
A Algorithms

Algorithm 2: Hamiltonian Policy Optimization
1 Denote at, st as the action and state at timet; Denote the replay buffer as B;
2 Initialize θ, h;
3 for t = 1, 2, . . . do
4 Sample at ∼ πθt(·|st);
5 Obtain aKt , ρ

K
t = fKHMC(st, at; θt, ht);

6 Apply aKt , and obtain next state st+1;
7 Store the experience tuple (st, a

K
t , st+1) into B;

8 Sample a minibatch of transitions Dt from B;
9 Update the Q network by Dt;

10 Update θ and h by optimizing J (θ, h) in (12) with minibatch Dt;
11 end

Algorithm 3: fKHMC(s, a; θ, h), β0, ε

1 Sample ρ0 ∼ N (0, I);
2 Set ρ0 ←− ρ0 · 1√

β0
;

3 for k = 1, . . . ,K do
4 Obtain ρk+1/2 by the first equation in (13);
5 Update ak = ak−1 + ε� ρk+1/2;
6 Obtain ρk+1 by the second equation in (13);
7 end
8 Return aK , ρK ;

B Hyper-parameter Table

α 1/
√
βtr

0 1/
√
βexp

0 ε K l hn m B size
HalfCheetah-v2 0.2 1 0.5 0.2 3 1 32

256 106

Hopper-v2 0.2 0.1 1.5 0.15 2 1 32
Walker2d-v2 0.2 0.2 1.5 0.15 3 1 32

Ant-v2 0.2 0.1 1.0 0.1 3 1 32
Humanoid-v2 0.05 1 1 0.1 3 1 64

Humanoid PyB. 0.05 0.4 1.5 0.2 3 1 64
Flagrun 0.05 0.2 1 0.15 3 1 32

Flagrun Harder 0.05 0.2 1.5 0.15 3 1 64

Table 1: Hyperparameters in SAC-HPO.

C Analysis

In this section, we conduct ablation study, sensitivity analysis and investigate the shape of the policy
distributions evolved by HD.

C.1 Ablation Study

In ablation study, we first verify the effect of the proposed leapfrog operator (13) in comparison with
the conventional leapfrog in (9). Then we study the differences of the effects of HMC in exploration
and policy training, where the policy training (policy optimization) refers to the training step for
policy network and neural networks Th, σh in leapfrog (13).

13



(a) Ant-v2 (b) Ant-v2 (c) Humanoid PyBullet (d) Humanoid PyBullet

Figure 4: Performance Comparison in Ablation Study.

Specifically, we introduce three baselines adopting different leapfrog operators in exploration and
policy training, which are summarized in Table 2. Here "Gaussian Policy" means that the same policy
network in SAC is directly used without evolving actions by HMC. "Conv. Leapfrog" refers to that
actions are evolved by the conventional leapfrog in (9), and "Prop. Leapfrog" denotes that actions are
evolved by the proposed leapfrog in (13). We cannot use the proposed leapfrog only in exploration,
since the neural networks Th, σh in (13) need to be trained.

Exploration Policy Training
SAC-HPO Prop. Leapfrog Prop. Leapfrog
Baseline-1 Conv. Leapfrog Conv. Leapfrog
Baseline-2 Conv. Leapfrog Gaussian Policy
Baseline-3 Gaus. Policy Prop. Leapfrog

SAC Gaussian Policy Gaussian Policy
Table 2: Exploration and Training Strategies in Baselines

The SAC-HPO and baselines are evaluated over Ant-v2 and HumanoidPyBulletEnv-v0, and learning
curves are shown in Figure 4, where we use the same hyper-parameters as Section 5.1. It can be seen
that in Figure 4(a) and 4(c), SAC-HPO outperforms the baseline-1 in terms of both performance and
learning stability, showing the advantage of the proposed leapfrog operator over the conventional
counterpart. And this advantage can also be observed in other environments.

In Figure 4(b) and 4(d), the baseline-1 outperforms both baseline-2 and baseline-3, showing the effects
of leapfrog in both exploration and policy optimization. Further, we can see that the improvement
of baseline-2 over SAC is higher than that of baseline-3 over SAC, meaning that using HMC in
exploration can yield more performance improvement than that in policy training.

C.2 Sensitivity Analysis

Here we conducted sensitivity analysis on three important hyper-parameters. The first is the number
of leapfrog steps in simulating HD, i.e., K = 1, 2, 3, shown in Figures 5(g), 5(h) and 5(i). We can
see that in Hopper-v2, the cases of K = 2 and K = 3 perform similar, but much better than that of
K = 1, showing that it is not meaningful to have larger K. The second parameter analyzed here is
the variance of momentum vector ρ in exploration, i.e., 1/

√
βexp

0 = 0.5, 1.0, 1.5, shown in Figure
5(d), 5(e) and 5(f). We can see that the performance is sensitive to the choice of βexp, showing the
variance of ρ in exploration is important to the learning performance. Although more randomness in
exploration can encourage the agent to explore more unseen states, not the highest choice of βexp

leads to best performance, such as Figure 5(e). That is because too much variance of ρ may make the
sampled state-action pairs deviate too much from the optimal trajectory during the exploration. In
Figure 5(a), 5(b) and 5(c), we analyze three different values for the variances for momentum vector
ρ in policy training, i.e., 1/

√
βtr

0 = 0.01, 0.1, 0.2. However, we can see that the performance is not
sensitive to βtr

0 . According to more evaluations, larger βtr
0 cannot lead to better performance. For

example when βtr
0 = 1, the performance degrades significantly.

C.3 Effect of Random Momentum Vector

In Figure 6, we study the effect of the randomness of momentum vector ρ on the performance
improvement. It is similar as the comparison with iterative amortized policy optimization (IAPO)

14



(a) Hopper-v2 (b) Ant-v2 (c) PyBullet Flagrun Harder

(d) Hopper-v2 (e) Ant-v2 (f) PyBullet Flagrun Harder

(g) Hopper-v2 (h) Ant-v2 (i) PyBullet Flagrun Harder

Figure 5: Sensitivity analysis on K,βexp, and βtr.

(a) Hopper-v2 (b) Ant-v2 (c) PyBullet Flagrun Harder

Figure 6: Performance comparison on the randomness of momentum vector. "No Randomness"
refers to SAC-HPO without using random momentum vectors which is to set ρ = 0.

[26]. The baseline here is the SAC-HPO without random momentum vector, where we set ρ = 0 in
both exploration and policy training. We can see that if no randomness in momentum vectors, the
performance of SAC-HPO degrades significantly. Previous work such as IAPO [26] directly uses
gradients to update the actions sampled from the base policy, without using any extra random variables,
which is same as the baseline here. However, their performance is not good in high-dimensional
environments [26]. The comparison in Figure 6 can explain the reason and show the advantage of our
method. And similar advantage of our method can be observed in other environments as well.

C.4 Visualization of Policy Distribution

In Figure 7, we visualize the action distributions of Hamiltonian policy (actions evolved by HMC)
at different environmental steps, where x and y axes represent two different action dimensions.
Specifically, in Figure 7, the red dots represent 1000 actions sampled from the policy distribution
evolved by leapfrog steps (13). For comparison, the blue dots represent 1000 actions sampled from

15



(a) 270K Step (b) 580K Step (c) 880K Step

Figure 7: The shape of policy distribution in Ant-v2. The dimensions of action are shown as x and y
labels. The color bar is for Q values. βexp

0 = 1 for every step.

the base policy network πθ directly, which are Gaussian and are not evolved by HMC. The contour of
Q values is shown as background for reference, which is drawn by triangular interpolation method.
In Figure 7, comparing red and blue dots, we can see that HMC can evolve actions sampled from the
base policy more towards regions with higher Q values, making sampled actions more directionally
informed and hence improving exploration efficiency. We can also observe that policy distribution
evolved by leapfrog operators can be highly non-Gaussian and have larger variance with much broader
effective support. Besides, there are still some actions evolved to regions with similar or lower Q
values, so that a reasonable trade-off of exploration and exploitation can be reached. That is why the
exploration of RL agent can be boosted by Hamiltonian policy and the learning performance can be
improved.

16


	Algorithms
	Hyper-parameter Table
	Analysis
	Ablation Study
	Sensitivity Analysis
	Effect of Random Momentum Vector
	Visualization of Policy Distribution


