
Under review as a conference paper at ICLR 2020

A SIMPLE APPROACH TO THE NOISY LABEL PROBLEM
THROUGH THE GAMBLER’S LOSS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning in the presence of label noise is a challenging yet important task. It
is crucial to design models that are robust to noisy labels. In this paper, we
discover that a new class of loss functions called the gambler’s loss provides strong
robustness to label noise across various levels of corruption. Training with this
modified loss function reduces memorization of data points and is a simple yet
effective method to improve robustness and generalization. Moreover, using this
loss function allows us to derive an analytical early stopping criterion that accurately
estimates when over-memorization begins to occur. Our overall approach achieves
strong results and outperforming existing baselines.

1 LEARNING FROM NOISY LABELS

As a first step of supervised learning tasks, the user often collects a large amount of data in the form
of (x, y) pairs where x represents the input data and y the desired labels. However, parts of world
data can often be mislabeled due to 1) annotator mistakes as a natural consequence of large-scale
crowdsourcing procedures (Howe, 2008), 2) the difficultly in fine-grained labeling across a wide range
of possible labels (Russakovsky et al., 2015), 3) subjective differences when annotating emotional
content (Busso et al., 2008), and 4) the use of large-scale weak supervision (Dehghani et al., 2017).
Learning in the presence of noisy labels using neural networks is challenging since neural networks
are overparametrized and are known to be able to memorize all labels even in the presence of strong
regularization (Zhang et al., 2017). When the model memorizes the noisy labels, its generalization
deteriorates (e.g., see Figure 1 and Section 1.1). In fact, this agrees with the theoretical finding in
(Nakkiran et al., 2019) that neural networks trained with SGD often learns functions stage by stage
from simpler functions to more complex ones, and functions whose output is uniformly random are
the functions with highest complexity, and so memorization of random labels often late in the training.
Based on these, we may devise special methods to learn signal from noisy labels. Similar to Patrini
et al. (2017); Yu et al. (2019); Han et al. (2018), we deal with an idealized noisy label setting, where a
noise transition matrix is invoked to define the problem, and each label has the probability defined by
the transition matrix to be flipped to another label (see appendix for a formal mathematical definition).

Organization: In this section, we first hypothesize and then empirically verify the existence of three
stages during training in the presence of noisy labels; in Section 2, we propose that the gambler’s
loss function is a noise robust loss function that can be used for noisy label problems, and we further
propose an analytical early stopping criterion using the gambler’s loss. We then verify our methods
through a series of experiments and comparisons with existing approaches.

1.1 TRAINING TRAJECTORY OF NOISY LABELS

In practice, one often faces the problem of learning from a dataset D = {x, y}ni=1 whose labels
are partially corrupted, i.e. D = Dclean ∪ Dcorrupt. We consider a setting where the labels are
symmetrically corrupted (i.e. any label has equal probability to be flipped to any other class). Let
ε = 1 − r denote the probability that a data point (x, y) is clean. A classification problem can be
denoted as learning a function f(⋅) ∶X → Y , where x ∈X = Rn are the data points, and y ∈ Y = Rm
are the targets. In practice, we parametrize f with parameters θ (i.e. fθ) and learn θ by minimizing
the empirical risk E [`(fθ(x), y)] for some loss function `. Traditional learning methods perform
gradient updates on θ by minimizing the empirical loss over the entire dataset D. However, naive
training on D often results in a “peaked” learning curve as shown in Figure 1b. We observe that such
learning curves seem to consist of three stages (See Figure 1):

1

Under review as a conference paper at ICLR 2020

(a)

fa
st
 le
ar
ni
ng
 s
ta
ge

ga
p
st
ag
e

m
em
or
iz
at
io
n

(b)

Figure 1: Different stages in the presence of label noise. (a) We plot `total (total loss), `clean (loss on Dclean),
and `corrupt (loss on Dcorrupt), we see that during the gap stage, there is a clear “gap” between the `clean
and `corrupt where training on clean labels has completed but training on noisy labels has barely started; (b)
Hypothesized qualitative division of the three stages: fast learning stage, gap stage, and the memorization stage.
Experiment done on MNIST with corruption rate 0.5.

1) Fast Learning Stage: The model quickly learns the underlying mapping from data to clean
labels; one observes rapid decreases in training loss and increases in test accuracy. Compare Figure
1a with 1b.

2) Gap Stage: From Figure 1a, we notice learning on the clean labels is almost complete (`clean ∼
0.5) but training on noisy labels has not started yet (`corrupt ∼ 2.5), and a large gap in training loss
exists between Dclean and Dcorrupt. Both the train loss and the test accuracy reach a plateau, and
this is the time at which the generalization performance is the best.

3) Memorization: When there are only noisy labels left to learn from, the model will memorize
these noisy labels and the train loss decreases slowly to 0. However, memorizing noisy labels hurts
generalization and the test accuracy decreases as well.

These stages seem to be present across datasets and model architectures when label noise is present.
This is problematic because the testing accuracy reaches a peak early in training and then decreases
steadily because the noisy gradient from Dcorrupt starts to dominate that from Dclean, leading to
memorization of noisy labels and affecting generalization. We verified that . Therefore, tackling
the problem of learning from noisy labels involves reducing the negative effect from Dcorrupt. This
is hard in general, since one does not know a priori which points are mislabeled. We mainly deal
with symmetric noise, and we denote the corruption rate (the probability that a data point has a
label that is not its true label) as r = 1 − ε, where ε is the clean rate. Various approaches have been
proposed (Patrini et al., 2017; Han et al., 2018; Yu et al., 2019), but, unfortunately, the best current
methods can do is only to slow down the drop in test accuracy instead of preventing it completely (Han
et al., 2018).

Our method will be based on the above observation; to summarize the key point, we note:
Observation. When training on a label-corrupted dataset, there is a stage when the average loss on
the correct points is much lower that of the corrupted points.
Intuitively, since features are easier to learn than random noises on average. This phenomenon also
motivates a label noise method sometimes called the “small loss method” (Han et al., 2018; Yu et al.,
2019), in which the data points with loss higher than a threshold is screened to prevent the network
from learning wrong information from such point. The observation also holds theoretically. As
shown in (Nakkiran et al., 2019), neural networks trained with SGD often learns functions stage by
stage from simpler functions to more complex ones, and functions whose output is uniformly random
are the functions with highest complexity. From this observation, we make the following idealized
assumption that our method is based on:
Assumption. (Idealized gap stage) During the gap stage, the model has not learned anything about
the data points in Dcorrupt, and predicts strictly uniform score across all the labels, and it achieves
perfect accuracy on Dclean.

2

Under review as a conference paper at ICLR 2020

We find that this assumption holds well for simple datasets such as MNIST and on datasets with
very high corruption rate, where our method achieves best results, and less so on more complicated
datasets such as CIFAR10. However, the key point is that it always holds to some degree. We next
show that training classifier with the gamblers loss term (Ziyin et al., 2019) increases the gap for
easier identifiability and slows down the memorization phenomenon.

2 THE GAMBLER’S LOSS FUNCTION AND HOW TO EARLY STOP

We propose an approach that uses the gambler’s loss function. Intuitively speaking, the gambler’s loss
builds on the analogy that making a classification given a data point is the same as a gambler making
a bet on a horse race given the horses, and that minimizing the nll loss in the classification problem
is the same as maximizing the doubling rate of wealth. The gambler’s loss maybe generalized to
include a reservation option in which the gambler can play “safe” and reserve part of his money in
pocket. We refer to this generalized version as the gambler’s loss. Mathematically, the gambler’s loss
augments the target space by an “reservation” dimension: Y → Y ′ = Rm+1, where the (m + 1)-th
dimension is defined as the reservation score. In the case of neural network classifier with an output
logistic classifier, this involves adding one more output neuron. We suppose outputs of a neural
network are normalized to form a distribution. The gambler’s loss function for a single data point
(x, y) with y being a point mass, and with neural network fw(⋅) ∶X → Y ′ is

`(f(x), y) = log(f(x)y +
1

o
f(x)m+1) (1)

In more general settings, the target may also be a distribution, but should not undermine the arguments
in this paper. o is a hyperparameter for the loss function, and reasonable range of o is o ∈ (1,m].
Larger o encourages reservation.

(a) Training with Adam

(b) Training with SGD

Figure 2: Training trajecto-
ries on the gambler’s loss us-
ing different optimizers, with
r = 0.5.

Traditional methods in label noise often involves introducing a sur-
rogate loss function that is specialized for the corrupted dataset at
hand and is of no use when one is not aware of the existence of label
noise (Patrini et al., 2017). Therefore, one surprising finding in this
work is that simply using the gambler’s loss provides robustness to
label noise automatically (see Section 4.1), whereas the gambler’s
loss function is a very general loss function and is noise-agnostic. In
particular, it shows that the gambler’s loss function makes learning on
corrupted points slower while not affecting the clean points so much.
As a result, this widens the test accuracy plateau by slowing down the
memorization phenomenon. In some cases, it even leads to a better
convergence speed and better peak performance (see Figure 4). This
may be justified by the following argument. Notice that the gambler’s
loss function has derivative:

∂`(fθ(x))

∂θ
=

1

f(x)y +
1
o
f(x)m+1

∂fθ(x)

∂θ
(2)

and by Theorem 1 (in Section 2.2), during the gap stage we have (j
being the true label):

1

f(x)y +
1
o
f(x)m+1

= {
1
ε
, if y = j
o−1
1−ε

, y ≠ j
(3)

and the probability we update a clean data point is ε, while that
of a corrupted data is 1−ε

M−1
, and, therefore, in expectation (sloppy

notation), the gradient is of order

E[
∂`(fθ(x))

∂θ
] ∼

∂fθ(x)

∂θ
(if y = j) (4)

+
o − 1

M − 1

∂fθ(x)

∂θ
, (if y ≠ j) (5)

3

Under review as a conference paper at ICLR 2020

(a) testing accuracy at o =
8.25

(b) testing accuracy at o =
8.20

(c) critical behavior around
o = 8.2 at epoch = 20

(d) critical behavior around
o = 8.2 at epoch = 200

Figure 3: Critical behavior of the gambler’s loss. Data showing that the learning almost do not happen
at all for o < ocrit, while above ocrit the behavior is qualitatively similar. The optimal o can be tuned
for using this phenomenon; however, more often one does not need to tune for o.

In general, o − 1 < M − 1 and so a corrupt data, in expectation, has gradient o−1
M−1

times smaller
than that of the clean data, and, within a proper range of o, the lower the o is, the slower the model
learns the corrupt labels, providing stronger robustness. Intuitively speaking, this argument means
that making random bet will help with making money, and a “skilled” gambler will not make such
bet. This trend is what we observe in Section 4.1 when o lies above a critical value. On the other
hand, this analysis suggests that, if we train the gambler’s loss with a subgradient methods such as
Adam (Kingma & Ba, 2014), the constant factor in front of the gradient would be canceled by the
preconditioner 1/

√
Eg2, and so the widening effect would not be observed. See Figure 2. The time it

takes for Adam to reach and to start exiting the plateau seem invariant to o, while using SGD, we see
that the plateau is widened as we decrease o. For Adam, even if the widening effect is not changed,
we see that at convergence, smaller o does lead to higher performance using both optimizers. More
plots and experiments using Adam are given in the appendix.

2.1 TUNING FOR THE OPTIMAL o AND FIRST-ORDER PHASE TRANSITION

We note that there is a “good” range for hyperparameter o and a bad range. The good range is between
a critical value ocrit and M (non-inclusive) and the bad range is smaller than ocrit. We conducted
substantial experiments to observe that any o within the good range are seen to provide improved
robustness against label noise, and so most of the cases we do not tune for o but only to make sure it is
within the good range. Moreover, tuning for the optimal o is fast and can be done in linear time, and
we discuss this and its connection to the physical first-order phase transition theory in the appendix.

2.2 EARLY STOPPING CRITERION FOR THE GAMBLER’S LOSS

Given the broadening of the gap and slowing down of memorization, the next steps is to accurately
estimate the end of the gap and perform early stopping at this peak in test accuracy. This is shown to
be true theoretically in Li et al. (2019) for overparametrized networks trained with gradient descent.
However, it is surprising that the existing literature only focuses on delaying or relieving the negative
effect of learning the noisy labels, but not on finding the best time to do early-stop (Patrini et al.,
2017; Han et al., 2018; Yu et al., 2019). As in the previous works Han et al. (2018); Yu et al. (2019),
we assume that the ε is known; otherwise, it may be estimated.

Let o be the gambler’s hyperparameter. Let p̂ be the predicted probability on the true label y, and let
k̂ denote the prediction made on all the wrong classes added altogether, l̂ be the predicted confidence
score by the gambler’s loss. By definition of a probability distribution, we have p̂ + k̂ + l̂ = 1. Based
on our observations, we make the following idealized assumption: during the the gap stage, the model
has not learned anything about the data points with wrong labels, i.e., it makes strictly uniformly
random guess across the all labels, the predicted probabilities are the same and are all equal to k̂

M
.

This allows us to write down the general loss function during the gap stage:

E[−˜̀] = ε log(p̂ +
k̂

M
+
1 − p̂ − k̂

o
) + (1 − ε) log(

k̂

M
+
1 − p̂ − k̂

o
) (6)

where the expectation is taken over the dataset, and we will omit it since it does not affect clarity.
The following theorem uses the above assumptions and predict the loss of the gap stage.

4

Under review as a conference paper at ICLR 2020

Algorithm 1 Early Stopping on the Gambler’s Loss

1: Given: untrained classifier parameters θ, noise rate ε, gambler’s hyperparamter o.
2: Change classifier output from m-way to (m + 1)-way softmax.
3: Compute early stopping criterion: −˜̀∗(ε, o). If satisfied, end training.
4: for (x, y) in each batch do
5: Compute gambler’s loss Lg from equation 1.
6: If Lg < −˜̀∗(ε, o), end training.
7: Update parameters θ using ∇θLg .
8: end for
9: return trained classifier parameters θ.

Theorem 1. During the idealized gap stage, the optimal solution has k̂ = 0, and so the loss function
takes the form:

− ˜̀(p̂) = ε log(p̂ +
1 − p̂

o
) + (1 − ε) log(

1 − p̂

o
) (7)

which exhibits an optimal solution at

− ˜̀∗(ε, o) =min
p
−˜̀(p) = ε log ε + (1 − ε) log(

1 − ε

o − 1
), (8)

which only depends on ε and o, and we have p∗ = εo−1
o−1

.

The proof is given in the appendix. This theorem tells us that a network trained with the gambler’s loss
function with hyperparameter o on a symmetrically corrupted dataset with corruption rate 1− ε should
have training loss around −˜̀∗(ε, o) when entering the gap stage. This motivates using −˜̀∗(ε, o) as
the early stopping criterion. Notice that we expect our loss to have the following limits:

1. As ε→ 1, we recover the no-noise setting, and the optimal loss is 0.
2. As ε → 0, we go to the full noise case, and the dis-confidence score would dominate, and the

gambler’s loss converge to log 1
o

(when o is large) (Ziyin et al., 2019).

As shown in Yu et al. (2019); Han et al. (2018), simply training on the raw loss functions features a
gap stage that lasts only very shortly (∼ 1 epoch), while the gambler’s loss makes the network stays
around its performance peak for a much longer time. The performance on the gambler’s loss has
barely dropped by the time the baseline almost dropped to random accuracy, and this makes it easy to
detect the peak and do early-stopping. We summarize our proposed method in Algorithm 1.

3 RELATED WORK

Label Noise: Modern dataset often contains a lot of labeling errors (Russakovsky et al., 2015;
Schroff et al., 2010). Existing methods often focus on using a surrogate loss function (Patrini et al.,
2017) that is specific to the label noise problem at hand, or design a special training scheme to
alleviate the negative effect of learning the data points with wrong labels (Han et al., 2018; Yu et al.,
2019). In this work, we mainly compare with the following methods. F-Correction (FC) Patrini
et al. (2017): this method smooths the hard labels with the noise transition matrix; we estimate
the transition matrix as suggested by the paper; Co-teaching (CT) (Han et al., 2018): this method
trains two networks simultaneously, and update each with the other’s predicted label to decouple the
mistakes; Co-teaching+ (CT+) (Yu et al., 2019): this method improves the previous method by only
propagating on the labels the two networks disagree. Also, we use the subscript ES as a shorthand
for early stopping. Since the early stopping criterion for these methods are not clear, we early stop at
where the training accuracy is larger than ε for comparison, since this is when the learning on the
noisy data has definitely started.

Early Stopping. Early stopping is an old problem in machine learning Prechelt (1998); Amari (1998),
and studying this in the setting of label noise also appeared recently Li et al. (2019); Hu et al. (2019).
In particular, we propose to early stop on a loss function called the gambler’s loss function Ziyin et al.
(2019). Our analysis on this loss function allows us to propose a very simple analytic function to
predict a early stopping threshhold without using a validation set and is independent of the model (as

5

Under review as a conference paper at ICLR 2020

long as it is a neural network with enough capacity) or the task. Early stopping without validation set
is also recently studied, but does not relate to the label noise problem (Mahsereci et al., 2017). It has
been long noticed (Frénay & Verleysen, 2013; Han et al., 2018) and recently theoretically proven
(Li et al., 2019) that early stopping can an effective way to defend against label corruption (but no
actual method or heuristic for early stopping is given); to the best of our knowledge, this is first early
stopping criterion to deal with the problem.

4 EXPERIMENTS

(a) MNIST: r = 0.5

(b) CIFAR10: r = 0.5

(c) CIFAR10: r = 0.8

Figure 4: Testing accuracy
through out training; raw refers
training on the default loss func-
tion, i.e. the nll loss, raw is plot-
ted in red. We see that, when
o > ocrit, the gambler’s loss pro-
vides robustness on its against
noisy labels.

We design several experiments to evaluate 1) the robustness of gam-
bler’s loss to noisy labels, 2) the accuracy of our early stopping
criterion as compared to existing heuristics, and 3) the performance
of gambler’s loss when applied to existing methods to combat noisy
labels.

4.1 ROBUSTNESS OF GAMBLER’S LOSS TO LABEL NOISE

We first demonstrate that simple training on the gambler’s loss pro-
vides robustness against label noise (also see Section 2.1). For this
and later sections, the exact experimental details are given in the
Appendix. For demonstration, we choose a simple CNN with 2 con-
volutional layers followed by 2 fully connected layers. See Figure 4.
We see that with properly tuned o, the gamblers’s loss alleviates
the drop in performance caused by learning the corrupt labels. For
example, in Figure 4a, all three choices of o makes the accuracy
plateau wider than training on the raw loss (nll loss). At convergence,
the final accuracy is much higher (∼ 90%) than the baseline (∼ 55%).
For the experiments on CIFAR10, the results are slightly subtler.
Here we see the effect of not properly tuning o. As shown in (Ziyin
et al., 2019), the proper choice ranges from 1 to M ; higher o (≈M)
encourages learning while very low o (∼ 1) slows down learning. We
notice that for a different corruption rate, a different ocrit seem to
exist. Also see Table 1 (category Gbler), we see that at convergence,
training on gambler’s loss achieves much higher accuracy than the
baseline training on nll loss.

4.2 EARLY STOPPING

Now, we show that stopping at our predicted loss level succeeds in
stopping at a point close to where the maximum accuracy is achieved.
See Figure 5. We choose architectures of very different capacity.
The experiment on MNIST is done as in the previous section and
the experiment on CIFAR10 is done using ResNet-18. We also test
on a wide range of noise levels ranging from small, with corruption
rate 0.2, to extremely large, with r = 0.85 (the intermediate ranges
with larger figures are given in the appendix, see Figure 7). We
see that our method predicts close to optimal early stopping point
for all corruption rates we tested on. Also notice how the learning
curves are different for the two different datasets. This suggests that
our theory works even in the presence of very different dynamics.
The fact that this early stopping criterion works suggests in return
suggests the validity of our assumption. In these experiment, we do
not tune for optimal o, they are all set to o = 9.9; since the results
are qualitatively similar when o > ocrit.

See Table 1 and also compare with other baselines in Table 2. We
notice that doing this already achieves SOTA results on MNIST for
all symmetric noise categories according to the results in Han et al.
(2018) and Yu et al. (2019). Early stopping (AES) using our criterion is compared with a very
standard early stopping method using validation set: we split 6000 images from the training set
to make a validation set, and we early stop when the validation accuracy stops to increase for 5
consecutive epochs. There are also a few other validation-based early stopping criterion, but they

6

Under review as a conference paper at ICLR 2020

(a) MNIST: r = 0.2 (b) r = 0.85 (c) CIFAR10: r = 0.2 (d) r = 0.85
Figure 5: Early stopping on MNIST (1st row) and CIFAR10 (2nd row). r refers to corruption rate. The
horizontal line is the predicted early stopping point. We see that this point corresponds to where the testing
accuracy (blue solid line) is at maximum.

Table 1: Robustness of the Gambler’s loss to noisy labels. We see that simply using gambler’s loss on label
noise problems improve. For the two categories using early stopping, the number in parenthesis refers to the avg.
number of epochs to stop. Using gambler’s loss stops at better accuracy, has smaller variance, and takes much
shorter time.

Dataset Performance Comparisons Early Stopping Comparisons
nll loss Gblers Gblers + AES Gblers + VES Gblers + AES

MN r = 0.2 84.7 ± 0.5 96.7 ± 0.2 98.8 ± 0.0 95.1 ± 0.4 (95) 98.8 ± 0.1 (17)
MN r = 0.5 55.1 ± 3.1 91.2 ± 0.7 98.0 ± 0.1 79.7 ± 2.0 (115) 98.0 ± 0.0 (18)
MN r = 0.65 39.7 ± 2.5 85.9 ± 1.1 97.1 ± 0.1 58.9 ± 2.5 (115) 97.2 ± 0.2 (15)
MN r = 0.8 19.1 ± 3.0 76.1 ± 0.3 92.3 ± 0.6 21.1 ± 0.1 (117) 93.5 ± 0.3 (15)
MN r = 0.85 14.5 ± 0.7 71.0 ± 1.4 86.3 ± 0.5 15.0 ± 1.1 (110) 85.2 ± 1.7 (13)

are shown to perform qualitatively and quantitatively similar (Prechelt, 1998), so we only compare
with this method. This early stopping is called VES (validation early stopping) and our method is
called AES (analytical early stopping). We see that our proposed method significantly outperforms
the baseline early stopping method; this is because a small validation set may have large variance and
this problem is more serious when label noise is present (since validation sets are often split from
the train set). In the VES vs. AES comparison, we fix o = 9.99 and is not directly comparable to the
left parts in the table. In the left part, We also notice that training and stopping on the gambler’s loss
is especially effective on tasks with extreme corruption rate (r = 0.85), with around 70% accuracy
improvement over the baseline and 28% improvement over the runner-up SOTA methods.

4.3 COMBINING GAMBLER’S LOSS WITH OTHER METHODS AND BENCHMARKING

We also show how our method might be combined with SOTA methods (we choose CT). To combine
gambler’s loss with co-teaching, we first replace the loss function in Co-Teaching with the gambler’s
loss, and reject fewer than or equal to ε data points by sorting on the original loss function from the
largest to smallest. This modification only shows how we might combine our method with existing
methods, and we do not argue that it is the optimal for such combination. We call our modified
version Co-Gambler, and specific details of the modification is given in the Appendix; we also
simplify CT by eliminating four of its hyperparameters. Namely, we do not use learning rate and
momentum schedules, and we use not use drop rate schedule for co-Gambler (while these are used
for the CT columns). See Table 2. We see that on MNIST, combining our method with Co-Teaching
always outperforms the baselines. On CIFAR10, our method seems to work better when the noise
level is extreme (r ∼ 0.7,0.8), agreeing with our finding in the previous section. For the CIFAR10
experiments, we do not compare with CT+ since it is a modified version of CT and we notice that it
fails in the same range as CT (r = 0.7,0.8,0.85). We notice that this way of combining gambler’s
loss improves on pure AES on gambler’s loss only by 3 − 4%, while the training time more than
doubles with twice as many parameters. The reason for the limitation of this combination is simple:
CT involves a special training procedure that throws away a significant percentage of the data, thus
changing the data distribution. Our method, however, assumes that the data distribution is intact, and
can be well described by ε. Early stopping on gambler’s loss, running much faster than CT and its
variants, still achieves SOTA results at r = 0.85, which shows the strength of our simple method. The
method that has similar complexity and runs at similar speed as ours is FC; FC, however, requires
knowing the whole transition matrix, and is outperformed significantly by our method.

7

Under review as a conference paper at ICLR 2020

Table 2: Improving Co-Teaching with Gambler’s Loss. We see that on MNIST (MN), combining our method
with Co-Teaching always outperforms the baselines. On CIFAR10 (CF10), our method achieves clear superiority
when the noise level is extreme (r ∼ 0.7,0.8), agreeing with our finding in the previous section. (*NA means
that the ES stopping point is not reached by the algorithm.)

Dataset FC CT CT+ CTES CT+ES Co-GblerAES
MN r = 0.2 98.8 ± 0.1 97.2 ± 0.0 97.8 ± 0.1 98.6 ± 0.2 97.6 ± 0.1 98.9 ± 0.0
MN r = 0.5 79.6 ± 2.0 93.3 ± 0.1 95.4 ± 0.2 97.6 ± 0.1 96.3 ± 0.2 97.9 ± 0.0
MN r = 0.65 29.1 ± 0.1 92.5 ± 0.1 92.5 ± 0.1 97.3 ± 0.2 95.6 ± 0.2 96.7 ± 0.3
MN r = 0.8 19.8 ± 0.1 78.1 ± 0.5 67.5 ± 0.1 82.1 ± 1.7 71.4 ± 0.3 92.5 ± 0.5
MN r = 0.85 11.8 ± 0.0 60.5 ± 0.2 10.1 ± 0.0 66.5 ± 0.5 NA 88.7 ± 0.5

FC CT CTES Co-GblerES GblrsAES
CF10 r = 0.2 67.0 ± 0.3 71.0 ± 0.6 69.5 ± 0.4 68.9 ± 1.0 67.5 ± 1.0
CF10 r = 0.5 52.2 ± 1 65.2 ± 0.2 64.5 ± 0.8 60.0 ± 1.2 59.5 ± 0.4
CF10 r = 0.6 45.2 ± 0.5 61.1 ± 0.2 62.0 ± 0.3 56.6 ± 1.5 51.3 ± 0.5
CF10 r = 0.7 33.2 ± 0.5 48.9 ± 0.2 49.1 ± 1.0 50.1 ± 1.5 48.2 ± 0.5
CF10 r = 0.8 22.7 ± 0.3 25.0 ± 0.1 25.8 ± 1.0 40.7 ± 2.0 37.0 ± 0.7
CF10 r = 0.85 16.7 ± 0.3 17.3 ± 0.1 NA 16.7 ± 0.7 18.9 ± 1.0

5 CONCLUSION AND DISCUSSION
In this work, we have proposed a simple and effective method to deal with label noise problems. This
paper promotes the gambler’s loss as a noise robust loss function, shown to improve performance
of existing classifier model, while the early stopping criterion provides a simple criterion for early
stopping when the corruption rate is known. Depending on the problem, one may decide to use the
complete framework together (gambler’s loss training + early stopping), or, when the assumption
is not well satisfied, only use the gambler’s loss to improve the model’s robustness against a label-
corrupted learning task. This urges for an understanding for why the gambler’s loss actually works.
We plot in training accuracy for MNIST with corruption rate 0.8 in Figure 6. We see that the gambler’s
loss seems to work in a fundamentally different way from the standard nll loss. Training on nll loss
achieves 100% accuracy on the training set, with its loss approaching 0; however, the gambler’s loss
does not do so, its training accuracy stops increasing at around 36%, which is slightly above ε. We note
that this observation also holds for various corruption rates, and for different optimizers such as SGD.
Comparing with Table 5, we see that the gambler’s loss achieves about 76% testing accuracy, while
the baseline drops to 19% at this time. The vertical line also shows where our early stopping criterion
is reached, at this point is training accuracy is ∼ 20% with testing accuracy ∼ 92%. We hypothesize
that the main reason for gambler’s loss’s outperforming the baselines is that it automatically chooses
a subset of the training set to learn on, thus avoiding a large part of the dataset that is corrupted.

Figure 6: Training accuracy and train-
ing loss On MNIST with corruption rate
0.8 with Adam. o = 9.7. Training with
gambler’s loss prevents memorization
of noisy labels. At convergence, nll loss
reaches 19% testing accuracy, while the
gambler’s loss stays around 76%.

This result may provide insight into the current debate on the
generalization-memorization effect (Zhang et al., 2017; Wu
et al., 2017; Hu et al., 2019; Arpit et al., 2017). A key ar-
gument from Zhang et al. (2017) was “deep neural networks
easily fit random labels...; explicit regularization may improve
generalization performance, but is neither necessary nor by
itself sufficient for controlling generalization error.” Our results
above, however, shows that this is not the case when a different
loss function is chosen. While the nll loss encourages learning
and memorizing the training set, the gambler’s loss does not
seem to do so. Our findings suggests that the key to understand-
ing the memorization effect might be on the loss function itself,
not the architecture of neural networks or explicit regulariza-
tion, this is also what is suggested by Abiodun et al. (2018). We
hypothesize that it may be seen as a natural generalization of
the nll loss function, since it only involves adding a task inde-
pendent term to the original nll loss, and using o > ocrit seems
always beneficial. We would like to study the memorization
effect using the gambler’s loss in more detail. Applications to real-world large-scale datasets with
real label noise are also ripe avenues for future work.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada, Nachaat Ab-
dElatif Mohamed, and Humaira Arshad. State-of-the-art in artificial neural network applications:
A survey. Heliyon, 4(11):e00938, 2018.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Comput., 10(2):251–
276, February 1998. ISSN 0899-7667. doi: 10.1162/089976698300017746. URL http:
//dx.doi.org/10.1162/089976698300017746.

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S
Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at
memorization in deep networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 233–242. JMLR. org, 2017.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jean-
nette N. Chang, Sungbok Lee, and Shrikanth Narayanan. Iemocap: interactive emotional dyadic
motion capture database. Language Resources and Evaluation, 42(4):335–359, 2008. URL http:
//dblp.uni-trier.de/db/journals/lre/lre42.html#BussoBLKMKCLN08.

Mostafa Dehghani, Aliaksei Severyn, Sascha Rothe, and Jaap Kamps. Avoiding your teacher’s
mistakes: Training neural networks with controlled weak supervision. In arXiv, 2017. URL
https://arxiv.org/abs/1711.00313.

Benoı̂t Frénay and Michel Verleysen. Classification in the presence of label noise: a survey. IEEE
transactions on neural networks and learning systems, 25(5):845–869, 2013.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
Advances in neural information processing systems, pp. 8527–8537, 2018.

Jeff Howe. Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business. Crown
Publishing Group, New York, NY, USA, 1 edition, 2008. ISBN 0307396207, 9780307396204.

Wei Hu, Zhiyuan Li, and Dingli Yu. Understanding generalization of deep neural networks trained
with noisy labels. arXiv preprint arXiv:1905.11368, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://dblp.uni-trier.de/db/journals/corr/
corr1412.html#KingmaB14.

L.D. Landau and E.M. Lifshitz. Statistical Physics. Number v. 5. Elsevier Science, 2013. ISBN
9780080570464. URL https://books.google.co.jp/books?id=VzgJN-XPTRsC.

Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient descent with early stopping is prov-
ably robust to label noise for overparameterized neural networks. arXiv preprint arXiv:1903.11680,
2019.

Maren Mahsereci, Lukas Balles, Christoph Lassner, and Philipp Hennig. Early stopping without a
validation set. arXiv preprint arXiv:1703.09580, 2017.

Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L Edelman, Fred Zhang,
and Boaz Barak. Sgd on neural networks learns functions of increasing complexity. arXiv preprint
arXiv:1905.11604, 2019.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
deep neural networks robust to label noise: A loss correction approach. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1944–1952, 2017.

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pp. 55–69.
Springer, 1998.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252, 2015.

9

http://dx.doi.org/10.1162/089976698300017746
http://dx.doi.org/10.1162/089976698300017746
http://dblp.uni-trier.de/db/journals/lre/lre42.html#BussoBLKMKCLN08
http://dblp.uni-trier.de/db/journals/lre/lre42.html#BussoBLKMKCLN08
https://arxiv.org/abs/1711.00313
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
https://books.google.co.jp/books?id=VzgJN-XPTRsC

Under review as a conference paper at ICLR 2020

Florian Schroff, Antonio Criminisi, and Andrew Zisserman. Harvesting image databases from the
web. IEEE transactions on pattern analysis and machine intelligence, 33(4):754–766, 2010.

L. Wu, Z. Zhu, and W. E. Towards Understanding Generalization of Deep Learning: Perspective of
Loss Landscapes. ArXiv e-prints, June 2017.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does
disagreement help generalization against label corruption? In International Conference on Machine
Learning, pp. 7164–7173, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. 2017. URL https://arxiv.org/abs/
1611.03530.

Liu Ziyin, Zhikang Wang, Paul Pu Liang, Ruslan Salakhutdinov, Louis-Philippe Morency, and
Masahito Ueda. Deep gamblers: Learning to abstain with portfolio theory. arXiv preprint
arXiv:1907.00208, 2019.

10

https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530

Under review as a conference paper at ICLR 2020

A MATHEMATICAL SYMBOLS

N ∶ number of input dimension
M ∶ number of output dimension
D ∶ dataset, ∣D∣ ∶ size of the dataset

B EXPERIMENT DETAILS

We use Pytorch as the framework of implementation. Code to this paper will be released at
https://********

C THEOREM PROOF

In this section we prove theorem 1. We first show that k̂ = 0. Intuitively speaking, this simply means
that a gambler betting randomly will not make money, and so the better strategy is to reserve money in
the pocket, and so it suffices to show that for any solution p̂, k̂, l̂, the solution p̂′ = p̂, k̂′ = 0, l̂′ = l̂ + k̂
achieves better or equal doubling rate. For a mislabeled point (we drop ⋅̂), the loss is log(k

M
+ l
o
) but

M > o, and so log(k
M
+ l
o
) < log(k+l

o
), and we have that optimal solution always have k̂ = 0.

Now, we find the optimal solution to

− ˜̀(p̂) = ε log(p̂ +
1 − p̂

o
) + (1 − ε) log(

1 − p̂

o
) (9)

by taking the derivative with respect to p:

−
∂ ˜̀

p̂
(p̂) = ε

o − 1

(o − 1)p̂ + 1
+ (1 − ε)

−1

1 − p̂
(10)

and then setting it equal to 0

−
∂ ˜̀

p̂
(p̂) = ε

o − 1

(o − 1)p̂ + 1
+ (1 − ε)

−1

1 − p̂
= 0 (11)

is the p̂optimal:

p̂optimal =
εo − 1

o − 1
(12)

and then plugging into the original equation [9]:

− ˜̀∗(ε, o) =min
p
−˜̀(p) = ε log ε + (1 − ε) log(

1 − ε

o − 1
) (13)

D ADDITIONAL EXPERIMENTS

In this section, we give more experiment results on Gambler + Early Stopping. See Figure 7

E DEFINITION OF TRANSITION MATRIX

Transition matrix is used to replace some correct labels with wrong labels because the dataset used
in our experiments such as MNIST and CIFAR are clean. There are two different types of noise
transition matrix and explanation follows.

Symmetric Flipping: Each label has an uniform possibility to transform to one of the rest class. In
most cases of manual label work, a correct label has equal possibility to be any other class label. n is
the number of class and δ is the rate of label that will be modified as a wrong label

M ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − δ δ
1−n

δ
1−n

... δ
1−n

δ
1−n

1 − δ δ
1−n

... δ
1−n

δ
1−n

δ
1−n

1 − δ ... δ
1−n

...
δ

1−n
δ

1−n
δ

1−n
... 1 − δ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)

11

Under review as a conference paper at ICLR 2020

(a) MNIST: cr = 0.2 (b) cr = 0.5

(c) cr = 0.8 (d) cr = 0.85

(e) CIFAR10: cr = 0.2 (f) cr = 0.5

(g) cr = 0.8 (h) cr = 0.85

Figure 7: Early stopping on MNIST (1st and 2nd row) and CIFAR10 (3rd and 4th row). cr refers
to corruption rate. The horizontal line is the predicted early stopping point. We see that this point
almost always corresponds to where the testing accuracy (vertical blue solid line) is at maximum.

12

Under review as a conference paper at ICLR 2020

Pair Flipping: Each class can only be corrupted as a specific class. For example, it’s more likely to
label 6 as 9 than any other class except 9. δ is the rate of label that will be modified as a wrong label:

M ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − δ δ 0 ... 0
0 1 − δ δ ... 0
0 0 1 − δ ... 0
⋮ ⋮ ⋮ ⋮ ⋮

δ 0 0 ... 1 − δ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15)

F CNN ARCHITECTURE

In this section, we show the architectures that we used but did not describe in the main text.

Table 3: architecture of the neural network used in MNIST

CCNN on MNIST
28 × 28 Gray Image
20 × 5 conv, 1 ReLU
2 × 2 max-pool, stride 2
50 × 5 conv, 20 ReLU
2 × 2 max-pool, stride 2
dense 800→ 500
dense 500→ 11

Table 4: architecture of the neural network used in cifar10

CNN on cifar10
32 × 32 RGB Image
5 × 5 conv, 128 LReLU
5 × 5 conv, 128 LReLU
2 × 2 max-pool, stride 2
dense 128→ 128
dense 128→ 11

G EFFECT OF TUNING O AND CRITICAL BEHAVIOR

In this section, we give more experiments on the critical behavior discussed in 2.1. First see Figure 8.

In Figure 2, we show that lower value of o provides stronger robustness to label noise consistently;
this raises the question about whether we can continue to lower o to its lower limit (= 1) to achieve
the best performance or not - the answer is no, but the reason is very surprising. We empirically find
that a first order phase transition exists when tuning o (such as transition of water to ice). In particular,
we find that there exists a critical value ocrit such that, when o > ocrit, the robustness to label noise
increases as we lower o; when o < ocrit, the learning proceeds badly: the change in performance is
discontinuous. This is characteristic of a physical first order phase transition (Landau & Lifshitz,
2013). See Figure 3. In this setting, we have r = 0.5 for MNIST, and we pin down the ocrit to lie
between 8.21 and 8.22; qualitatively different behaviors are found for the two different phase. See
appendix for plots ranging from o = 10.0 to o = 5.0. A qualitatively similar behavior is observed
using Adam1 and on CIFAR10, and using other architectures. Clearly studying this critical behavior
is very interesting but beyond the scope of this work. The above observation, however, suggests the
following heuristic to tune hyperparameter o:

1. Start with o very close to M (for reference, for MNIST, o ≈ 9.5 seems a good starting point; for
CIFAR10, o ≈ 9.9; CIFAR100: o ≈ 99.9).

1Using Adam we can even pin down ocrit for this problem to lie between 8.2100 and 8.2101

13

Under review as a conference paper at ICLR 2020

(a) critical behavior around
o = 8.2 at epoch = 200

(b) critical behavior around
o = 8.2 at epoch = 200

(c) critical behavior around
o = 8.2 at epoch = 20

(d) critical behavior around
o = 8.2 at epoch = 200

Figure 8: critical behavior of the gambler’s loss. We see that the learning almost do not happen at all
for o < ocrit, while above ocrit the behavior is qualitatively similar. The optimal o can be tuned for
using this phenomenon; however, more often one does not need to tune for o.

(a) o = 10.0 (b) o = 8.5 (c) o = 8.0 (d) o = 7.5

(e) o = 7.0 (f) o = 6.5 (g) o = 6.0 (h) o = 5.0

Figure 9: Gambler’s loss is used alone without early stopping method. Initially, the performance
gets better with the o decreasing. While the performance gets worse with the o decreasing when o is
less than 8.5, which indicates there is a critical point for o locates in between 8.0 and 8.5. The most
suitable o is just larger than the critical point

2. If the learning curve starts similarly as before, then decrease o until the learning stops abruptly,
and use the previous o

This procedure for tuning o does not rely on a validation set at all. Also, as show in in Figure 2
for o = 8.3,8.5, the performance is very similar when o is close to ocrit, there is no need to be
infinitesimally close to the critical value. Unless otherwise noted, we tune our hyperparameter this
way in the experiment section. Moreover, One can prove that o = M will always work at least as
good as the baseline, and so ocr should always <M .

14

Under review as a conference paper at ICLR 2020

(a) o = 8.35 (b) o = 8.3 (c) o = 8.25 (d) o = 8.2

(e) o = 8.15 (f) o = 8.1 (g) o = 8.05 (h) o = 8.0

Figure 10: Under higher resolution on hyperparameter o, it’s for sure that the performance will get
better when o gets closer to critical point from right side on number axis. While the performance will
dramatically get terrible when o is just lower than the critical points. What’s more, the critical point
is in the range of [8.2,8.25]

15

Under review as a conference paper at ICLR 2020

Figure 11: put all curve of Figure 8 in one Figure

16

	Learning from Noisy Labels
	Training Trajectory of Noisy Labels

	The Gambler's Loss Function and How to Early Stop
	Tuning for the Optimal o and First-Order Phase Transition
	Early Stopping Criterion For the Gambler's Loss

	Related Work
	Experiments
	Robustness of Gambler's Loss to Label Noise
	Early Stopping
	Combining Gambler's Loss with Other Methods and Benchmarking

	Conclusion and Discussion
	Mathematical symbols
	Experiment Details
	Theorem proof
	Additional Experiments
	Definition of transition matrix
	CNN architecture
	effect of tuning o and critical behavior

