each of which is generated as ri =∑k−1

j=0 abs(∇W i
L
J(W,xj , i)). Here J is the cost function that is being backpropagated. Gener-

ally, neural nets define loss functions that indicate the empirical difference between the predicted
and required values. These loss functions control the amount of required backpropagation and
consequently the gradients. Since gradients are our features, the choice of loss functions changes the
proposed second-order representations. We compared multiple loss functions all of whose distortion-
wise level-wise averaged RR results are provided in Table 3. CE is Cross Entropy, MSE is Mean
Squared Error, L1 is Manhattan distance, Smooth L1 is the leaky extension of Manhattan distance,
BCE is Binary Cross Entropy and FL is Focal Loss. Notice that the results of all loss functions
exceed that of the original. The results of MSE, L1 and Smooth L1 are presented by backpropagating
a one-hot vector (with 1 at i) multiplied by the average of all activations in the train non-distorted
dataset. For ResNet-18, this number is close to 11.

From Table 3, linear or near linear loss functions like L1 and MSE perform better than log based
losses. This is because in the fL−1 representation space where a linear classifier can discriminate
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Figure 7: (a) Progressive blurring of a sample image from MNIST dataset (b) Difference map between
original image activation in (L − 1) layer and corresponding blur activation map from the same
layer. Ideally they should be zero (or blue). Orange represents one (c) t-SNE maps of corresponding
blurry MNIST testset for first order representation (d) Difference map for proposed representation.
More pixels in blurry image match the original, and hence more blue pixels (e) t-SNE maps of
corresponding blurry MNIST testset for proposed representation.

Table 3: Proposed RR accuracies with different loss function
Original CE MSE L1 Smooth L1 BCE FL(gamma=2)

RR 67.65% 71.99% 75.38% 75.12% 73.51% 74.23% 72.91%

between classes, a linear loss function provides a more accurate distance between data points and
decision boundaries. We plot the results of the MSE, L1, BCE and original loss functions for all 6
distortions in Fig. 8. MSE outperforms L1 by 0.26% average accuracy and is used in our experiments.

A.3 MNIST PERFORMANCE

We consider gaussian blur, and salt and pepper noise as the distortions to evaluate our method on
MNIST dataset. These were chosen because of their large impact on performance of classifiers
trained on original images. Blur is introduced using a standard gaussian kernel with 0 mean and
progressively worsening standard deviation from [1.5, 3.5] with an interval of 0.5. This produces five
levels of distortion. Sample Gaussian blurred images are shown in Fig.2a. Salt and pepper noise
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Figure 8: Result comparison for different loss functions. Proposed RR is MSE loss.

is a high frequency noise that occurs in images due to sudden signal disturbances. Salt and Pepper
noise is modelled as randomly scattered white pixels in the image with a density that changes from
[0.01, 0.05] over five intervals leading to 5 distorted levels. The code for the noise generation process
for both MNIST and CIFAR-10 used in Sec. 5 will be made public. The original network fL used to
obtain second order features rx is a standard 2-conv-2-FC network. gL is trained with 3 layers.

The results are presented in Fig.9. The x-axis and y-axis represents the distortion levels and their
corresponding accuracy respectively. Level 0 on the x-axis indicates no distortion and level 5 indicates
the highest amount of distortion. In the plots, original refers to the network trained on undistorted
images. It can be seen that our second-order representation based RR and NR methods do not suffer
from any drop in accuracy on original first-order undistorted data.

In both the distortions, the proposed NR second-order representation outperforms original method.
The performance gain is particularly apparent at higher distortion levels. For blur level 5, the
proposed NR method outperforms the original network by nearly 18%. This is a direct indication
of the potential of second-order representations over first-order methods. The proposed RR method
outperforms the proposed NR and original methods. In blur level 5, it achieves roughly 30% gain
over original network.

Figure 9: Results on MNIST. NR refers to proposed second-order representation and RR refers to
statistics enhanced second-order representation.

12



Under review as a conference paper at ICLR 2020

A.4 COMPARISON AGAINST OTHER SECOND-ORDER REPRESENTATIONS

The results in Sec.5.1 indicate that the proposed proxy second-order representations perform better
than their true second-order counterpart. ResNet-18 is the base original model used in these exper-
iments. We provide plots for the proposed NR and FR representations when compared against its
original first-order representation and kNN classifier with 4 different values of k - 5, 25, 50, 500 in
Fig. 10. Note that both our representation and that of kNN are constructed on fL−1 representation
space of ResNet-18. The results on all 6 distortions are shown. While the first-order original represen-
tation lags behind our proposed representation, it performs similar to, or in some cases outperforms,
kNN methods. The parameter k does not create a noticeable difference in the results. Even when k
was parameterized to a high value of 5000, the overall results were less than the original.

Figure 10: Results of proposed representations compared against kNN classifier.

A.5 RESULTS ON CIFAR-10-C

The distortion-wise and level-wise results of applying our second-order representation on original
ResNet-18 was shown in Sec.5.2. Here we show plots for level-wise results for all 19 distortions in
Fig.11. The original trained model is ResNet-18 whose results are presented in blue. Its corresponding
second-order representation is shown as NR in green. As mentioned in Sec.5.2, CIFAR-10-C does not
provide access to either training distorted images nor their statistics and hence direct RR representation
cannot be obtained. However, we calculate mean and standard deviation from a subset of test images
and use those for normalization. Notice that doing so converts our RR framework into a Domain
Adaptation framework. The results of such a RR framework are provided in red in Fig.11.

CIFAR-10-C consists of a number of real-world complex scenarios. These complex scenarios range
from simple gaussian blur and gaussian noise to real-life challenges like defocus blur, motion blur,
rain, fog, and frost among others. The accuracy of the original ResNet-18 model trained with pristine
images and tested on distorted images range between [0.9, 0.2]. Distortions like contrast, Gaussian
blur, Gaussian noise, impulse noise, and speckle noise traverse through this entire range and provide
ideal means to compare proposed second-order representation against first-order representations.
In each of these distortions except contrast, both the NR and RR representations outperforms the
original by considerable margins. Contrast is a distortion which even the human visual system cannot
readily overcome (Geirhos et al., 2018). In 8 of the 19 distortions, the RR representation obtains
results that are greater than 10% averaged over all levels. These include Gaussian blur, Gaussian
noise, glass blur, motion blur, pixelate, shot noise, speckle noise, and zoom blur. The highest increase
is 14.18% for shot noise. In 2 of the distortions, brightness and saturate, the results decrease by less
than 0.6% averaged over all levels. Brightness and saturate both span representation spaces where
the gradients to multiple decision boundaries are all very large and are not discriminative enough
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Figure 11: Results of proposed representations on CIFAR-10-C images.

to differentiate between classes. The same explanation also extends to contrast, and fog where the
increase is roughly 2% from the original.

Another way of characterizing results is by categorizing distortions by their local and global statistics.
Distortions like saturate, brightness, contrast, fog, and frost change the low level statistics in the
image domain. Neural networks are actively trained to ignore such changes so that their effects are
not propagated after the first few layers. Hence any second-order representation created on the final
fully connected layer is going to be analogous to its first-order counterpart. Therefore, the results of
the proposed approach and the original model follow each other closely. This provides the motivation
to consider creating second-order representations in the first few layers as well.

A.6 RESULTS ON HIGHER RESOLUTION IMAGES AND ALTERNATE APPLICATIONS

The results of the proposed representation when applied on larger resolution images of STL-10 dataset
are provided in Sec.5.2. Here, we show the plots of the proposed representation against its first-order
representation on 6 distortions in Fig.12. The increase in distortion-averaged level-averaged results is
2.56% in all except underexposure distortion. While this shows that the second-order representation
outperforms its first-order counterpart, the increase in results is not as substantial as in CIFAR-10
and CIFAR-10-C. This is because the original ResNet-18 model was trained on only 5000 training
images. In such an under-trained scenario, the cumulative gradients of a data point to all decision
boundaries become large and not as discriminative as a well trained architecture. This experiment
indicates a limit to the performance increase of the second-order representation as a plug-in on top of
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first-order methods. However, it provides insight into using this representation as a control parameter
during training procedures to provide an alternate and analogous view of under-trained, well-trained,
and over-trained architectures.

Figure 12: Results of proposed representations on higher resolution STL images.
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