A Conditioning

We analyze the condition number of underdamped Langevin dynamics with potential f(z) = % =)

and stationary distribution p(z,v) = e~ /@=2lvl* = ¢=3(=I”+I*I*) " Underdamped Langevin
dynamics is given by the following SDE’s,
dry = —vy (18)
dvy = —yvy — V f(zy) + V2dB,
= —yu — T + V2dB;. (19)

Given the distribution pg at time 0, the distribution p, at time ¢ is the same as that given by,

5 .
m - [0 _Id] V$7E (20)
(T::) 1y ’yId AV 5KL§1;1‘;||13 )

which simplifies to
Te| O Id

Our goal is to prove the following theorem.

Theorem 6. Consider underdamped Langevin dynamics (18)—(19) with friction coefficient v < 2
and starting distribution p that is C?. Let Ty denote the transport map from time 0 to time t induced
by (21). Suppose that the initial distribution po(x,v) is such that

Ioy < —V? Inpo(z,v) < Klag.

Then for any xq, vo and unit vector w, the directional derivative of T} at ¢, vg in direction w satisfies
247 —2/v 24~y 2/
1+ —(k—-1 < ||D.,T; <14+ —(k—-1
(1+326-1) < IDutal < (14 321

4/~
Thus the condition number of Ty is bounded by (1 + SJ_% (k — 1)) .

We remark that the exponent is likely loose by a factor of 2, and that taking v — 2 gives the best
exponent; however, the case v = 2 would require a separate calculation as the matrix appearing in the
exponential is not diagonalizable. Note v = 2 is the transition between when the dynamics exhibit
underdamped and overdamped behavior.

To prove the theorem, we first relate the Jacobian with the Hessian of the log-pdf. By Lemma 12, the
Jacobian D; = DT, (x¢) satisfies

4
dt

(@] I
D; = l:_Id B ,;lld] V2(Inp; — Inp)D;. 22)

We will show that V2(In p; — In p) decays exponentially (Lemma 8). First, we need the following
bound for convolutions.

A.1 Bounding the Hessian of the logarithm of a convolution

Lemma 7. Suppose that p is a probability density function on R? such that %2, 1< —V2Inp < ¥ L
Let q be the distribution of N (0, X)) (where ¥ is not necessarily full-rank). Then

(31 +2) ' < —V2iin(pxq) < (Z2+ %)L

Proof. The lower bound is a bound on the strong log-concavity parameter; see Theorem 3.7b
in Saumard and Wellner [2014].
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For the upper bound, we first prove the lemma in the case that X is full rank. We have (p x ¢)(x) =
Jpa P(u)q(x — u) dt, so
Jra p(W)V2q(z — u) du B (f]Rd p(u)Vq(r — u) du) <fRd p(u)Vq(r — u) du) T
Jra p(u q(z —u)du Jra P(W)g(z — U) du Jra p(W)q(x — ) du
<fRd (x —uw)p(u)g(z —u du> fRd u))Tp(u)q(J: —u)du
fRsz q(x —u) du fde q(x —u)du
(S @~ (e —w) S = S p(uwg(e - u) du
JpaP(w)a(z — u)du
Let p1,. denote the distribution with density function p(u) o p(u)g(x — u). Then
V2 n((p * @)(@)] = B, S 0 — 0)][Eu, (57 (- 2)) 7] — B 2 (- 2)(u— 2) TS 4 57
=-E, 2 (u—Eu)(u—Eu) T2+ 27N

V2[In((p * q)(x))] =

It suffices to show for any unit vector v, that
0TV [In((p * g)(x))Jv = =B, [(S "0, (u = Eu))] +0 S 0 <07 (3 +£)7!
Note that p,, satisfies
~VZnp, <87 4+ 271

SO {5 can be written as the density of a Gaussian with variance (X5 1y Y1)~ multiplied by a
log-convex function. By the Brascamp-Lieb moment inequality (Theorem 5.1 in Brascamp and Lieb
[2002])°,

2 _ 2 1o e
E..[(Z7 ', (u—Eu))’] > E, v sy +s-1-1H[(E u) =0 275+ )T Is !
Hence
—0"V2[In((p*q)(z))v < v’ [—2_1(22_1 I o
The conclusion then follows from
D Y O AT ) NP SRR ED YRt 0 ) YA YD ) Rt D Yt
=(E5 'S+ D)+ 1)
= (X +3)7"
Now for the general case, take the limit as ¥’ — X where X/ is full-rank. More precisely, let

¥; = ¥ + tP, where P is projection onto Im(X)1, and let ¢; be the density function for N (0, ;).
Then we have

V2 n((p* q0)(2))] =

Joa V2p(@ —uw)ge(w) du <fRd, Vp(x — u)ge(u) dU> ( Jra Vp(z — u)qs(u) dU> '
Jpa P(x — u)qe(u) du Jpa P(z — u)qs(u) du Jra p(x = u)qi(u) du

Examining the first term, we have
V2p(x — u)q(u) du = / / V2p(x — u — v)q(u + v) dv du
JR4 Im(%) JIm(P)

— V2p(x — u)q(u) du as t — 0T
Im(X)

by the dominated convergence theorem. Similarly, the other integrals converge to their counterparts
with g(u). Therefore, V2[In((p * ¢:)(z))] — V?[In((p * ¢)(x))] as t — 0. Apply the lemma to the
full-rank case; the RHS bound converges to the desired bound: (X5 + ¥;) ! — (3, + %)~ !

O

3Note that the sign is flipped in the theorem statement in the log-convex case.

14



A.2 Bounding the variance proxy for underdamped Langevin

As it is useful to work with the matrices ¥; and X5, we make the following definition.

Definition 10. Let p be a probablhty density on R%. For a positive definite matrix ¥, if £ 1<
—V2Inp, we say that 3; is an upper variance proxy for p. For a positive definite matrix Yo, if
~V2Inp =< 22 , we say Yo is a lower variance proxy for p.

Lemma 8. Consider underdamped Langevin dynamics (18)—(19) with with starting distribution
po(x,v) that is C%. Suppose po has lower (upper) variance proxy ¥o. Then p; has lower (upper)
variance proxy

Et:exp[<[_1 _17} ®Id) t] (Eo—Izd)eXp[([l :1/] ®Id> t] F Ta.

Proof. We first consider discretized Lanegevin, given by

it-i-n = 55t + ’If’l\)it

Uppy = (L= n)0¢ — 0Tt + &, & ~ N(0,2nlq)
or in matrix form,

@Jrn _ Ly nly z - O O
[vm,] [—nId (1- m)IJ { J e G~ N (0’ [O 2l )
Fix ¢. Let ﬁf‘") be the distribution at time ¢ for discretized Langevin with step size 7 (dividing ¢). By

standard arguments, p. %n) — py as n — 0, in the C? topology on any compact set. In particular, for

any z,v, V2Inp"” (z,v) — V2In py (2., v). Hence it suffices to bound V2 In p, (, v).

We write the proof for the upper variance proxy; the proof for the lower variance proxy differs only
in the direction of the inequality. Suppose — Inp;(z,v) = Et ! Consider breaking the update into

two steps,
xt+n _| La nlq %t
Ut+n —nla (1 =n7)Ia| |V
Tipn| _ |Tien N o o0
[’U“ﬂl] [Ut+n] T LN (0’ [O 2nla] )

Let P, (,v) denote the distribution of [UH”] Then
t+n

“1
. e I nla x
Piiy(@,0) =P (L?ﬂd (1- nv)ld] [”D
E/

) Ly nla 5 | La —nlq
B =nle (L=n)la] 7% [nla (1 =n)la
is an upper variance proxy for p, 4n and by Lemma 7,

S O O
Ditn : _E:H*n [O ind]

is an upper variance proxy for p;;,,. Note that

= < 1 s .z 1
Et+"7 = Zt + |:|:_1 _77]:| ® Id:| St + St |:|:1 77]:| ® Id:| |:8 2277:| + O(TIQ)

By the standard analysis of Euler’s method, as 7 — 0, the distribution, S approaches X; defined by

EES A S N [ P B

This ¥, is an upper variance proxy for p;. The solution to this equation is

Et:exp[<[_1 _ﬂ@ld)t] (Eo—lzd)eXp[([l ]®Id) ]+Izd,

as desired. ]

SO

15



A.3 Proof that underdamped Langevin is well-conditioned

We are now ready to prove the main theorem.

0] ¥

Proof of Theorem 6. Let H; = V?(—Inp; + Inp) and C = |:—Id Ay

] . By (22) and the chain

rule,
%DtDtT = —(CH,D;D, + D,D, H,C"). (23)

Fix w and consider 3, = Dyw = D,, Ty (o). Multiplying the above by W on both sides gives*

2
< 2|[CHy[ [yl

L
dt Yt

so by Gronwall’s inequality (Lemma 15),

t t
o[- [0 5] <l < e [2 [ o) as]. 24)
0 0

By Lemma 8,

Iog < —VZInp, < (k —1)exp [([_1 _17] ®1d> t] exp KL :ﬂ ®1d> t] + Tog.

The eigenvalues of A := [1 :ﬂ are Vi ”272_4, which have absolute value 1. The absolute value

of the inner product of the eigenvectors of A is /2, so the condition number squared of the two

exponential factors is bounded by if% = % In full detail, we calculate
2
—v+ 2_4
<|: _1:| ) l 1 1 exp ( i \/27 t)
exp U)=1]-= VP4 /P-4
17 2 2 exp <_7_ o 72_4t>
s ”

D

S-1
2 /2
||STS||: 2 2l +'Y27 4 _2+fy
V2 =vy/72—4 9
2

ox U <« 250 e () = 2 e (2O
PRlL 2 )= a2 7P\ 2 2P\ 2 )

Hence H, = —V?Inp, + Iy, satisfies

|[CH,[| <1—

7
00 oo Enutd _ t/2
[ e as< | e e T

0 0 1

5
0
< {2ln <1+2—’—’Y(K—1)€_7t/2>:| < gln (14—24_7(&—1)).
gl o 7 2-7

*The condition number bound in Theorem 6 is the square of what one might expect because we are only able
to get obtain a bound on the absolute value here. If this is always increasing or decreasing, then we would save a
factor of 2 in the exponent.
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Hence by (24),

2+7 —2/ 2+ 2
2 e < < 2T e
(1+326-0)  <twl= (143 20-n)

giving the theorem. To obtain the bound on condition number, note that the condition number of

. max || =1 || DwTi(z0)ll
DT (0) 18 Sam, 2\ S, IDw T (a0l T =

B Proof of Lemma 3

For the sake of convenience, we restate Lemma 3 again.

Lemma. Let C € R?? be a compact set. For any function H(z,v,t) : R? x Rsq — R which is
polynomial in (x,v), there exist polynomial functions J, F, G, s.t. the time-(to + T,to) flow map of

the system
dr __ 0 ,
(Lol (3)
dit = —%H(I,U,t) - VEH(?L’?U%)

is uniformly O(12)-close over C in C topology to the time-2m map of the system

{Zf:v— TF(v,t) Oz

26
Di — 20 — 7J;(x,t) — T0,Gy (2, t) (26)

for some integers {Q; };-l:l. Here, ® denotes component-wise product, and the constants inside the
O(-) depend on C and the coefficients of H.

Proof. First, note that the time-(tg + 7, to) flow map of (25) is equal to the time-(to,to + 7) flow
map of the system:

de __ 9 s
{dt——aH(J‘,’l,f()-i-T—f) 27

Do — O H(x,v,to+ 7 —t) + v 2 H(x, 0,0 + 7 — 1)

Proceeding ahead, we broadly follow the proof strategy in Turaev [2002]. For notational convenience,
let’s denote the initial vector by x(0), v(0) (each coordinate is specified separately). Let

azg(t):x( ) cos §2; t+$ ;(0) sin Q¢ (28)
J
v?(t) = —Q,;z;(0) sin Q;t + v;(0) cos Q;t. (29)

Using perturbative ODE techniques (see appendix D.5), the solution to (26) satisfies

l‘(t):l’o(t)—TfOt( @J(a:o(s) 5) @sin Q(t — ) + F(v°(s), )@cosQ(t—s)@a:”(s)
+ @G( (s),s) ©@sinQ(t — s) ©0°(s)) ds + O(7?)

o(t) = 00(t) — 7 [ (J((s). 5) © cos At — 5) — 2O F(0(s),5) ©sinQt — 5) @ %(s) O
+G( ( ),8) ®cosQt — s) ®v°(s)) ds + O(7%)
Substituting ¢ = 2, the time-27 map of (26) is given by
z(2m) = 2°(27) — 1 j;)% (=5 ©J(2°(s), s) ®@sin Qs + F(v°(s),s) ® cos Qs ® 2°(s)
— & ©G(2%(s),s) ©sinQs ©v°(s)) ds + O(7) 31
v(2r) =0°(27) — 7 02” (J(2(s),5) ® cos Qs + Q ® F(v°(s), s) ©@sin Qs © 2°(s)
+G(2°(s), 5) ® cos Qs ©1°(s)) ds + O(1?)
Note that this holds if 2 is integral, and we will choose it to be so.
On the other hand, using Taylor’s theorem, the solution to (25) satisfies:
z(r) = 2(0) — TavH(.L(O), v(0),t0 +7) + O(7?) (32)
(1) =v(0) + TGTH(x(O),v(O),tO +7)+ 776 H(x(0),v(0),tg + 1) + O(7?)
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We will now show that for any two polynomials 71, o of total degree at most /M we can choose
functions J, F, G, s.t.:

0% (=& © J(2(s), s) ©@sinQs + F(v9(s),s) ® cos Qs © 2%(s)

— 5 ©G(2"%(s),s) ©sinQs © v°(s)) ds = r(z(0),y(0))
02” (J(2°(s),8) @ cos Qs + Q © F(v(s),5) ® sin Qs © 2°(s)

+G(2°(s),s) © cos Qs ® v0(s)) ds = ra(2(0), y(0))

(33)

We will choose J, F, G of the form:

Vi€ ld: Ji(zt) = Yip<ar v)s (07 '
Fj(z,t) = Zi:|i|§M—1 vfi(t)z" (34)
Vi€ ld:Gi(zt) =2 h<m-1 vfi(t)z‘

. , - . d . - d i
where i = (i1, ... ,1q) denotes multi-index, and |i| = Y, _; i and 2 =[], _, z,*. Let

7y (x( = > D hiyar(0)Pu(0) (35)

k:|k|<M p+a=k

roi(x(0),0(0) = > Y B2 w(0)Pu(0)? (36)

k:|k|<M p+a=k

The equation (33) gives us that for all 7,

B (e T3 @0(5), ) sin(98) + Fy (0°(5), 5) cos($5)9.s)

g Gi(@"(s). 5) sin(;5)0 <>)ds=n,j<x<o>,y<o>> a7
S (J5(2%s), )COb(QJs)+QF(UO() 5)sin(§2;5)22(s)

G5 (a0(5), ) cos(s)(5)) ds = 1,5 ((0), 4(0)

Let ( ) = Hk L ( ) Let k} be the multi-index (k1, ..., k; +t, ..., kq). We substitute (28)~(29),
(34), and (35)-(36) into (37) and match the coefficients of (0)Pv(0)4.

If k; = 0, then
1 2 1 5 /K
hip.a :/ 0. ik cos(€2s)P sin(Qs)U ( )ds
0 J o)
2 . Kk
h?»p,q = /0 U}{k cos(€2s)Pi sin(Q2s)4 (p) ds
where v.;{k = acos(Qs)P sin(Qs)qu1 + bCOS(Qs)le sin(Qs)9.  Since the function 8(s) =
cos(Q,g)P"er1 sin(Qs)q+qj1 satisfies 5(m — s) = —d(r + s), this function integrates to zero, and

hence the system above reduces to

for some non-zero constant
27 . 27 N
C :/ cos(02s)?P sin(Qs)*W ds :/ cos(2s)Pi sin(Qs)?%ds
0 0

Note that the integral is non-zero since the function inside is positive as all the powers are even.
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If k; > 0, then substituting the forms of z°(s), v°(s) from (28) in the LHS of (37), and expanding
using the binomial theorem, we get that

1 27 1 k
hjpa = 1/0 —v‘;{kcos(Qs)psin(Qs)qi (p)ds

Q%
1 [2m -1 -1 2 k._l
v [ M}a—n%smMchw@ﬂ%<{J@
0 1,54 pJ
p;t o F i i le
4 QP; u! k_l(_l)p sin(2s)Pi cos(2s)d i) ds
0 i
1o a1 2 (K G i si ks
. L o - cos(2s)Pi SIH(QS)qj L) U cos(2s)Pi sin(Qs)® ;) ds
0 P; -
1 2m 1 k
2 _ J p. M q
h2 g = Qq/o V3 cos(§2s)Pi sin(Q2s) <p>ds
27 _1 1 k_l
Jo pJ
27 -1 k'il
+Qp/ sm(Qb)pJ cos(Q2s)% ( ;) )db
0

1 1 k._l 2 1 /k?
+— / —v,kal cos(Q2s)P sin(Q2s)U < "_1) +v?k,1 cos(2s)Pi sin(Qs)% < J ) ds
Q% Jo 95 p; %5 p

J

Let g p(s) = cos(Qs)P sin(Qs) P for all p < k. Crucially, let us assume that v7,, vT), vjcfk are
all of the form

Ufk = Ergka aka,rgka,r(s)
’Ufk = ngka ﬂk?,rgka,r(s) (38)
U_;{k = ngkjl ’Yk‘ilA,rgk‘il,r(S)

Substituting,
1 27 k

Moo= e [ 3 atngalolang (o)) s
7 /0 r<k? p

—J

o, e bt k—l k!
+ QP; /0 Z et Ykl r le 2( )<p ) Z el it gkl als )( ) ) ds
j

<k1 r<k1

2 1
+%/ Z 51(1 r9Ktr gkl - ( p: ) Z /31(1 T gkl 1( )<ki) ) ds

r<k1 r<k1
L[ k
h?p q Qq /0 Z fijl.rgkjl.r(S)gkjl,pjl (S) <p) ds
r§l<j1
27 _ k—l k_]_
+Qp/ ' Z At r 9t gkl 1( )< > Z et ri gkl —1(8)( J ) ds
0 l‘<k1 pj I‘<k1 p

+

1 2 k-_l
) 1 r l 1 1 r 1 1 2 J ds
0% ./0 Z 5k 9k}, gk »( ( > Z ﬁk % gk (s )( P )

<k1 r<k1
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Now, let (f,g) = 2” f(s)g(s)ds denote the ¢y inner product. Then, we can rewrite the above
system as

k
h; Yt (Gt 1 (5), 9 ( )
ipa Qq <Zkl k; k; ki ,p( 5)) p
p; ! p; " kj_l p kj—1
+ QP (_1) J Z O‘kjl,r<gkjl, ) gkl,qu( )> p'_]_ + (_1) Z O‘kjl,r<gkj1¢r(5)vgkj1¢q(s)> p
I‘Skj1 J rgkjl
kit
Z Bk;’r<gkj1,r(s),gkj1,pj— 1(s)) ( ) Z 51{1 le )»gkjl,pjl(S)>< Jp >
I‘Skj1 r<k1
1 k
Bpa=ga 3 el o502 ()
rgkj1
_1 kJ_l k._l
+ QP | (— Z ak}, gkl (s), gkl,q 1(s)) 1)t (-1)P Z Oékjl,r<gkj1,r(5)vgk},qf1(5)> J
r<k! P; r<k! Y p
k1
Z 3k1 Clkl )7gkj1,p( < ) Z 51(1 (Ikl (s), f}kl,p 2(s )>< ) )
r<k1 r<k1 p

Now, we will add a few redundant constraints in the system. These are added to ensure that the
system has a nice matrix form; they are all of the type 0 = 0. To do this, we allow p > Oj_l, instead
of p > 0. Note thatif p; = —1, then ¢; = k; + 1 since p + q = k. Again, we follow the convention
that (?) =0ifi < 0ori > n,as well as gix p, = 0if p is not between 0 and k, both inclusive. Also
define hl = h2 _ = 0 if either p or q are not between 0 and k. Thus, all the new constraints added
are indeed of the type 0=0.

After these modifications, the system obtained has one constraint corresponding to h;q for each
0<qg< kj1 (or equivalently Oj_1 <p<k),p+q=k,t=1,2 with variables e s /Bkjl,rv Mk r
for0 <r < kjl. Further, let

njx = |Dx| Dy={r:0<r<k}

We will write this system in a matrix form, given by a matrix A;y of dimension 21 11 X 3n; y1
k] 7.k

such that
@ 1
h:
vy J

Here { = (&1 ;) is the vector of dimension n; 1 for £ € {«, 3,v}. For notational convenience,
we will fix j and k and denote A = Ajx. We will index rows of A by (p, t) and columns by (r, £)
where r, pj1 € ij, t € {1,2}, € € {«, B,~}. Further, we will denote by A; ¢ the submatrix of A
corresponding to the rows (p, t) and columns (r, £), thatis, A, ¢(p,r) = A((p, ), (r,§)). Matrix A

has only 2n; x non-trivial rows, namely the rows which correspond to p such that p > 0. Hence to
show that the system above has a solution, it suffices to prove that matrix A has rank 2n; k.

Ajx

Define X, Y to be njyx x n;y matrices with rows and columns indexed by elements of Dy such that

X(p, I‘) = <gkj1,w gkjl,pjl>

1
Y(p,r) = (-1)% <9k},ragkj1,k;—pj1>

Now, assign 0 = 1, Q; = J{/[ _11 for j > 1. For this choice of {};’s, it is shown in Turaev [2002]

that the functions gy s for 0 <'s < k are linearly independent. It follows from this that the matrices
1

X and Y are full rank. Let P be the permutation matrix that takes row r of this matrix to row r;
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unless 7; = k;, in which case it takes row r to s where s; = 7; for all + # j and s; = —1. Thus, for
any matrix M, PM(p,r) = M(pj_l7 r) when p; # —1, and PM (p,r) = M(p’,r) where p; = p;
for i # j and p} = k; if p; = —1. In particular,

PX(p,I‘) = X(pj_l,r) = <gkj1,rvgkj1,p>

PY(p,I’) = Y(pj_lvr) = (_1)p<gkj1,rvgkj1,kj1—p>
when p > 0. Define n;y X n; i diagonal matrices D1, Dy, D3 such that

Di(p.p) = (kJ:) Dy(p,p) = (ij) Ds(p.p) = <k>

; p

for ()j_1 < p < k. Recalling that g = k — p, we see that

-1 k-_l -1 -1 k._l
Apo(p,r) = QP <pJ__1> (—=1)P <9kjl,r79kj1,kj1_pj—1> + QP; ( i) )(_1)p<gkj1,ragkjl,kj1—pjl>
j

—1 —1
= ij Dg(p,p)PZY(p, 1') - ij Dl(pvp)y(pv I')
= Ayo = QP (DyP?— Dy)Y

k!

1 1 (k!
A0 = g (91) g vtig )~ g (5 ) i)
J

1 1
= ga D2, P)P?X(p,x) = 9o Di(p )X (P.1)

1
Qa

1 /k

Aop0) = = () g i)
1

= ———=Ds3(p,p)PX(p,1)

1
Q%

= A1 g =—(DyP? — D)X

1
= Al,a/ = _EDBPX
J

k! 1 k!
Az o(p,r) = QP <p}1> (—=1)%s <gkj1,r7gkj1,kj1—p> + Qp( i) >(_1)p<gkj1,ragkj1,kj1—pj2>
= —QPD,(p,p)PY (p,r) + P D;(p,p)P 'Y (p,r)
= Ago = OP(—DyP + D P7Y)Y

1 _1
A _ 1 kj 1 kj
2,5(p7r) = _qu—l pj_l <gkj1,r7 gkjl,p> + qu—l p <gkj1,r7 gkjlfpjz>

1 1 _
= a7 PP R)PX(Pr) + o Di(p )P 'X(p,r)

J

1
= A2>5 = qul (—DQP + D1P_1)X

J

1 [k
A2,'y(p7 I') = Qq( ><gk},ragkj1,p}>

p
1
= qq D3P, P)X(p,1)
1
# AQ»’Y = ngX
For the above equations to go through as is, we need to check the case when p; = —1, since

definitions of PX and PY are different for this case. But, in this case, D1 (p,p) = D2(p,p) =0,
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and hence the equations hold. Similarly, we need to check the case p; = 0 for blocks A; ,, and A; 3,
but again, Dy (p, p) = 0 and hence the equations hold. Thus, we can write A as

—1
o 8
[I OH DoP? — D, DoP? — D, —DgP} T O B P
(o]
To show that A has rank 2n; x, it suffices to show that the matrix
B D,P?2 — D, —D3P
- —DQP + Dlp_l D3

has rank 27 x. Let us index rows of B using (p, s) and columns using (p, t) for s,¢ € {1, 2}. Since
P is a permutation matrix, post multiplying by P takes column r of this matrix to column ry 1, where
the indices cycle whenever they are out of bounds. More specifically,

MP(p,r) = P"'MT(r,p) = MT(rj,p) = M(p,rj).
Hence, for a fixed row (p. 1) the non-zero entries in B are in columns (p; -2.1),(p, 1), (pj_l, 2).
Similarly, non-zero entries in the row (p, 2) are in columns (pJ . 1), (pJ , 1), (p,2). Observe that
TOWs (pjl, 1) and (p, 2) have non-zero entries in the same columns. This gives us a procedure to

convert this matrix into a lower triangular matrix using row operations, where indices are ordered
using any order < that respects

L. (p7t) <R (q7 t) lfpj < q;
2. (p,1) <gr (q,2) foralle_1 <p,q<k

In particular, any lexicographical ordering with highest priority to the j** coordinate works.

Note that only upper triangular non-zero entries using any such ordering are of the type
((pjl, 1), (p,2)). Now, we eliminate these using the following row operations:

R(pj,1) « R(pj,1) + CpR(p,2))
forall psuchthat 0 < p < kj_l. Here

o BED.e2) G () k-
" B((p,2).(p,2) © ) ol

Note that after this set of operations, B((pjl, 1), (p,2)) < 0. On the other hand,

B((p. 1) (6} 1)) = B((p}. 1) (0} 1)+ 5.2, (6], 1)

~(5)-a()

N 1 1

P Dj + p

(%) (55 3h)
P7+1( )750

The only non-zero entries in the upper triangle after this operation corresponds to positions
((pjl, 1), (p,2)), for Oj_1 <p< kj_l, such that p; = —1. To eliminate these, we perform the
following row operations:

R(pj,1) < R(p,2)
for all Oj_1 <p< kj_1 such that p; = —1. Hence,

B((p.2), (p,2)) + B((p},1), (p.2)) = (k> £0

22



Note that R(p,2) = 0 since this row corresponds to a dummy constraint. Also, the other two
non-zero entries in R(p}, 1) are in the first half, and hence this does not create any upper triangular
entries. Hence, this matrix is in fact lower triangular, in the given ordering <p of indices.

After the operations, among the diagonal terms, B((p, 2), (p,2)) # 0 for Oj_1 < p < k. Also,
B((p,1),(p,1)) # 0 for Oj1 < p < k. Therefore, the total number of non-zero diagonal entries is
ki+1 k-1
i =2n;
n“‘( kj i kj ) ok
This proves that the matrix has rank 2n; i, which is the same as the number of non-trivial rows,

and hence the system has a solution for any 71, r5. Consequently, we can always find polynomial
functions J, F’, G as required.

C Proof of Lemma 5

Proof. From Lemma 2, it suffices to focus on H being a polynomial. We break the time from ¢ to
0 for which we want to flow the ODE given by (14) into (n + 1) small chunks of length 7, i.e., let
T = ¢/(n + 1). Further, let A; = T{;,,_;11)7,(n—s)r- Then, the time-¢ flow map can be write as the
composition of n + 1 maps, that is
Too=Trp0 0Ty 4p—r=A,0---04

Let Co = Ty 4(C). Let Cy, . .., Cyy1 be a sequence of compact sets such that A;(C;) is in the interior
of C;1.1; by choosing them small enough, we can make C,, 1 an arbitrary compact set containing C in
its interior. Below, we treat Ay, ..., A,, (and their approximations) as maps Cy — C; — - -+ — Cp41,
and when we take the C'' norm, we do it on the appropriate compact set. For small enough 7, the
n-discretized maps will stay inside the C;.

Let S; denote the time-27 flow map obtained by running the ODE system (12) from Lemma 3 above
which approximates the map 1{;,—i41)r,(n—i)r = A;. Further, let S denote the map obtained by
discretizing the ODE system as in (13) with step size . Then, we have that for each ¢, as n — 0,

57 — Ailler < |1S; = Si+Si — Aiflen
< IS = Siller + [1Si — Aillen

< 0(n) +O(r%) (by Lemmas 3 and 4)
We choose i = 72. Using the definition of C'! norm, this implies that
187 — Aill = O(7%) |DS; — DA;|| = O(+?),
where ||-|| denotes L* norm on C;; for matrix-valued functions M (x) on C,, uM I =

sup,cc, [|M(x)||5, where ||-||, denotes spectral norm. Again, using the definition of the C* norm,
|A,0---0Ag—S), 005y
<[ Ano--0Ag— S, 008+ [D(Ano-0dg) —D(S, 005

We will bound each term individually. For the first term, note that

[An o 0dy— 8,008

<||A,o0---0Aj0Ay—A,0--0A 0S|+ |A0---0A108) =5 0o---08] 0S|

(by triangle inequality)

=|Ty—r00 Ao —Tp—r o Si|| + |40 0A108)— S 008 0S|

< | DTy—rollllSo — Aoll + [[An 0+ -0 Ay 0 S = S} 0+ 0.5] o S|

<O(m?) + [[An o0 A108y— 800008 oSy (39)
Observe that

sup|[ A, o+ 0 Ay 0 Sy(a) — Sy 0 -0 5} 0 Sh(a)]|

= sup [[Ano---0dAi(y) =S, 008yl
y=55(z)
<supl|Apo---0di(y) = S0 0 Si(y)
y

= [[Ano--0Ai(y) = S0 0S| (40)
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Using (40), (39), and induction, we get that
[Ap 0 04y =S 008 <O(nt?)

Now, we bound the derivatives:
[D(Ap o0 Ag) = D(S},0---0 Sy
<|[D(Apo0---0A;0Ay) —D(A,o0---0A; 0S5
+||D(A,0---0A;08))—D(S,,0---08] 0S| (by triangle inequality)
= sup|| DTy 7.0/ 4y (2) DAo(x) — DTy 7.0l s3(2)DSp ()|
+ sup||D(A,, 0 -0 A1)|g () DSj(z) = D(S;, 0 - 0.87)|s5(2)DSp) ()| (by chain rule)
< sup||DTy—r,0] Ay (2) DAo(x) = DTy—r.0|s5(2) DAo(@)]]
+ sup|| DTy—r 0l 5 (x) DAo(2) = DTy—r 0l 55(x) DSp (@) | (by triangle inequality)
xT

+ [ DSHl[[[D(An o0 A1) = D(S;, 0+ 0 S 1)
< sup||[DTy—r0 4o (x) — DLo—r0ls5() Il DAol|

+ sup|| DTy —r0| 55 () [ DAo — DSo|
+IDSG|[|D(A 0+ -0 Ar) = D(S;,0---0 87|

< |D*Ty-r0ll1S5 — AG D Aol + | DTy-r 0]l DAo — DSl
+IDSHIID(Ap 0+ -0 Ar) — D(Sy, 0+ 0 S)|

< 0(r2) + (IIDAo]l +0(r%)) [D(An 00 4) = D(S}, 00 )] 42)

where, for a 3-tensor 7', we define || 77|| = sup = |7 ul|2, where || Tul|, is the spectral norm of the
matrix 7 u, and we define || D*Ty_, o|| = sup, | D?*Ty—.0(x)]|. In the last step, we use the fact that

| DTs.4||, || D?Ts ;|| are bounded for all s, > 0; this follows from Lemma 9 below. (Alternatively,
note that || DT ;|| can also be more directly bounded by Theorem 6.)

In the above, (41) follows using an argument similar to (40), (42) follows since ||[DAy — DS}|| =
O(7?). Further, differentiating (46), we get

DAy =1+ 7D F(z,0,t)+ O(7?)
where F’ denotes the defining equation of the ODE system in (14). Therefore, we get
|DAo|| <1+ 7L+ O(r?)

where L is the upper bound on || D f|| over all the appropriate compact sets. Using this bound and
induction, we get that

|[D(Ap0---0Ag) = D(S, 0---08)| < Onr?)(1 + 7L+ O(r?))" = O(nr?e™™t)
for small enough 7. Substituting nT = ¢, we get the overall C'! bound of

| An o0 dg = Sy o0 Shller = O(gredt).

Now, we can choose 7 small enough so that the two maps are €1-close, finishing the proof.

Concretely, we can write each .S, as a composition of affine-coupling maps (which constitute the
f1,--., fn in the lemma statement). In this manner, we can compose these compositions of affine
coupling maps over each 7-sized chunk of time so as to get a map which is overall close to the
required flow map. O

Lemma 9. Consider the ODE L x(t) = F(x(t).t) for F(,t) that is C* in v € R? and continuous
int. Let C be a compact set and suppose solutions exist for any (x(0),v(0)) € C up to time T'. Let
T ¢ be the flow map from time s to time t, for any 0 < s,t <T. Then for any 0 < r < {, D"T, , is
bounded on Ts(C).
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Proof. Letd;,...; = _87T. Using the chain rule as in Lemma 12, we find by induction that
1 Oz iy +++0T4,

d
%ail---i,« (Tt(‘r)) = ZGZF(x(t)7 t)éllz,-(Tt(x)l) + G(DF v 7DTF7 D,I;f? BRI 7D7}_1Tt)'

43)

for some polynomial G. For r = 1, the differential equation is given by Lemma 12. By a Gronwall
argument, a bound on DF gives an upper and lower bound on the singular values of DT} as in (23).
We use induction on r; for r > 1, let v(t) be equal to (9;,...;,.(T3(2)))i, ..., written as one large
vector. By the chain rule and (43),

37 IO < ool A1 +8) < (omms(d) + 3 ) I0OI + 5 101

for some A, b depending on DF, ..., D"F, DTy, ..., D" 'T}, where o, denotes the maximum
singular value and |v| denotes entrywise absolute value. Grbnwall’s inequality (Lemma 15) applied to
lu(t)]|? then gives bounds on ||v(t)||* and hence |L‘li iv-wvin (Ty(x))]. This shows D" T, , is bounded
when s < ¢ (by starting the flow at time s).

r

When s > ¢, note that the computation of the rth derivative of an inverse map involves up-to-r
derivatives of the forward map, and inverses of the first derivative. As we have a lower bound on the
singular value of DF, this implies that DT ; is bounded. ]

D Technical Tools

D.1 Proof of Lemma 4

We consider a more general ODE than the specific one in (12), of the form

{Gtalt) = 1.0 )
4 (0(0) = g(a(t), v(t), 1)
where f, g are O functions in x, v, t. Given a compact set C, suppose that the solutions are well-

defined for any (2(0),v(0)) € C up to time T'. Consider discretizing these ODEs into steps of size 7,
as follows:

@I(Xz) = Xit1 =X +nf(Xy, Vi, i) 45)
TP (Vi) = Vigr = Vi +n9(X3, Vi, t)
where t; = in). We call this the alternating Euler update. The actual flow maps are given by
TE(z;) = wip1 = x; +nf(zi, 05, b fl(lﬂ)n in 2" (s) ds dt “6)
Tz'”(v') = Vi1 =V T 779 Zi, Vit z f;(;-i_l)n f“] S) dsdt

We bound the local truncation error. This consists of two parts. First, we have the integral terms
in (46):
(i+1)n t 2
s)dsdt
[t | <37 s | “

1
177 < 2
f(lﬂ)n fm (s)dsdt
Second we bound the error from using v;11 := v; + ng(x;, vy, t;) instead of v; in the x update,

s€[0,t;]

||7][ (xza'Uz +ng($zavut ) t) f(gjuvzv )]” < H / D, f L, Vg +Sg($zavut ) t; )g(xiavi»ti)ds
<n mce,tXIIDUfII max||g]| - (48)

where D, f(z,v,t) denotes the Jacobian in the v variables (rather than the directional derivative),
and where we define

C' = {(w, v+ sg(x,v,1),1) : (2,v) = Ty(wo, vo) for some (zo,v0) € C,0 < s < T},
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which ensures that it contains (x;, v; + sg(x;, v, t;), ;) and (x;, v;, ;). The local truncation error is
then at most the sum of (47) and (48).

f

Supposing that [g] is L-Lipschitz in (x,v) € R?? for each ¢, we obtain by a standard argument

(similar to the proof for the usual Euler’s method, see e.g., [Ascher and Greif, 2011, §16.2]) that the
global error at any step is bounded by
D e

ERH

In the case when ['f } is not globally Lipschitz, we show that we can restrict the argument to a

elti 1 1
< S (e 0wl + 3 max

compact set on which it is Lipschitz. Let C" be a compact set which contains {(z,v,t) : (z,v) =
T, (o, vo) for some (o, o) € C,0 < s < T'} in its interior. Apply the argument to f and § which
are defined to be equal to f, g on C”, and are globally Lipschitz. Then the error bound applies to the
system defined by f , . Hence, for small enough step size, the trajectory of the discretization stays
inside C”, and is the same as that for the system defined by f, g. Then (49) holds for small enough 7
and L equal to the Lipschitz constant in (z,v) on C”.

To get a bound in C'! topology, we need to bound the derivatives of these maps as well. Let T 4(x, v)
denote the flow map of system (44). Let h(x,v,t) = (f(z,v,t),g(z,v,t)). Now, consider the
system of ODEs

@(®) = f(a(0),v(t). 1)

2 0(t)) = g(a(t) (), )

$a(0) = D (010000 10 (50)
$(3(0) = Dwyg(a(t). (0.0 517

where «f(t),3(t) are d x 2d matrices. Note that setting [g ] = Izq and [gg;

D (2,5)T0,+(x(0),v(0)) satisfies (50) by Lemma 12.

] _

Now we claim that applying the alternating Euler update to (x, @), (v, 8), the resulting («, ;) is
exactly the Jacobian of the flow map that arises from alternating Euler applied to x, v. This means
that we can bound the errors for «, 5 using the bound for the alternating Euler method.

The claim follows from noting that the alternating Euler update on «, 3 is
Qj+1 = (Id 0) + D(m v)f(xzavz-i-l» ) [6 +1:|

/31+1 - (O Id) +D(1 u)f(*Lw Vg, z) |:,8,:|

which is the same recurrence that is obtained from differentiating X ;, V;1; in (45) with respect to
Xo, Vo, and using the chain rule.

Thus we can apply (49) to get a bound for the Jacobians of the flow map. The constants in the
O(n) bound depend on up to the second derivatives of the z, v, «, 3 for the true solution, Lipschitz

constants for [ch ] ,D [g ] (on a suitable compact set), and bounds for D,, f, g, Dy, D (4 v) f5 D(2,0)9

(on a suitable compact set).

D.2 Wasserstein bounds

Lemma 10. Given two distributions p, q and a function g with Lipschitz constant L = Lip(g),

Wi(g4p, 949) < LWi(p, q)
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Proof. Let e > 0. Then there exists a coupling (x, t) ~ ~ such that

/III —yll2dy(z,y) < Wi(p,q) + ¢

Consider the coupling (', y') given by (2/,y') = (g9(x), g(y)) where (x,y) ~ ~. Then

IVﬂg#ng#q)S!/ﬂgwﬂ—wﬂyﬂhdvuaw

SLm@yﬂu—MMWaw

< LWi(p,q) + Le.
Since this holds for all € > 0, we get that

Wi(g#p, 949) < LWi(p, q)
O

Lemma 11. Given two functions f,g : R? — R that are uniformly e, -close over a compact set C
in C* topology, and a probability distribution p,

Wi(f(@le); 9#(ple)) < e

Proof. Consider the coupling -y, where a sample (x,y) ~ =y is generated as follows: first, we sample
2 ~ ple, and then compute x = f(z), y = g(z). By definition of the pushforward, the marginals of
x and y are fu(p|c) and g4 (p|c) respectively. However, we are given that for this v, ||z — y|| < €
uniformly. Thus, we can conclude that

Wil 0lo)os0le) < [ e =sladriay)

S/ erdy(z,y) =€
R4 xRd

D.3 Proof of Lemma 6

Proof. Fix any R > 0, and set C = B(0, R). Consider the coupling (X,Y’) ~ ~, where a sample
(X,Y) is generated as follows: we first sample X ~ p* = N(0,154). If X € B(0, R), then we set
Y = X. Else, we draw Y from p*|¢. Clearly, the marginal of v on X is p. Furthermore, since p* and
p*|c are proportional within C, the marginal of y on Y is p*|¢. Then, we have that

Wi, p'le) < / lz — ylidy

l;JwAﬁm§+/‘ e - yldy
R24\CxC
=/‘ e — yldy

R24\CxC
s/ (1] + lyl)dy

]R“\CXC
s/‘ (2]l + R)dv

R24\CxC
s/’ (2]l + R)dr

R24\CxC
= [ Q)+ By

]RQd

Izl

< 2z || d / zlle” 2 dx
Jo 2t = = [ e
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llx))? .
Now, note that [p., [lz[|e” 2 da < co. Hence, by the Dominated Convergence Theorem,

lz)?
lim lz]le” 2 dz = 0.
R—o0 JR2d\ B(0,R)

Thus, given any J > 0, we can choose R large enough so that the integral above is smaller than 9,
which concludes the proof. O

D.4 Derivatives of flow maps

We state and prove a technical lemma about the ODE that the derivative of a flow map satisfies.
Lemma 12. Suppose x; = x(t) satisfies the ODE

&= F(x,t)

with flow map T'(z,t) : R x R — R". Suppose a(t) be the derivative of the map x — T'(x,t) at
X0, then «(t) satisfies
& = DF(z,t)c

with «(0) = L

Proof. Let Ti(xz) = T'(x,t). Then T; satisfies

Ti(zo) = /: F(zs,s)ds.

Differentiating, we get
t
a(t):DTt(xo):/ D(F(xy,5)) ds
0
t
=/ DF(xg,8)DTs(x0)ds by chain rule

0
:/ DF(xg, s)a(s) ds.
0

Now, looking at the derivative with respect to ¢, we get
& = DF(x4,t)a,

which is the required result. O

D.5 Solving Perturbed ODEs

In this section, we state a result about finding approximate solutions of perturbed differential equations.
Consider the ODE having the following general form:

&= Az + eg(x,t)

The reason we are concerned with this ODE is that the ODE given by Equation (12) has precisely this
I _ 0 Iq N F(v,t) Oz
form, namely with x = [v} LA= [_diag(QQ) 0] and eg(z,t) = —7 T(a,t) + Gz, 1) O v|"

Let 7% : RxR™ — R"™ be the time ¢ flow map for this ODE. We will find a flow map 7% : R x R" —
R"™ such that the maps T} defined by T} (x) = T*(t, x) and the map T}/ defined by T/ (y) = TY(t, y)
are uniformly e-close over C in C” topology for all 0 < ¢ < 2. That is,

sup || T (w) = T¢ ()| + | DT (2) — DT (@)l + - + | D"T{ () = D"T (@)

is small, for all ¢ € [0, 27]. Here D" denotes the r-th derivative, and the norms are defined inductively
as follows: for a r-tensor 7, we let || T|| = sup, =y ||7ul[; here Twis a (r — 1)-tensor. (The choice
of norm is not important; we choose this for convenience.)
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Lemma 13. Consider the ODE
D aft) = Falt), 1)+ Cat), 1) 51)

where 2 [0, tmax] — R?, F,G : R" x R — R", and F(z,t), G(x,t) are C*, and F is L-Lipschitz.
Let C be a compact set, and suppose that for all xo € C, solutions to (51) with x(0) = x exist for
0 <t < tmax and € = 0. Then there exists € such that solutions to (51) with £(0) = xq exist for
0<t<tmaxand 0 < e < €.

Moreover, letting x'°)(t) be the solution with given €, we have that as € — 0, ||CL‘(€)(t) —zO()]| =

O(e€), where the constants in the O(-) depend only on L and maxo<i<t,,.. zocC HG(x(O) (t).t)| (the
maximum of G on the € = 0 trajectories).

Proof. LetT¢(t, xo) be the flow map of (51). Let K = T%(C x [0, tmax]) be the image of C x [0, £ pax]
under the flow map T°. Since F' is C*, T? is C'', which implies that K is bounded. Fix some €5 > 0.
Let B(K,r) denote the set

B(K,7) = {(z,t) € R" x [0, tyax] : d(K,2) <7}
Let Ky = B(K, €2). Note that since K is compact, so is Ko. Let

Mzmax{ swp  [F@.t)],  sup ||G<x,t>||}
(z,t)

€2 % [0,tmax] (z,t) €2 X[0,tmax]
M is finite since K5 is compact and F, G are C'*.
Let h: R — R be a 1-Lipschitz C! function such that
hz) =axif || <M
|h(x)| < 2M for all .

Let iy, : R™ — R” be defined as h,(z) = ”?T”h(HxH) Then hy, () is also C! and is the identity
function on B(0, M). Let Fy = h,, o F and let G; = h,, o F. Then Fy, G are C*! functions such
that | F ||, ||G1|| < 2M. Further, F} is L-Lipschitz. Now, we look at the ODE

%x(t) = Fi(x(t),t) + eG1(z(t), 1) (52)

Since Fy, G, are C', note that the function Hi(x,¢,t) = Fy(z,t) + €Gy(x,t) is C' in z,t, €.
Therefore, using the existence theorem for parametric ODEs (Theorem 1.2, Chicone [2006]), there is
a €1,t1 > 0 such that solutions xf)(t) to (52) exist for all g € C, e < €1 and ¢t < t;. Further, the
extensibility result for the ODEs (Theorem 1.4, Chicone [2006]) states that if ¢; is largest such value

for which such solutions exist, then there exists a 2y € C and € < ¢; such that lim;_,, ||:L‘(1€) )] = oo.

Now, we will bound ||z{? — 2{?|| for ¢ < #,. Define o = 2" — 2. Then a(#) satisfies

Salt) = B (0,0 - R (0,6 - G (0),1)

Therefore,
d d
Fa1? < 2| Fa)|
< 2@ (),1) = Fa(@(?(0),1) = eGi(2) (1), D)
< 2la(®)l (Lla(t)]| + 26M)
< 2L)a()|” + teMa(s)|
= L)) < 5l Ll < La()] + 21

Now, Gronwall’s inequality (Lemma 15) gives us the bound

a(t)|| < 2etMert < et o MeFtmax = O(e) (53)
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Since tmayx, L, M are fixed, we can choose €y such that ey < €1 and 2eptmax M e tmax < €5, which
ensure that for all zyp € C,e < € and ¢ < min(¢1, tmax ), the point a:le) (t) is in the interior of K.
Therefore, if ¢1 < tax then limy_, ||a:§5) ()] € Kq, which contradicts the extensibility result. Thus,
t1 > tmax, and hence flow maps for (52) exists forall 0 < e < ¢pand 0 < ¢ < tyax.

Now, we end with the remark that since F; = F and G; = G in Ko, the flow map of (52) is a
flow map for (51) inside K5, and therefore, solutions to (51) exist for all zp € C,0 < € < ¢ and
0 <t <tmax

Lastly, we will comment on value of M. Let G be L;-Lipschitz on Ko, and let

M = max  ||G(z©(t), )|

0<t<tmax,r0€C

Then M < M’ + eqL;. Therefore, we can just choose e small enough so that M < 2M’ + 1, which
enforces the constants in O(-) notation to depend only on L, M’ and ¢, ..

O

Lemma 14. Consider the ODE’s
d

%x
“wolt) = Flyo(t),1)

%y(t) = F(y(t),t) + eG(yo(t), 1)

such F,G : R" x R — R" are in C"*'. Let C C R" be a compact set, and suppose that
solutions to (54) exist for all xo € C. Let T*(xq), TV (zq), and TV (xo) be the time t,,x-flow map
corresponding to this ODE for initial values x(t) = yo(t) = y(t) = .

(t) = F(x(t), 1) + eG(x(1), 1) (54)

Then as € — 0, the maps T* and T} are O(€?) uniformly close over C in C" topology, for all t €
[0, tiax). The constants in the O(-) depend on maxXo< k<r+1,20€C,0<t<tmax HD’“F(@", ) z=yo (1) H (the
first v+1 derivatives of F' on the yo-trajectories) and maxo<<r.z,eC,0<t<t HDkG(fL‘, )| w=yo(t) H
(the first v derivatives of G on the yg-trajectories).

max

Proof. Let F(x,t) = F(x,t) + eG(x,t), and let T (z9) denote the flow map of (54) starting at xg.
From (43), there is a polynomial P = P;, ;. such that

d

ad

PR

d
T (ro) = Y 0iFe(x(t),4)0;,...i, Tf; + P(DF..... . D"F. DI}, ... D""'Tf) (55)
=1

On the other hand, applying (43) to y, gives

d

d
aail...ithyO(mo) = 0iF(yo(t),t)0s,..., T + P(DF,...,D"F, DT, ..., D" 'T}")
=1

We will now show that these two trajectories are O(e) uniformly close by induction on 7. Note that
the base case (r = 0) is proved in Lemma 13. We will first show that

|P(DF,,...,D"F.,DT?,..., D" 'T7) — P(DF,...,D"F,DTY,..., D" 'T?)|| = O(¢)

Since P is a fixed polynomial that depends on i1, . . ., %,, to show the above, we only need to show
that the coordinates are O(¢) close, for small enough e.

| DXEL(w(t),t) — DEF(yo (1), ]| < |IDFFL(a(t), 1) — DYFa(t), D] + | D Fa(t), ) — DF(yo(t). 1)

< €| D*G(x(t). )] + () = yo ()| (2Nk41 + 1)
< O(€(2Mk + 2Ngy1 + 2))

where  Nji1 = SUD,yec,0<t <t [P T E (2, ) lomyoy[| - and M, =
SUD,oec.0< i<t ID¥G (%, 8)|a=yow |- The second inequality follows since the base case
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(Lemma 13) implies that ||z(t) — yo(t)]| = O(e), and since D*T1F is continuous, it follows
that for small enough ¢, | D*'F|, || < 2Nj.1 + 1, for all z such that ||z — yo(t)|| = O(e).
Similarly, note that for small enough e, || D*G (z(t),t)|| < 2M}, + 1, since G is C*. Therefore,

|D*F (z(t),t) — D*F(yo(t),t)|| = O(€), where constants in O(-) depend M}, and Ny, .
To simplify notation, let al(t) = £9;,..;, (T — T}"). Then,
d d Yo
aa(t) = aal’l"'zr (Ty —17°)
d
= 0 Fe(x(t),1)0h,..., T Za F(yo(t),1)0,...q, T + O(e)
i=1
d
=Y 0iF(x(t), )00, (T — TY) + Z (9 F.( — 0iF (yo(t), 1)) 0y, TYS + O(e)
i=1

= DFc(x(t), )0, i, (T} = T{) + (DFe( ( );t) = DF(yo(t),1))0s,..., T + O(e)
= DF(x(t), t)o(t) + (DF (x(t), t) = DF(yo(t),t) + €G(x(t), 1))0s,...;, T, + O(c)

= §£Ilall2 < IDFe(x(t). Ol llel* + O(e(Na + Mo)) (15,0, T/ || + O(e)

= %Ilall < [[DF((t), )|l llall + O(e)
< (2N, + Dlfall + 0(¢)
Now, Gronwall’s inequality (Lemma 15) gives us the bound,
la@)] < tmaxeNltmaxO(e) =0(¢)
The constants in the last O(-) notation depend on ¢y, N for 0 < k < r+41and My for0 < k < r.
This tells us that

1T = T¢°llor = O(e) (56)
Now, note that 7}/ satisfies
d
7)) = F(y(0),1) +eG(y(2),1) + e(Gyo(t), 1) = G(y(t).1))
d

TY(®) = F(y(#),t) + eGy(t), 1) + € H(y(t), 1)

where H(y,t) = =(G(yo(t),t) — G(y(t),t)). Consider the system of ODEs

=
Ly(t) = Fly(t). 1)+ 1H((0),1) 57)

Note that when v = 0, 7} is the flow map for this system, and when v = €2, Tty is the flow map for
this system. Therefore, applying (56) for the system (57), we get

|17 = T¥ller = O(7) = O(€?)

where the constants in O(-) notation depend on SUDP<y<yyoec.0<t<tmn. D7 Fe(z(t),1)]]
which is bounded by maxo<ip<;(2Np41 + 1) for small € and M| =
SUDg< k< w0 cC.0<t<tmns |1 DT H (2(t), 1)]]. Using the definition of H,

|D*H(@(), D) = - | D*Gyo(t),£) — D*C(a(t), )
< —lyo(t) = z(O)[[(2Mj41 + 1)

-0(e) - 2Mp41 +1) =0(1)

A | =™

where the constant in the O(-) depends on My, ..., M, 1 and Ny,..., N,.;1. This proves the
dependence in O(+) notation as stated in the statement, completing the proof. O
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Corollary 1. Consider the ODE
&= Ax + eg(z,t)

such that ||A|| = 1 and g has bounded (r 4 1)*" derivatives on a compact set C. Let T be the flow
map corresponding to this ODE. For fixed z, let yg, y1 be functions satisfying

Yo = Ayo

Y1 = Ayr + g(yo(t), 1)

such that y9(0) = zo and y1(0) = 0. Consider the flow map 7% : R x R™ such that TY (¢, zg) =
Yo(t) + ey1(t). Then, the maps T and T} are O(e?) uniformly close over C in C" topology, for all
t € [0, 27]. The constants in the O(-) depend on || A|| and the first r derivatives of g on the trajectories
z(t) = exg,z0 € C.

This follows directly from Lemma 14, after noting y = Ayo+eAyr+eg(yo(t), t) = Ay+eg(yo(t),t).
Note that F'(x) = Az is a linear function, so derivatives of F' are bounded, and the yo trajectories
can be computed easily.

D.6 Gronwall lemma

The following lemma is very useful for bounding the growth of solutions, or errors from perturbations
to ODE’s.

Lemma 15 (Gronwall). Ifz(t) is differentiable on t € [0, tmax] and satisfies the differential inequality

d
— <
dtr(t) < az(t) + b,

then
x(t) < (bt + x(0))e
Sorallt € [0, tmax)-
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