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ABSTRACT

We tackle unsupervised domain adaptation by accounting for the fact that differ-
ent domains may need to be processed differently to arrive to a common feature
representation effective for recognition. To this end, we introduce a deep learning
framework where each domain undergoes a different sequence of operations, al-
lowing some, possibly more complex, domains to go through more computations
than others. This contrasts with state-of-the-art domain adaptation techniques that
force all domains to be processed with the same series of operations, even when
using multi-stream architectures whose parameters are not shared. As evidenced
by our experiments, the greater flexibility of our method translates to higher accu-
racy. Furthermore, it allows us to handle any number of domains simultaneously.

1 INTRODUCTION

While deep learning has ushered in great advances in automated image understanding, it still suffers
from the same weaknesses as all other machine learning techniques: when trained with images
obtained under specific conditions, deep networks typically perform poorly on images acquired
under different ones. This is known as the domain shift problem: the changing conditions cause the
statistical properties of the test, or target, data, to be different from those of the training, or source,
data, and the network’s performance degrades accordingly.

Domain adaptation aims to address this problem, especially when annotating images from the target
domain is difficult, expensive, or downright infeasible. The dominant trend is to map images to
features that are immune to the domain shift, so that the classifier works equally well on the source
and target domains (Fernando et al., 2013; Ganin & Lempitsky, 2015; Sun & Saenko, 2016). In the
context of deep learning, the standard approach is to find those features using a single architecture
for both domains (Tzeng et al., 2014; Ganin & Lempitsky, 2015; Sun & Saenko, 2016; Yan et al.,
2017; Zhang et al., 2018). Intuitively, however, as the domains have different properties, it is not
easy to find one network that does this effectively for both. A better approach is to allow domains to
undergo different transformations to arrive at domain-invariant features. This has been the focus of
recent work (Tzeng et al., 2017; Bermúdez-Chacón et al., 2018; Rozantsev et al., 2018; 2019), where
source and target data pass through two different networks with the same architecture but different
weights, nonetheless related to each other.

In this paper, we introduce a novel, even more flexible paradigm for domain adaptation, that allows
the different domains to undergo different computations, not only in terms of layer weights but also
in terms of number of operations, while selectively sharing subsets of these computations. This
enables the network to automatically adapt to situations where, for example, one domain depicts
simpler images, such as synthetic ones, which may not need as much processing power as those
coming from more complex domains, such as images taken in-the-wild. Our formulation reflects
the intuition that source and target domain networks should be similar because they solve closely
related problems, but should also perform domain-specific computations to offset the domain shift.

To turn this intuition into a working algorithm, we develop a multiflow architecture that sends the
data through multiple network branches in parallel. What gives it the necessary flexibility are train-
able gates that are tuned to modulate and combine the outputs of these branches, as shown in Fig. 1.
Assigning to each domain its own set of gates allows the global network to learn what set of compu-
tations should be carried out for each one. As an additional benefit, in contrast to previous strategies
for untying the source and target streams (Rozantsev et al., 2018; 2019), our formulation naturally
extends to more than two domains.
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Figure 1: A Domain Adaptive Multiflow Network is a sequence of computational units f (i), each of which
processes the data in parallel flows, whose outputs are then aggregated in a weighted manner by a gate to obtain
a single response. To allow for domain-adaptive computations, each domain has its own set of gates, one for
each computational unit, which combine the flows in different ways. As a result, some computations are shared
across domains while others are domain-specific.

In other words, our contribution is a learning strategy that adaptively adjusts the specific compu-
tation to be performed for each domain. To demonstrate that it constitutes an effective approach
to extracting domain-invariant features, we implement it in conjunction with the popular domain
classifier-based method of Ganin & Lempitsky (2015). Our experiments demonstrate that our Do-
main Adaptive Multiflow Networks, which we will refer to as DAMnets, not only outperform the
original technique of Ganin & Lempitsky (2015), but also the state-of-the-art strategy for untying
the source and target weights of Rozantsev et al. (2019), which relies on the same domain classifier.
We will make our code publicly available upon acceptance of the paper.

2 RELATED WORK
Domain Adaptation. The dominant approach to deep domain adaptation is to learn a domain-
invariant data representation. This is commonly achieved by finding a mapping to a feature space
where the source and target features have the same distribution. In Tzeng et al. (2014); Long et al.
(2015; 2017); Yan et al. (2017), the distribution similarity was measured in terms of Maximum
Mean Discrepancy (Gretton et al., 2007), while other metrics based on second- and higher-order
statistics were introduced in Koniusz et al. (2017); Sun et al. (2017); Sun & Saenko (2016). In Saito
et al. (2017), the distribution alignment process was disambiguated by exploiting the class labels, and
in Häusser et al. (2017); Shkodrani et al. (2018) by leveraging anchor points associating embeddings
between the domains. Another popular approach to learning domain-invariant features is to train a
classifier to recognize the domain from which a sample was drawn, and use adversarial training to
arrive to features that the classifier can no longer discriminate (Ganin et al., 2016; 2017; Tzeng et al.,
2015). This idea has spawned several recent adversarial domain adaptation classification (Hu et al.,
2018; Zhang et al., 2018), semantic segmentation (Chen et al., 2018; Hoffman et al., 2018; Hong
et al., 2018), and active learning (Su et al., 2019) techniques, and we will use such a classifier.

Closest in spirit to our approach are those that do not share the weights of the networks that process
the source and target data (Bermúdez-Chacón et al., 2018; Rozantsev et al., 2018; 2019; Tzeng et al.,
2017). In Tzeng et al. (2017), the weights were simply allowed to vary freely. In Bermúdez-Chacón
et al. (2018); Rozantsev et al. (2018), it was shown that regularizing them to remain close to each
other was beneficial. More recently, Rozantsev et al. (2019) proposed to train small networks to
map the source weights to the target ones. While these methods indeed untie the source and target
weights, the source and target data still undergo the same computations, i.e., number of operations.

In this paper, we argue that the amount of computation, that is, the network capacity, should adapt
to each domain and reflect their respective complexities. We rely on a domain classifier as in Tzeng
et al. (2015); Ganin et al. (2016; 2017). However, we do not force the source and target samples to go
through the same transformations, which is counterintuitive since they display different appearance
statistics. Instead, we start from the premise that they should undergo different computations and
use domain-specific gates to turn this premise into our DAMnet architecture.

Dynamic Network Architectures. As the performance of a neural network is tightly linked to
its structure, there has been a recent push towards automatically determining the best architecture
for the problem at hand. While neural architecture search techniques (Zoph & Le, 2016; Liu et al.,
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2017; 2018; Pham et al., 2018; Zoph et al., 2018; Real et al., 2019; Noy et al., 2019) aim to find
one fixed architecture for a given dataset, other works have focused on dynamically adapting the
network structure at inference time (Graves, 2016; Ahmed & Torresani, 2017; Shazeer et al., 2017;
Veit & Belongie, 2018; Wu et al., 2018). In particular, in Ahmed & Torresani (2017); Shazeer
et al. (2017); Veit & Belongie (2018); Bhatia et al. (2019), gates were introduced for this purpose.
While our DAMnets also rely on gates, their role is very different: first, we work with data coming
from different domains, whereas these gated methods, with the exception of Bhatia et al. (2019),
were all designed to work in the single-domain scenario. Second, and more importantly, these
techniques aim to define a different computational path for every test sample. By contrast, we seek
to determine the right computation for each domain. Another consideration is that we freeze our
gates for inference while these methods must constantly update theirs. We believe this to be ill-
suited to domain adaptation, particularly because learning to adapt the gates for the target domain,
for which only unlabeled data is available, is severely under-constrained. This lack of supervision
may be manageable when one seeks to define operations for a whole domain, but not when these
operations are sample-specific.

3 METHOD

We now describe our deep domain adaptation approach, which automatically adjusts the computa-
tions that the different domains undergo. We first introduce the multiflow networks that form the
backbone of our DAMnet architecture and then discuss training in the domain adaptation scenario.

3.1 MULTIFLOW NETWORKS
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Figure 2: A computational unit f (i) is an aggregation
of the outputs of parallel computations, or flows, f (i)

j .

Let us first consider a single domain. In this
context, a traditional deep neural network can
be thought of as a sequence of Nf operations
f (i)(·)1≤i≤Nf , each transforming the output of
the previous one. Given an input image x, this
can be expressed as

x(0) = x

x(i) = f (i)(x(i−1)) .
(1)

As a general convention, each operation f (i)(·)
can represent either a single layer or multiple
ones. Our formulation extends this definition
by replacing each f (i) by multiple parallel computations, as shown in Fig. 2. More specifically,
we replace each f (i) by a computational unit {f (i)1 , . . . , f

(i)
K } consisting of K parallel flows. Note

that this K can be different at each stage of the network and should therefore be denoted as K(i).
However, to simplify notation, we drop this index below. Given this definition, we write the output
of each computational unit as

x(i) = Σ̂
(
f
(i)
1 (x(i−1)), . . . , f

(i)
K (x(i−1))

)
, (2)

where Σ̂(·) is an aggregation operator that could be defined in many ways. It could be a simple sum-
mation that gives all outputs equal importance, or, at the opposite end of the spectrum, a multiplexer
that selects a single flow and ignores the rest. To cover the range between these two alternatives, we
introduce learnable gates that enable the network to determine what relative importance the differ-
ent flows should be given. Our gates perform a weighted combination of the flow outputs. Each gate
is controlled by a set of K activation weights {φ(i)j }1≤j≤K , and a unit returns

x(i) =

K∑
j=1

φ
(i)
j · f

(i)
j (x(i−1)) . (3)
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If ∀j, φ(i)j = 1, the gate performs a simple summation. If φ(i)j = 1 for a single j and 0 for the

others, it behaves as a multiplexer. The activation weights φ(i)j enable us to modulate the compu-
tational graph of network block f (i). To bound them and encourage the network to either select or
discard each flow in a computational unit, we write them in terms of sigmoid functions with adaptive
steepness. That is,

φ
(i)
j =

(
1 + exp

(
−π(i) · g(i)j

))−1
, (4)

where the g(i)j s are learnable unbounded model parameters, and π(i) controls the plasticity of the

activation—the rate at which φ(i)j varies between the extreme values 0 and 1 for block i. During
training, we initially set π(i) to a small value, which enables the network to explore different gate
configurations. We then apply a cooling schedule on our activations, by progressively increasing π(i)

over time, so as to encourage the gates to reach a firm decision. Note that our formulation does
not require

∑K
j=1 φ

(i)
j = 1, that is, we do not require the aggregated output x(i) to be a convex

combination of the flow outputs f (i)j (x(i−1)). This is deliberate because allowing the activation
weights to be independent from one another provides additional flexibility for the network to learn
general additive relationships.

Finally, a Multiflow Network is the concatenation of multiple computational units, as shown in Fig. 1.
For the aggregation within each unit f (i) to be possible, the f (i)j s’ outputs must be of matching
shapes. Furthermore, as in standard networks, two computational units can be attached only if the
output shape of the first one matches the input shape of the second. Although it would be possible
to define computational units at any point in the network architecture, in practice, we usually take
them to correspond to groups of layers that are semantically related. For example, one would group
a succession of convolutions, pooling and non-linear operations into the same computational unit.

3.2 DOMAIN ADAPTIVE MULTIFLOW NETWORKS

3.2.1 TWO DOMAINS
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Figure 3: Computational graphs for the source (top)
and target (bottom) domains, for the same network.
While both domains share the same computational
units, their outputs are obtained by different aggre-
gations of their inner operations, e.g., in the first unit,
the source domain does not use the middle two oper-
ations, whereas the target domain does; by contrast,
both exploit the fourth operation. In essence, this
scheme adapts the amount of computation that each
domain is subjected to.

Our goal is to perform domain adaptation, that
is, leverage a large amount of labeled images,
Xs = {xs1, . . . ,xsN} with corresponding annota-
tions Ys = {ys1, . . . ,ysN}, drawn from a source
domain, to train a model for a target domain,
whose data distribution is different and for which
we only have access to unlabeled images Xt =
{xt1, . . . ,xtM}.
To this end, we extend the gated networks of Sec-
tion 3.1 by defining two sets of gates, one for the
source domain and one for the target one. Let
{(φs)(i)j }Kj=1 and {(φt)(i)j }Kj=1 be the correspond-
ing source and target activation weights for com-
putational unit f (i), respectively. Given a sam-
ple xd coming from a domain d ∈ {s, t}, we
take the corresponding output of the i-th compu-
tational unit to be

(xd)(i) =

K∑
j=1

(φd)
(i)
j · f

(i)
j

(
(xd)(i−1)

)
. (5)

Note that under this formulation, the domain identity d of the sample is required in order to select
the appropriate (φd)(i).

The concatenated computational units forming the DAMnet encode sample x from domain d into
a feature vector z = f(x, d). Since the gates for different domains are set independently from one
another, the outputs of the flows for each computational unit are combined in a domain-specific
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manner, dictated by the activation weights (φd)
(i)
j . Therefore, the samples are encoded to a com-

mon space, but arrive to it through potentially different computations. Fig. 3 depicts this pro-
cess. Ultimately, the network can learn to share weights for computational unit f (i) by setting
(φs)

(i)
j = (φt)

(i)
j , ∀j. It can also learn to fully untie the weights by having ASi ∩ATi = ∅, where

ASi and ATi denote the set of non-zero activations in the two domains. Finally, in contrast to Tzeng
et al. (2017); Bermúdez-Chacón et al. (2018); Rozantsev et al. (2018; 2019), it can learn to use more
computation for one domain than for the other by setting (φs)

(i)
j > 0 for two different flows f (i)j

while having only a single non-zero (φt)
(i)
j , for a particular computational unit f (i).

The above formulation treats all flows for each computational unit as potentially sharable between
domains. However, it is sometimes desirable not to share at all. For example, batch-normalization
layers that accumulate and update statistics of the data over time, even during the forward pass, are
best exposed to a single domain to learn domain-specific statistics. We allow for this by introducing
computational units whose gates are fixed, yet domain specific, and that therefore act as multiplexers.

After the last computational unit, a small network py operates directly on the encodings and returns
the class assignment ŷ = py(z), thus subjecting the encodings for all samples to the same set of
operations.

3.2.2 MULTIPLE DOMAINS

The formulation outlined above extends naturally to more than two domains, by assigning one set of
gates per domain. This enables us to exploit annotated data from different source domains, and even
to potentially handle multiple target domains simultaneously. In this generalized case, we introduce
governing sets of gates with activations φd1 , . . . , φdD for D different domains. They act in the same
way as in the two-domain case and the overall architecture remains similar.

3.2.3 TRAINING

When training our models, we jointly optimize the gate parameters (gd)
(i)
j , from Eq. 4, along with

the other network parameters using standard back-propagation. To this end, we make use of a
composite loss function, designed to encourage correct classification for labeled samples from the
source domain(s) and align the distributions of all domains, using labeled and unlabeled samples.
This loss can be expressed as

LDAMnet =
1

|`|

|`|∑
n=1

Ly(yn, ŷn) +
1

|` ∪ u|

|`∪u|∑
n=1

Ld(dn, d̂n) , (6)

where ` and u are the sets of labeled and unlabeled samples, respectively, and where we assumed,
without loss of generality, that the samples are ordered.

The first term in this loss, Ly(y, ŷ), is the standard cross-entropy, which compares the ground-
truth class probabilities y with the predicted ones ŷ = py(z), where, as discussed in Section 3.2.1,
z = f(x, d) is the feature encoding of sample x from domain d. For the second term, which encodes
distribution alignment, we rely on the domain confusion strategy of Ganin & Lempitsky (2015),
which is commonly used in existing frameworks. Specifically, for D domains, we make use of an
auxiliary domain classifier network pd that predicts a D-dimensional vector of domain probabilities
d̂ given the feature vector z. Following the gradient reversal technique of Ganin & Lempitsky
(2015), we express the second term in our loss as Ld(d, d̂) = −

∑D
i=1 di log(d̂i) , where d is the

D-dimensional binary vector encoding the ground-truth domain, di indicates the i-th element of d,
and d̂ = pd(R(z)), with R the gradient reversal pseudofunction of Ganin & Lempitsky (2015) that
enables to incorporate adversarial training directly into back-propagation. That is, with this loss,
standard back-propagation trains jointly the domain classifier to discriminate the domains and the
feature extractor f(·) to produce features that fool this classifier.

When training is complete and the gates have reached a stable state, the flows whose activations
are close to zero are deactivated. This prevents the network from performing computations that are
irrelevant and allows us to obtain a more compact network to process the target data.
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4 EVALUATION

4.1 BASELINES

Since we rely on the domain confusion loss to train our model, we treat the Domain-Adversarial
Neural Network (DANN) method of Ganin & Lempitsky (2015), as our first baseline.

To demonstrate the benefits of our approach over simply untying the source and target stream param-
eters, we compare our approach against the Residual Parameter Transfer (RPT) method of Rozantsev
et al. (2019), which constitutes the state of the art in doing so. Note that RPT also relies on the do-
main confusion loss, which makes our comparison fair. In addition, we report the results of directly
applying a model trained on the source domain to the target, without any domain adaptation, which
we refer to as “No DA”. We also provide the oracle accuracy of a model trained on the fully-labeled
target domain, referred to as “On TD”.

4.2 IMPLEMENTATION DETAILS

We adapt different network architectures to the multiflow paradigm for different adaptation prob-
lems. For all cases, we initialize our networks’ parameters by training the original versions of those
architectures on the source domains, either from scratch, for simple architectures, or by fine-tuning
weights learned on ImageNet, for very deep ones. We then set the parameters of all flows to the
values from the corresponding layers. We perform this training on the predefined training splits,
when available, or on 75% of the images, otherwise. The initial values of the gate parameters are
defined so as to set the activations to 1

K , for each of the K flows. This prevents our networks from
favoring a particular flow for any domain.

To train our networks, we use Stochastic Gradient Descent with a momentum of 0.9 and a variable
learning rate defined by the annealing schedule of Ganin & Lempitsky (2015) as µp = µ0

(1+α·p)β ,
where p is the training progress, relative to the total number of training epochs, µ0 is the initial
learning rate, which we take to be 10−2, and α = 10 and β = 0.75 as in Ganin & Lempitsky (2015).
We eliminate exploding gradients by `2-norm clipping. Furthermore, we modulate the plasticity
of the activations at every gate as π(i) = 1 − p, that is, we make π(i) decay linearly as training
progresses. As data preprocessing, we apply mean subtraction, as in Ganin & Lempitsky (2015).
We train for 200 epochs, during which the network is exposed to all the image data from the source
and target domains, but only to the annotations from the source domain(s).

Our “On TD” oracle is trained on either the preset training splits, when available, or our defined
training data, and evaluated on the corresponding test data. For the comparison to this oracle to be
meaningful, we follow the same strategy for our DAMnets. That is, we use the unlabeled target data
from the training splits only and report results on the testing splits. This protocol differs from that
of Rozantsev et al. (2019), which relied on a transductive evaluation, where all the target images,
training and test ones, were seen by the networks during training.

4.3 IMAGE RECOGNITION

We evaluate our method in the task of image recognition for which we use several domain adapta-
tion benchmark problems: Digits, which comprises three domains: MNIST (LeCun et al., 1998),
MNIST-M (Ganin & Lempitsky, 2015), and SVHN (Netzer et al., 2011); Office (Saenko et al.,
2010), which contains three domains: Amazon, DSLR, and Webcam; Office-Home (Venkateswara
et al., 2017), with domains Art, Clipart, Product, and Real; and VisDA17 (Peng et al., 2017), with
Synthetic and Real images. As all these are well studied benchmark datasets, we provide full de-
scriptions and image examples evidencing the different degrees of domain shift in Appendix B.

Setup. As discussed in Section 3, our method is general and can work with any network archi-
tecture. To showcase this, for the digit recognition datasets, we apply it to the LeNet and SVHNet
architectures (Ganin & Lempitsky, 2015), which are very simple convolutional networks, well suited
for small images. Following Ganin & Lempitsky (2015), we employ LeNet when using the synthetic
datasets MNIST and MNIST-M as source domains, and SVHNet when SVHN acts as source domain.
We extend these architectures to multiflow ones by defining the computational units as the groups
of consecutive convolution, pooling and non-linear operations defined in the original model. For
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Table 1: Domain Adaptation datasets and results. We compare the accuracy of our DAMnet approach with
that of DANN (Ganin & Lempitsky, 2015) and of RPT (Rozantsev et al., 2019), for image classification tasks
commonly used to evaluate domain adaptation methods. Our DAMnets yield a significant accuracy boost in the
presence of large domain shifts, particularly when using more than one source domain. A more comprehensive
evaluation on all datasets is provided in Appendix C.

Digits: MNIST (M), MNIST-M (MM), SVHN (S) Office-Home: Art (A), Clipart (C), Product (P), Real (R)

Source(s) M S M MM M,MM M,MM A C C R A C P C,P A,C,P
Target MM M S S S S? P P A A R R R R R
No DA 52.25 54.90 25.57 27.49 33.52 22.88 37.03 36.67 29.65 50.91 53.12 43.03 46.42 59.39 58.72
DANN 76.66 73.90 31.69 37.43 44.16 49.02 58.50 70.50 47.93 57.68 56.40 57.90 62.30 70.53 72.00
RPT 82.24 78.70 34.72 37.90 n/a n/a 54.51 63.18 47.32 51.90 52.15 55.05 62.16 n/a n/a
Ours 88.80 81.30 37.95 39.41 51.83 79.45 59.30 77.50 51.24 60.74 59.90 62.70 65.00 72.25 77.65
On TD 96.21 99.26 89.23 89.23 89.23 96.07 87.66 87.66 64.42 64.42 77.80 77.80 77.80 77.80 77.80

simplicity, we use as many flows within each computational unit as we have domains, and all flows
from a computational unit follow the same architecture, which we provide in Appendix A, Figures 1
and 2. As backbone network to process all the rest of the datasets, we use a ResNet-50 (He et al.,
2016), with the bottleneck layer modification of Rozantsev et al. (2019). While many multiflow con-
figurations can be designed for such a deep network, we choose to make our gated computational
units coincide with the layer groupings defined in He et al. (2016), namely conv1, conv2 x, conv3 x,
conv4 x, and conv5 x. The resulting multiflow network is depicted in Appendix A, Figure 4. We
feed our DAMnets images resized to 224× 224 pixels, as expected by ResNet-50.
Results. The results for the digit recognition and Office-Home datasets are provided in Table 1.
Results for Office and VisDA17 datasets are presented in Appendix C. Our approach outperforms
the baselines in all cases.

For the Digits datasets, in addition to the traditional two-domain setup, we also report results when
using two source domains simultaneously. Note that the reference method RPT (Rozantsev et al.,
2019) does not apply to this setting, since it was designed to transform a single set of source parame-
ters to the target ones. Altogether, our method consistently outperforms the others. Note that the first
two columns correspond to the combinations reported in the literature. We believe, however, that
the SVHN . MNIST one is quite artificial, since, in practice, one would typically annotate simpler,
synthetic images and aim to use real ones at test time. We therefore also report synthetic . SVHN
cases, which are much more challenging. The multi-source version of our method achieves a signif-
icant boost over the baselines in this scenario. To further demonstrate the potential of our approach
in this setting, we replaced its backbone with the much deeper ResNet-50 network and applied it
on upscaled versions of the images. As shown in the column indicated by a ?, this allowed us to
achieve an accuracy close to 80%, which is remarkable for such a difficult adaptation task.

On Office-Home, the gap between DAMnet and the baselines is again consistent across the different
domain pairs. Note that, here, because of the relatively large number of classes, the overall perfor-
mance is low for all methods. Importantly, our results show that we gain performance by training on
more than one source domain, and by leveraging all synthetic domains to transfer to the real one, our
approach reaches an accuracy virtually equal to that of using full supervision on the target domain.
Despite our best efforts, we were unable to obtain convincing results for RPT using the authors’
publicly available code, as results for this dataset were not originally reported for RPT.
Gate dynamics. To understand the way our networks learn the domain-specific flow assignments,
we track the state of the gates for all computational units over all training epochs. In Figure 4, we
plot the corresponding evolution of the gate activations for the DSLR+Webcam . Amazon task on
Office. Note that our DAMnet leverages different flows over time for each domain before reaching
a firm decision. Interestingly, we can see that, with the exception of the first unit, which performs
low-level computations, DSLR and Webcam share all flows. By contrast, Amazon, which has a
significantly different appearance, mostly uses its own flows, except in two computational units.
This evidences that our network successfully understands when domains are similar and can thus
use similar computations.

4.4 OBJECT DETECTION

We evaluate our method for the detection of drones from video frames, on the UAV-200
dataset (Rozantsev et al., 2018), which contains examples of drones both generated artificially and
captured from real video footage. Full details and example images are provided in Appendix B.3
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Method
Average
precision

No adaptation 0.377
DANN (Ganin & Lempitsky, 2015) 0.715
ADDA (Tzeng et al., 2017) 0.731
Two-stream (Rozantsev et al., 2018) 0.732
RPT (Rozantsev et al., 2019) 0.743
DAMnet 0.792

Table 2: Average precision of our
DAMnet approach with several other ref-
erence methods, for domain adaptation
from synthetic to real images of drones.

Setup. Our domain adaptation leverages both the syn-
thetic examples of drones, as source domain, and the limited
amount of annotated real drones, as target domain, as well
as the background negative examples, to predict the class
of patches from the validation set of real images. We fol-
low closely the supervised setup and network architecture
of Rozantsev et al. (2019), including the use of AdaDelta as
optimizer, cross-entropy as loss function, and average pre-
cision as evaluation metric. Our multiflow computational
units are defined as groupings of successive convolutions,
nonlinearities, and pooling operations. The details of the ar-
chitecture are provided in Appendix A, Figure 3.

Results. Our method considerably surpasses all the others in terms of average precision, as shown
in Table 2, thus validating DAMnets as effective models for leveraging synthetic data for domain
adaptation in real-world problems.

5 CONCLUSION

We have introduced a domain adaptation approach that allows for adaptive, separate computations
for different domains. Our framework relies on computational units that aggregate the outputs of
multiple parallel operations, and on a set of trainable domain-specific gates that adapt the aggrega-
tion process to each domain. Our experiments have demonstrated the benefits of this approach over
the state-of-the-art weight untying strategy; the greater flexibility of our method translates into a
consistently better accuracy.

Although we only experimented with using the same flow architectures within a computational
unit, our framework generalizes to arbitrary flow architectures, the only constraint being that their
outputs are of commensurate shapes. An interesting avenue for future research would therefore be to
automatically determine the best operation to perform for each domain, for example by combining
our approach with neural architecture search strategies.
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Figure 4: Evolution of the gates’ activations for each of the computational units in a multiflow ResNet-50
network, for the Office DSLR + Webcam . Amazon domain adaptation problem. In the top two rows, we show
the gates for the source domains and in the bottom row for the target one. All flows are initialized to parameters
obtained from a single ResNet-50 trained on ImageNet. Note how for the first computational unit, conv1, each
domain chooses to process the data with different flows. In the remaining units, the two source domains, which
have similar appearance, share all the computations. By contrast, the target domain still uses its own flows in
conv3 x, and conv4 x to account for its significantly different appearance. When arriving at conv 5x, the data
has been converted to a domain-agnostic representation, and hence the same flow can operate on all domains.
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Appendices

A MULTIFLOW ARCHITECTURES

Below, we provide the network architectures and detailed building blocks of our Domain Adaptive
Multiflow Networks, for the single source domain case (D = 2). Each computational unit is enclosed
by dotted lines. The input and output shapes for all layer groupings are provided.
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Figure 1: Multiflow LeNet. This architecture is a multiflow extension to the LeNet used by DANN (Ganin &
Lempitsky, 2015).
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Figure 2: Multiflow SVHNet. This architecture is a multiflow extension to the SVHNet used by DANN (Ganin
& Lempitsky, 2015).
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Figure 3: Multiflow architecture for drone detection. This architecture is a multiflow extension to the one
used by Rozantsev et al. (2019).
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Figure 4: Multiflow ResNet-50. This architecture is adapted from the original ResNet-50 (He et al., 2016). We
preserve the groupings described in the original paper (He et al., 2016). N denotes the number of classes in the
dataset.
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B BENCHMARK DATASET DESCRIPTIONS

B.1 DIGIT RECOGNITION

MNIST (LeCun et al., 1998) consists of black and white images of handwritten digits from 0 to 9. All
images are of size 28×28 pixels. The standard training and testing splits contain 60,000 and 10,000 examples,
respectively.
MNIST-M (Ganin & Lempitsky, 2015) is synthetically generated by randomly replacing the foreground
and background pixels of random MNIST samples with natural images. Its image size is 32 × 32, and the
standard training and testing splits contain 59,001 and 9,001 images, respectively.
SVHN (Netzer et al., 2011), the Street View House Numbers dataset, consists of natural scene images of
numbers acquired from Google Street View. Its images are also of size 32 × 32 pixels, and its preset training
and testing splits are of 73,257 and 26,032 images, respectively. The SVHN images are centered at the desired
digit, but contain clutter, visual artifacts, and distractors from its surroundings.

0 1 2 3 4 5 6 7 8 9

MNIST

MNIST-M

SVHN

B.2 OBJECT RECOGNITION

Office (Saenko et al., 2010) is a multiclass object recognition benchmark dataset, containing images of 31
categories of objects commonly found in office environments. It contains color images from three different
domains: 2,817 images of products scraped from Amazon, 498 images acquired using a DSLR digital camera,
and 795 images captured with a webcam. The images are of arbitrary sizes and aspect ratios.

Backpack Bicycle
Bike

helmet Bookcase Bottle Calculator Chair
Desk
lamp Computer

File
cabinet Headphones

Amazon

DSLR

Webcam

Office-Home (Venkateswara et al., 2017) comprises a larger corpus of color, arbitrarily-sized images from
65 different classes of objects commonly found in office and home environments, coming from four different
domains. It contains 2,427 images extracted from paintings (Art), 4,365 clipart images (Clipart), 4,439 pho-
tographs of products (Product), and 4,357 pictures captured with a regular consumer camera (Real world).

Alarm
clock Backpack Battery Bed Bicycle Bottle Bucket Calculator Calendar Candle Chair Clipboard Computer

Art
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VisDA 2017 (Peng et al., 2017) includes images of diverse sizes from 12 different categories, coming from
two different domains: 55,368 synthetic renders of 3D models, and 152,397 photographs of the real-world
objects. It is larger than the other two datasets, and exhibits a more significant domain shift.

Aeroplane Bicycle Bus Car Horse Knife Motorcycle Person Plant Skateboard Train Truck

Real

Synthetic

B.3 OBJECT DETECTION

UAV-200 aggregates 200 images of real drones and around 33,000 synthetic ones, as well as around 190,000
patches obtained from the background of the video, which do not contain drones, used as negative examples.
All examples are of size 40×40 pixels. We evaluate performance on a validation set comprising 3,000 positive
and 135,000 negative patches.

Real

Synthetic

Background
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C FULL RESULTS

Table 3: Domain Adaptation results. We compare the accuracy of our DAMnet approach with that of
DANN (Ganin & Lempitsky, 2015) and of RPT (Rozantsev et al., 2019), for image classification tasks com-
monly used to evaluate domain adaptation methods. As illustrated in Appendix B, different source and target
domain combinations present various degrees of domain shift, and some combinations are clearly more chal-
lenging than others. Our DAMnets yield a significant accuracy boost in the presence of large domain shifts,
particularly when using more than one source domain.

Datasets Source(s) . Target No DA DANN RPT DAMnet On TD

Digits

MNIST . MNIST-M 52.25 76.66† 82.24 88.80 96.21
SVHN . MNIST 54.90 73.90† 78.70† 81.30 99.26

MNIST . SVHN 25.57 31.69 34.72 37.95 89.23
MNIST-M . SVHN 27.49 37.43 37.90 39.41 89.23

MNIST + MNIST-M . SVHN 33.52 44.16 n/a 51.83 89.23
MNIST + MNIST-M . SVHN? 22.88 49.02 n/a 79.45 96.07

Office

Webcam . DSLR 93.60 99.20† 99.40† 99.62 95.20
Amazon . DSLR 32.80 79.10† 82.70† 84.14 95.20

DSLR . Webcam 90.45 97.70† 98.00† 98.11 98.49
Amazon . Webcam 34.67 78.90† 81.50† 85.28 98.49
Webcam . Amazon 41.42 62.80† 63.60† 65.67 85.11

DSLR . Amazon 34.47 63.60† 64.70† 64.82 85.11

DSLR + Webcam . Amazon 45.82 64.86 n/a 68.87 85.11

Office-Home

Art . Product 37.03 58.50 54.51 59.30 87.66
Clipart . Product 36.67 70.50 63.18 77.50 87.66
Clipart . Art 29.65 47.93 47.32 51.24 64.42

Real world . Art 50.91 57.68 51.90 60.74 64.42
Art . Real world 53.12 56.40 52.15 59.90 77.80

Clipart . Real world 43.03 57.90 55.05 62.70 77.80
Product . Real world 46.42 62.30 62.16 65.00 77.80

Clipart + Product . Real world 53.39 70.53 n/a 72.25 77.80
Art + Clipart + Product . Real world 58.72 72.00 n/a 77.65 77.80

VisDA 2017
Synthetic . Real 35.46 59.90 61.10 61.40 84.72

Real . Synthetic 51.12 83.10 82.15 85.20 99.34

UAV-200 Synthetic . Real∗ 0.377 0.715 0.743 0.792 0.858

†Accuracy reported in Ganin & Lempitsky (2015) and Rozantsev et al. (2019)
?Evaluated with a ResNet-50

∗Results reported as Average Precision
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