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ABSTRACT

Machine learning algorithms for generating molecular structures offer a promis-
ing new approach to drug discovery. We cast molecular optimization as a transla-
tion problem, where the goal is to map an input compound to a target compound
with improved biochemical properties. Remarkably, we observe that when gener-
ated molecules are iteratively fed back into the translator, molecular compound at-
tributes improve with each step. We show that this finding is invariant to the choice
of translation model, making this a “black box” algorithm. We call this method
Black Box Recursive Translation (BBRT), a new inference method for molecular
property optimization. This simple, powerful technique operates strictly on the in-
puts and outputs of any translation model. We obtain new state-of-the-art results
for molecular property optimization tasks using our simple drop-in replacement
with well-known sequence and graph-based models. Our method provides a sig-
nificant boost in performance relative to its non-recursive peers with just a simple
“for” loop. Further, BBRT is highly interpretable, allowing users to map the evo-
lution of newly discovered compounds from known starting points.

1 INTRODUCTION

Automated molecular design using generative models offers the promise of rapidly discovering new
compounds with desirable properties. Chemical space is large, discrete, and unstructured, which
together, present important challenges to the success of any molecular optimization campaign. Ap-
proximately 108 compounds have been synthesized (Kim et al., 2015) while the range of potential
druggable candidates is estimated to between 1023 and 1089 (Polishchuk et al., 2013). Consequently,
new methods for intelligent search are paramount.

A recently introduced paradigm for compound generation treats molecular optimization as a transla-
tion task where the goal is to map an input compound to a target compound with favorable properties
(Jin et al., 2019). This framework has presented impressive results for constrained molecular prop-
erty optimization where generated compounds are restricted to be structurally similar to the source
molecule.

We extend this framework to unconstrained molecular optimization by treating inference as a first-
class citizen. We observe the remarkable fact that generated molecules can be repeatedly fed back
into the model to generate even better compounds. This finding is invariant to the choice of transla-
tion model, making this a ’black box” algorithm. This invariance is particularly attractive consider-
ing the recent emphasis on new molecular representations (Gémez-Bombarelli et al., 2018; Jin et al.,
2018; Dai et al., 2018; Li et al., 2018; Kusner et al., 2017; Krenn et al., 2019). Using our simple
drop-in replacement, our method can leverage these recently introduced molecular representations
in a translation setting for better optimization.

We introduce Black Box Recursive Translation (BBRT), a new inference method for molecular
property optimization. Surprisingly, by applying BBRT to well-known sequence and graph based
models in the literature, we can produce new state-of-the-art results on property optimization bench-
mark tasks. Through an exhaustive exploration of various decoding strategies, we demonstrate the
empirical benefits of using BBRT. We introduce simple ranking methods to decide which outputs
are fed back into the model and find ranking to be an appealing approach to multi-property opti-
mization. Finally, we demonstrate how BBRT is an extensible tool for interpretable and user centric
molecular design applications.
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Figure 1: Black Box Recursive Translation (BBRT).

2 RELATED WORK

De novo molecular design. Recent work has focused on learning new molecular representations in-
cluding graphs (You et al., 2018b; Li et al., 2018), grammars (Kusner et al., 2017; Dai et al., 2018),
trees (Jin et al., 2018), and sequences (Gémez-Bombarelli et al., 2018; Krenn et al., 2019). Pro-
vided with a molecular representation, latent variable models (Kusner et al., 2017; Dai et al., 2018;
Jin et al., 2018)), markov chains (Seff et al., 2019), or auto-regressive models (You et al., 2018b)
have been developed to learn distributions over molecular data. Molecular optimization has been
approached with reinforcement learning (Popova et al., 2018; Zhou et al., 2019) and optimization in
continuous, learned latent spaces (Gémez-Bombarelli et al., 2018).

We build on recent work introducing a third paradigm for design, focusing on molecular optimiza-
tion as a translation problem (Jin et al., 2019). Jin and colleagues develop a graph based repre-
sentation for molecular translation. Their method directly translates between a source graph and a
target graph via an intermediate hidden representation. With many ways to modify a molecule to
improve its biochemical properties, Jin et al. (2019) use stochastic hidden states coupled with a left-
to-right greedy decoder to generate multi-modal outputs. While Jin et al. (2019) focus their efforts
on constrained optimization, we focus on extending this framework to a more general unconstrained
setting. We show that while their translation model is not fundamentally limited to constrained op-
timization, their inference method restricts the framework’s application to more general problems.

Matched molecular pair (MMP) analysis. MMP analysis is a popular cheminformatics framework
for analyzing structure-property relationships (Turk et al., 2017). MMPs are extracted by mining
databases of measured chemical properties and identifying pairs of chemical structures that share the
same core and differ only by a small, well-defined structural difference, e.g., where a methyl group
is replaced by an isopropyl group (Tyrchan & Evertsson, 2017). The central hypothesis underlying
MMPs is that the chemical properties of a series of closely related structures can be described by
piecewise-independent contributions that various structural adducts make to the properties of the
core.

MMP analysis has become a mainstream tool for interpreting the complex landscape of structure-
activity relationships via simple, local perturbations that can be learnt and potentially transferred
across drug design projects (Kubinyi, 1988). This framework serves as the chemistry analogue to a
popular intepretability tool in machine learning called local interpretable model-agnostic explana-
tions (LIME) (Ribeiro et al., 2016). MMP and LIME alike learn local surrogate models to explain
individual predictions.

We view molecular translation as a learned MMP analysis. While Jin et al. (2019) use neural net-
works to learn a single high-dimensional MMP step, we extend this framework to infer a sequence
of MMPs, extending the reach of this framework to problems beyond constrained optimization.

Translation models. Machine translation models composed of end-to-end neural networks
(Sutskever et al., 2014) have enjoyed significant success as a general-purpose modeling tool for
many applications including dialogue generation (Vinyals & Le, 2015) and image captioning
(Vinyals et al., 2015). We focus on a recently introduced application of translation modeling, one of
molecular optimization (Jin et al., 2019).

The standard approach to inference — approximately decoding the most likely sequence under the
model — involves a left-to-right greedy search, which is known to be highly suboptimal, producing
generic sequences exhibiting low diversity (Holtzman et al., 2019). Recent work propose diverse
beam search (Li & Jurafsky, 2016; Vijayakumar et al., 2018; Kulikov et al., 2018), sampling meth-



Under review as a conference paper at ICLR 2020

ods geared towards open-ended tasks (Fan et al., 2018; Holtzman et al., 2019), and reinforcement
learning for post-hoc auxiliary objective optimization (Wiseman et al., 2018; Shen et al., 2016; Bah-
danau et al., 2017). Motivated by molecular optimization as a translation task, we develop Black Box
Recursive Translation (BBRT). We show BBRT generates samples with better molecular properties
than its non-recursive peers for both deterministic and stochastic decoding strategies.

3 MOLECULAR OPTIMIZATION AS A TRANSLATION PROBLEM.

For illustrative purposes, we describe the translation framework and the corresponding inference
method for sequences. We emphasize that our inference method is a black box, which means it is
invariant to specific architecture and representational choices.

Background. Our goal is to optimize the chemical properties of molecules using a sequence-
based molecular representation. We are given (z,y) € (X,)) as a sequence pair, where z =
(x1,%a,...,%y,) is the source sequence with m tokens and y = (y1, 2, ..., Yyn) is the target se-
quence with n tokens, and X and ) are the source and target domains respectively. We focus on
problems where the source and target domains are identical. By construction, our training pairs
(z,y) have high chemical similarity, which helps the model learn local edits to x. In addition, y is
a paraphrase of x with improved property values. These properties are specified beforehand when
constructing training pairs. A single task will typically optimize a single property such as potency,
toxicity, or lipophilic efficiency.

A sequence to sequence (Seq2Seq) model learns parameters € that estimate a conditional probability
model P(y|x; 6), where 6 is estimated by maximizing the log likelihood:

LO)= > logP(yl,0) )
(z,y)€(X,Y)

The conditional probability is typically factorized according to the chain rule: P(y|z;0) =
1 P(yt|y<s, z,0). These models use an encoder-decoder architecture where the input and out-
put are both parameterized by recurrent neural networks (RNNs). The encoder reads the source
sequence = and generates a sequence of hidden representations. The decoder estimates the con-
ditional probability of each target token given the source representations and its preceding tokens.
The attention mechanism (Bahdanau et al., 2014) helps with token generation by focusing on token-
specific source representations.

4 BLACK BOX RECURSIVE TRANSLATION

4.1 CURRENT INFERENCE METHODS

For translation models, the inference task is to compute y* = arg max p(y|z, §). Because the search
space of potential outputs is incredibly large, in practice, we can only explore a limited number
of sequences. Given a fixed computational budget, likely sequences are typically generated with
heuristics. Decoding methods can be classified as deterministic or stochastic. We now describe both
classes of decoding strategies in detail. For this section, we follow the notation described in Welleck
et al. (2019).

Deterministic Decoding. Two popular deterministic methods include greedy search and beam
search. Greedy search performs a single left-to-right pass, selecting the most likely token at each
time step: y; = argmax p(y:|y<:, x,0). While this method is efficient, it leads to suboptimal
generation as it does not take into account the future when selecting tokens.

Beam search is a generalization of greedy search and maintains a set of k£ hypotheses at each time-
step where each hypothesis is a partially decoded sequence. While in machine translation beam
search variants are the preferred method, for more open-ended tasks, beam search fails to generate
diverse candidates. Recent work has explored diverse beam search (Li & Jurafsky, 2016; Vijayaku-
mar et al., 2018; Kulikov et al., 2018). These methods address the reduction of number of duplicate
sequences to varying extents, thereby increasing the entropy of generated sequences.

Stochastic Decoding. A separate class of decoding methods sample from the model at generation
time, y: ~ q(y+|y<t, x,pp). This method has shown to be effective at generating diverse sam-
ples and can better explore target design spaces. We consider a top-k sampler (Fan et al., 2018),
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which restricts sampling to the k most-probable tokens at time-step ¢. This corresponds to re-
stricting sampling to a subset of the vocabulary U C V. U is the subset of V' that maximizes

Zyey Pe(yt|yy<tal’)i

pe(ytlgam) Ys c U

a(yely<e, =, po) = {0 otherwise

4.2 RECURSIVE INFERENCE

We are given (z,y) € (X,Y) as a sequence pair where by construction (z, y) have high chemical
similarity and y is a paraphrase of x with an improved value for a prespecified property. At test
time, we are interested in recursively inferring new sequences. Let y; denote a random sequence for

recursive iteration 4. Let {y§k>},§:l be a set of K outputs generated from py(y;|z) when i = 0. We
use a scoring function S to compute the best of K outputs denoted as ¢;. For i > 0, we infer K
outputs from pg(y;|9:—1). This process is repeated for n iterations.

Scoring functions. In principle, all K outputs at iteration ¢ can be independently conditioned on
to generate new candidates for iteration ¢ + 1. This procedure scales exponentially with respect
to space and time as a function of n iterations. Therefore, we introduce a suite of simple ranking
strategies to score K output sequences to decide which output becomes the next iteration’s source
sequence. We consider a likelihood based ranking as well as several chemistry-specific metrics
further described in the experiments. Designing well-informed scoring functions can help calibrate
the distributional statistics of generated sequences, aid in multi-property optimization, and provide
interpretable sequences of iteratively optimal translations.

Ensemble outputs. After n recursive iterations, we ensemble the generated outputs
{Y0, Y1, -+, yn}szl and score the sequences on a desired objective. For property optimization, we
return the arg max. In principle, BBRT is not limited to ensembling recursive outputs from a single
model. Different modeling choices and molecular representations have different inductive biases,
which influence the diversity of generated compounds. BBRT can capitalize on these differences by
providing a coherent method to aggregate results.

5 EXPERIMENTS

We apply BBRT to solve unconstrained and multi-property optimization problems. To highlight the
generality of our method, we apply recursive translation to both sequence and graph-based transla-
tion models. Surprisingly, we show that BBRT generates state-of-the-art results on molecular
property optimization using already published modeling approaches. Next we describe how re-
cursive inference lends itself to interpretability through the generation of molecular traces, allowing
practicioners to map the evolution of discovered compounds from known starting points through a
sequence of local structural changes. At any point in a molecular trace, users may introduce a ’break
point” to consider alternative translations thereby personally evaluating the tradeoffs between con-
flicting design objectives. Finally, we apply BBRT to multi-property optimization.

Models. We apply our inference method to sequence and graph-based molecular representations.
For sequences, we use the recently introduced SELFIES molecular representation (Krenn et al.,
2019), a sequence based representation for semantically constrained graphs. Empirically, this
method generates a high percentage of valid compounds (Krenn et al., 2019). Using SELFIES,
we develop a sequence to sequence model with an encoder-decoder framework. The encoder and
decoder are both parameterized by RNNs with LSTM cells. The encoder is a 2-layer bidirectional
RNN and the decoder is a 1-layer unidirectional forward RNN. We also use attention (Bahdanau
et al., 2014) for decoding. The hidden representations are non-probabilistic and are optimized to
minimize a standard cross-entropy loss with teacher forcing. Decoding is performed using deter-
ministic and stochastic decoding strategies described in Section 4.1. For graphs, we use a tree-based
molecular representation (Jin et al., 2018) with the exact architecture described in (Jin et al., 2019).
Decoding is performed using a probabilistic extension with latent variables described in (Jin et al.,
2019)—we sample from the prior k times followed by left to right greedy decoding.
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Penalized logP QED
Method 1st 2nd 3rd 1st 2nd 3rd
ZINC 4.52 4.30 423 0948 0.948 0.948
ORGAN 3.63 3.49 344  0.896 0.824  0.820
JT-VAE 5.30 4.93 449 0925 0911 0.910
GCPN 7.98 7.85 7.80 0948 0947 0946

VJTNN (6600 samples) 597 4.96 471 0948 0948  0.948
Seq2Seq (6600 samples) 4.65 4.53 449 0948 0948  0.948

BBRT+VJTNN 10.13  10.10 991 0948 0.948 0.948
BBRT+Seq2Seq 6.74 6.47 642 0948 0948  0.948

Table 1: Top 3 property scores on penalized logP and QED tasks.

Data. We construct training data by sampling molecular pairs (X,Y) with molecular similarity
sim(X,Y) > 7 and property improvement §(Y) > §(X) for a given property §. Constructing
training pairs with a similarity constraint can help avoid degenerate mappings. In contrast to Jin et al.
(2019), we only enforce the similarity constraint for the construction of training pairs. Similarity
constraints are not enforced at test time. Molecular similarity is measured by computing Tanimoto
similarity with Morgan fingerprints Rogers & Hahn (2010). All models were trained on the open-
source ZINC dataset.

Properties. For all experiments, we focus on optimizing two well-known drug properties of
molecules. First, we optimize the water-octanol partition coefficient (logP). Similar to (Jin et al.
(2018); Kusner et al. (2017); Gémez-Bombarelli et al. (2018)), we consider a penalized logP score
that incorporates ring size and synthetic accessibility. Following Jin et al. (2019) we extracted 99K
translation pairs for training using a similarity constraint of 0.4. Second, we optimize quantitative
estimate of drug likeness (QED) Bickerton et al. (2012). Following Jin et al. (2019), we construct
training pairs where the source compound has a QED score within the range [.7 .8] and the target
compound has a QED score within the range [.9 1.0]. While Jin et al. (2019) evaluates QED perfor-
mance based on a closed set translation task, we evaluate this model for unconstrained optimization.
We extracted a training set of 88K molecule pairs. Please see the supplement for details on how
these properties were computed.

Scoring functions. Here we describe scoring functions that are used to rank K outputs for recursive
iteration ¢. The highest scoring sequence is used as the next iteration’s source compound..

e Penalized LogP: Choose the compound with the max LogP value. This is useful when
optimizing LogP as a primary or auxiliary property.

e QED: Choose the compound with the max QED value. This is useful when optimizing
QED as a primary or auxiliary property.

e Max Delta Sim: Choose the compound with the highest chemical similarity to the previous
iteration’s source compound. This is useful for interpretable, molecular traces by creating
a sequence of translations with local edits.

e Max Init Sim: Choose the compound with the highest similarity to the initial seed com-
pound. This is useful for input-constrained optimization.

e Min Mol Wt: Choose the compound with the minimum molecular weight. This is useful
for rectifying a molecular generation artifact where models optimize logP by simply adding
functional groups, thus increasing the molecular weight (see supplement fig.).

Diversity is computed as follows. Let Y be a set of translated compounds. Consistent with the
literature we report diversity as

DIV(Y 1-6 2
(Y) = VIV =1 |Y| y%:vy;y (v, y) (2)

0 is the Tanimoto similarity computed on the Morgan fingerprints of 3 and 3/’.
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Figure 2: Left and Center: Top 100 logP generated compounds under BBRT applied to Seq2Seq
and Graph2Graph and their non-recursive counterparts. Right: Diversity of top 100 generated com-
pounds under both BBRT models and the top 100 compounds from the training data.
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Figure 3: Top scoring compounds for properties logP and QED under BBRT+Seq2Seq and BBRT+-
Graph2Graph.

5.1 MOLECULE GENERATION RESULTS

Setup. For property optimization, the goal is to generate compounds with the highest possible
penalized logP and QED values. For notation, we denote BBRT applied to model X as R-X. We
consider R-Graph2Graph and R-Seq2Seq under 3 decoding strategies and 5 scoring functions. For
the logP task, we seed our translations with 900 maximally diverse compounds with an average
pairwise diversity of 0.94 £ 0.04 relative to .86 = .04, which is the average pairwise diversity of the
training data. Maximally diverse compounds were computed using the MaxMin algorithm (Ashton
et al., 2002) on Morgan fingerprints. We found seeding our translations with diverse compounds
helped BBRT generate higher scoring compounds. For both BBRT applications, we sample 100
times from a top-2 and from a top-5 sampler and aggregate these outputs with a beam search with
20 beams outputting 20 compounds.

Baselines. We compare our method with the following state-of-the-art baselines. Junction Tree
VAE (Jin et al., 2018) combines a graph-based representation with latent variables for molecular
graph generation. Molecular optimization is performed using Bayesian Optimization on the learned
latent space to search for compounds with optimized property scores. JT-VAE has been shown to
outperform other methods including Character-VAE (Gémez-Bombarelli et al., 2018), Grammar-
VAE (Kusner et al., 2017), and Syntax-Directed-VAE (Dai et al., 2018). We also compare against
two reinforcement learning molecular generation methods; ORGAN (Guimaraes et al., 2017) uses
SMILES strings (Weininger, 1988), a text-based molecular representation, and GCPN (You et al.,
2018a), which uses graphs.

We also compare against non-recursive variants of the Seq2Seq and Graph2Graph models consid-
ered here. For a fair comparison, we admit similar computational budgets to these baselines. For
Seq2Seq we include a deterministic and stochastic decoding baseline. For the deterministic baseline,
we use beam search with 20 beams and compute the 20 most probable sequences under the model.
For the stochastic baseline, we sample 6600 times from a top-5 sampler. For details on the sampler,
we refer readers to section 4.1. For VITNN (Jin et al., 2019), the Graph2Graph approach, we use
their reported Github implementation. There is not an obvious stochastic and deterministic parallel
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Figure 4: Ablation experiments using BBRT applied to Seq2Seq. A. Left: Mean logP from 900
translations as a function of recursive iteration for three decoding strategies. Dotted lines denote
non-recursive counterparts. Right: Mean logP as a function of recursive iteration for 4 scoring
functions. B. Left: Diversity of generated outputs across recursive iterations for logP translation.
Right: Diversity of generated outputs across recursive iterations for QED translation.

considering their method is probabilistic. Therefore, we focus on comparing to a fair computational
budget by sampling 6600 times from the prior distribution followed by greedy decoding. For fair
comparisons to the recursive application, the same corresponding sampling strategies are used, with
100 samples per iteration.

Results. Following reporting practices in the literature, we report the best 3 property scores found by
each model and the fraction of generated molecules that satisfy chemical validity. Table 1 summa-
rizes these results. The best 3 property scores found in ZINC250k are included for comparison. For
logP optimization, BBRT+VJTNN (R-Graph2Graph) significantly outperforms all baseline models
including VITNN (Graph2Graph), Seq2Seq, and BBRT+Seq2Seq (R-Seq2Seq). R-Seq2Seq outper-
forms Seq2Seq, highlighting the benefits of recursive inference for both molecular representations.
For QED property optimization, the two translation models and the BBRT variants all find the same
top 3 property scores, which is a new state-of-the-art result for QED optimization.

In Fig. 2, we report the top 100 logP compounds generated by both BBRT applications relative to
its non-recursive counterparts and observe significant improvements in logP from using BBRT. We
also report a diversity measure of the generated candidates for both BBRT models and the top 100
logP compounds in the training data. The Graph2Graph variant produces logP compounds that are
more diverse than the compounds in the training data, while the compounds generated by Seq2Seq
are less diverse.

Fig. 3 visualizes the top 2 discovered compounds by R-Graph2Graph and R-Seq2Seq under both
properties. For logP, while R-Graph2Graph produces compounds with higher property values, R-
Seq2Seq’s top 2 generated compounds have a richer molecular vocabulary. R-Seq2Seq generates
compounds with heterocycles and linkages while R-Graph2Graph generates a chain of linear hydro-
carbons, which looks quite similar to the top reported compounds in GCPN You et al. (2018b), an
alternative graph-based representation. This distinction in the vocabulary highlights the usefulness
of a sequence-based representation and a flexible framework to aggregate results across molecular
representations.
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Differences betweeen logP and QED. For logP, BBRT provides a 27% improvement over state-
of-the-art for property optimization, while for QED, despite recursive methods outperforming the
baselines, our non-recursive Seq2Seq and Graph2Graph baselines perform just as well. We note this
is not already reported in the literature. This highlights an important difference between explorative
and interpolative design. LogP optimization is an explorative task—the property is unbounded and
generative models have produced better values than what is in the dataset. While QED is an inter-
polative task—the property is bounded and the best reported compound values exist in the dataset.

5.2 EMPIRICAL PROPERTIES OF RECURSIVE TRANSLATION.

We perform a sequence of ablation experiments to better understand the effect of various BBRT
design choices on performance. We highlight the variability in average logP from translated outputs
at each iteration with different decoding strategies (Fig. 4A left) and scoring functions (Fig. 4A
right).

On the importance of stochastic decoding. For non-recursive and recursive translation models,
stochastic decoding methods outperformed deterministic methods on average logP scores (Fig.
4A left) and average pairwise diversity (Fig. 4B) for generated compounds as a function of recur-
sive iteration. Non-greedy-based search strategies are not common practice in de novo molecular
design (Gémez-Bombarelli et al., 2018; Kusner et al., 2017; Jin et al., 2019). While recent work
emphasizes novel network architectures and generating diverse compounds using latent variables
(Gémez-Bombarelli et al., 2018; Kusner et al., 2017; Jin et al., 2018), we identify an important
design choice that typically has been under-emphasized. This trend has also been observed in the
NLP community where only recently have researchers highlighted the importance of well-informed
search techniques (Kulikov et al., 2018).

Regardless of the decoding strategy, we observed improvements in mean logP with iterations (Fig.
2A) when using BBRT. When optimizing for logP, a logP scoring function quickly discovers the
best scoring compounds while auxiliary scoring functions improve logP at a slower rate and do not
converge to the same scores (2A right). This tradeoff highlights the role of conflicting molecular
design objectives.

For Fig. 4A, the standard deviation typically decreased with iteration number. Property values
concentrate to a certain range. With property values concentrating, it is reasonable to question
whether BBRT produces compounds with less diversity. In Fig. 4B we show average pairwise
diversity of translated outputs per recursive iteration across 3 decoding strategies and observe decay
in diversity for logP. For the best performing decoding strategy, the top-5 sampler, diversity decays
from about 0.86 after a single translation to about 0.78 after 25 recursive translations. This decay
is somewhat a product of the data—higher logP values tend to be less diverse than a random set of
compounds. For QED (Fig. 4B right), we observe limited decay. Differences in decay rate might be
attributed to task variability, one being explorative and the other interpolative.

5.3 INTERPRETABLE, USER CENTRIC OPTIMIZATION

Generative models can produce a large number of novel, promising compounds. For active drug-
design projects, the sheer number of suggestions produces a practical challenge. Project teams
operate within limited synthesis budgets and must prioritize a few suggestions to synthesize and
experimentally validate. From observing medicinal chemists work with molecular generative mod-
els for active projects, we found that chemists rank generated compounds based on intuiting how a
model might have arrived at that suggestion. Therefore, providing interpretable paths of optimiza-
tion can help drive user adoption.

Molecular traces. BBRT generates a sequence of iteratively optimal local edits from an initial
compound to an optimized one. We call optimization paths based on local structural changes a
molecular trace (Fig. 5A). In Gémez-Bombarelli et al. (2018), latent space interpolation methods
are used to show the intermediate sequence of compounds between an initial starting point and an
optimized compound. Their method, however, had a low validity rate for new compound generation
and did not present a method to allow users to reconsider steps in the optimization path based on
their input. RL based molecular generative techniques have not emphasized interpretable molecular
modeling. Recent RL methods focus on molecular construction and therefore are not well-suited for
the generation of molecular traces, which requires a model to move between compounds. Here we
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Figure 5: A. Generated molecular trace by ranking intermediate outputs by the maximum pairwise
Tanimoto (TM) similarity. B. An example molecular breakpoint. Alternative translations are con-
sidered from compound (2) each with its own design tradeoffs.

develop molecular traces for translation-based design. We use the Min Delta Sim scoring function
to generate traces that have the minimum possible structural changes while still improving logP.

Two features of molecular traces make them particularly well-suited for pharmaceutical research:

e This idea of iteratively optimal and interpretable local edits has a long history in phar-
maceutical research. The Free-Wilson approach and its variants build local models for
structure-activity relationships using molecular subgraphs themselves as model descrip-
tors, with the biological activity of molecules being described by linear summations of
activity contributions of specific subgraphs (Eriksson et al., 2014). These approaches pro-
vide simple and straightforward interpretability within the chemical space spanned by the
subgraphs, and molecular traces are equivalent to a sequence of Free-Wilson steps towards
optimal molecules.

e Drug design projects proceed via synthesis-test-analysis/ideation cycles, and since projects
stay away from well-explored chemical spaces for intellectual property reasons, the syn-
thesis of compounds proposed during each cycle almost always requires chemists to come
up with new synthetic routes. Synthetic chemists formulate synthesis routes as multi-step
combinations of a small number of well-known chemical reactions that carry out local
transformations to molecules until the desired structure is obtained. Since molecular traces
are themselves local transformations of structures from a seed compound to an optimal
compound, synthetic chemists can carry out the individual steps of a molecular trace to
synthesize the optimal compound generated by BBRT.

Molecular breakpoints. Molecular design requires choosing between conflicting objectives. In-
creased logP is correlated with poor oral drug-like properties and rapid clearance from the body
Ryckmans et al. (2009). Increasing the QED score might translate to a compound that is struc-
turally dissimilar from the seed compound, which could result in an inactive compound against a
protein of interest. Building on molecular traces, our method allows users to ”debug” any step of
the translation process and consider alternative steps, just like breakpoints in computer programs.
Given the difficulty of specifying a single global objective function for molecular design, methods
that can allow for chemists to be a part of the design loop are critical for user adoption and sensible
design. In Fig. 5B, we show an example from an R-Seq2Seq model trained to optimize logP. Here
we revisit the translation from step (2) to step (3) in Fig. SA by considering four alternatives picked
from 100 stochastically decoded compounds. These alternatives require evaluating the tradeoffs be-
tween logp, QED, molecular weight, the number of rotational bonds, and chemical similarity with
compound (2).

5.4 MULTI-PROPERTY OPTIMIZATION

We consider auxiliary property optimization by ranking recursive outputs using the scoring function.
This function decides what compound is propagated to the next recursive step. We apply BBRT to
Seq2Seq modeling (R-Seq2Seq) and use the trained QED translator described in Section 5.1. The
inference task is to optimize QED and logP as the primary and secondary properties respectively.
We compare scoring outputs based on QED and logP. In Fig. 6A, we compute the average logP
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Figure 6: Applying BBRT to multi-property optimization. QED is the primary target and logP is the
auxiliary property. A: Average logP as a function of recursive iteration for three decoding strategies
with primary and auxiliary property scoring functions. B: Average QED as a function of recursive
iteration for three decoding strategies with primary and auxiliary property scoring functions.

per recursive iteration for a set of translated compounds across three decoding strategies. Dotted
lines optimize logP as the scoring function while the solid lines optimize QED. For both scoring
functions, we report the max logP value generated. For all decoding strategies, average logP reaches
higher values under scoring by logP relative to scoring by QED. In Fig. 6B, we plot average QED
values using the same setup and observe that optimizing logP still significantly improves the QED
values of generated compounds. This method also discovers the same max QED value as scoring
by QED. This improvement, however, has tradeoffs in the limit for average QED values generated.
After 15 recursive iterations the average QED values of the generated compounds under a logP
scoring function converge to lower values relative to QED values for compounds scored by QED for
all three decoding strategies. We repeat this experiment with Graph2Graph and show similar effects
in the supplement (Fig. 8).

Multi-property optimization by ranking extends to variables that are at minimum loosely positively
correlated. For QED optimization, the average logP value for unoptimized QED compounds is
0.3041.96 while for optimized QED compounds the average logP value is 0.79+1.45. Additionally,
QED compounds in the target range [.9 1.0] in the training data had a positive correlation between
its logP and QED values (Spearman rank correlation; p = 0.07 P < 0.026). This correlation did not
hold for QED compounds in the range [.7 .8] unoptimized QED compounds (p = .007, P < .8).

6 FUTURE WORK

We develop BBRT for molecular optimization. BBRT is a simple algorithm that feeds the output
of translation models back into the same model for additional optimization. We apply BBRT to
well-known models in the literature and produce new state-of-the-art results for property optimiza-
tion tasks. We describe molecular traces and user centric optimization with molecular breakpoints.
Finally, we show how BBRT can be used for multi-property optimization. For future work, we
will extend BBRT to consider multiple translation paths simultaneously. In addition we will extend
translation models to low-resource settings, where property annotations are expensive to collect.
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A RECURSIVE PENALIZED LOGP EXPERIMENTS

Training details. For the Seq2Seq model, the hidden state dimension is 500. We use a 2 layer
bidirectional RNN encoder and 1 layer unidirectional decoder with attention Bahdanau et al. (2017).
The model was trained using an Adam optimizer for 20 epochs with learning rate 0.001. For the
graph-based model, we used Jin et al. (2019)’s implementation, which can be downloaded from
https://github.com/wengong-jin/iclr19-graph2graph.

Property calculation. Penalized logP is calculated using You et al. (2018a)’s implementation. Their
implementation utilizes RDKit to compute clogP and synthetic accessibility scores. QED scores are
also computed using RDKit.
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Figure 7: Comparison of scoring functions for BBRT applied to Graph2Graph (R-Graph2Graph).
Y-axis is mean logP from 900 translations as a function of recursive iteration. Dotted lines denote
non-recursive counterparts. Rec. Inf. is synonymous with BBRT.
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Figure 8: Applying BBRT to multi-property optimization with Graph2Graph model. QED is the
primary target and logP is the auxiliary property. Left: Average logP as a function of recursive iter-
ation under two scoring functions—QED and logP. Right: Average QED as a function of recursive
iteration for same two scoring functions.
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