On the Definition and Computation of Causal Treewidth

Yizuo Chen!

Adnan Darwiche!

!Computer Science Department, University of California, Los Angeles, USA

Abstract

Causal treewidth is a recently introduced notion
allowing one to speed up Bayesian network infer-
ence and to bound its complexity in the presence
of functional dependencies (causal mechanisms)
whose identities are unknown. Causal treewidth
is no greater than treewidth and can be bounded
even when treewidth is unbounded. The utility of
causal treewidth has been illustrated recently in the
context of causal inference and model-based su-
pervised learning. However, the current definition
of causal treewidth is descriptive rather than per-
spective, therefore limiting its full exploitation in
a practical setting. We provide an extensive study
of causal treewidth in this paper which moves us
closer to realizing the full computational potential
of this notion both theoretically and practically.

INTRODUCTION

Treewidth is one of the most influential notions for param-
eterizing the complexity of probabilistic inference. This
notion originated in the graph theory literature and can be
viewed as a measure of graph connectivity [Robertson and
Seymour, |1986]. It has also been used to parameterize the
complexity of many algorithmic tasks that transcend prob-
abilistic inference; see, e.g., [Bodlaender, 2006, Dechter]
2003||. For Bayesian networks, the time and space complex-
ity of computing marginals is bounded by O(n - exp(w))
where n is the number of nodes in the network and w is
its treewidth. For example, tree-structured networks have a
treewidth < 1 so treewidth allows us to show that inference
on such networks can be done in linear time and space.

Treewidth captures the structural aspects of a model and is
independent of its parameters. Hence, one can use treewidth
to provide guarantees on the complexity of inference with-
out needing to know the model parameters. In the first few

decades of research on Bayesian network inference, the
perception was that high treewidth is a barrier since all in-
fluential algorithms at that time, particularly the jointree
and variable elimination algorithms [Jensen et al.| [1990,
Zhang and Poole} (1996, |[Dechter, |1996], had a complexity
which was also lower bounded exponentially by treewidth.
Later developments showed that exploiting the parametric
structure of Bayesian networks can lead to tractable infer-
ence in some situations where the treewidth can be very
high; see, e.g., [Larkin and Dechter| 2003} |(Chavira and Dar{
wiche), 2005, |Chavira et al., 2006, |Chavira and Darwichel
2008]]. The parametric structure exploited was particularly
in the form of context-specific independence [Boutilier et al.,
1996] and logical constrains (i.e., parameters in {0, 1})[]

More recently, a new and more abstract type of parametric
structure has been identified and exploited computation-
ally: functional dependencies, also known as causal mecha-
nisms, which identities are unknown [Darwichel [2020]. In
a Bayesian network, a node is functionally determined by
its parents if fixing the state of these parents also fixes the
state of the node (that is, the node distribution is determin-
istic given any state of its parents). We often know that
a node is functionally determined by its parents but with-
out knowing the identity of the underlying function. This
is prominent, for example, in causal inference where one
typically has a causal graph in which every internal node
is assumed to be functionally determined by its parents yet
without knowing the specific functions that relate nodes to
their parents [Pearl, 2000]. Classical techniques for exploit-
ing parametric structure are not applicable in this case since

' Among the most effective approaches for exploiting para-
metric structure are the ones based on compiling Bayesian net-
works into tractable circuits [Darwichel [2003]]. These approaches
allow one to conduct inference in time linear in the circuit size
while yielding circuits whose size is not necessarily exponential in
treewidth—see [Darwichel [2021a]] for a recent survey on circuit
representations and [[Agrawal et al., [2021] for a recent empiri-
cal evaluation in which methods based on circuits ranked at the
forefront in terms of efficiency.

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<yizuo.chen@ucla.edu>?Subject=Your UAI 2022 paper
mailto:<darwiche@cs.ucla.edu>?Subject=Your UAI 2022 paper

these methods require knowledge of the specific model pa-
rameters which imply knowledge of the specific functions
that determine the values of internal nodes. This also arises
when learning the parameters of a Bayesian network from
data where we may have background knowledge to the ef-
fect that some nodes are functionally determined by their
parents but without knowing the specific functions as we are
trying to learn them; see, e.g., [Chen et al.| 2020]. Interest-
ingly enough, a recent finding showed that one can exploit
unknown causal mechanisms computationally, leading to
potentially exponential reduction in complexity [Darwiche,
2020]. This finding was based on two new theorems and
cast in the context of model-based supervised learning. It
particularly took the form of an algorithm that compiles
the structure of a Bayesian network into a tractable circuit
whose size is not necessarily exponential in treewidth. This
approach managed to efficiently compile circuits for net-
works with treewidth over 100 without needing to know the
network parameters, only that some nodes are functionally
determined by their parents. More recently, this finding was
cast in the context of causal inference while hinting that it
can lead to a new parameter for bounding complexity that
was called causal treewidth [Darwiche, [2021Db]].

Treewidth is classically defined for an undirected graph but
it can be extended to directed acyclic graphs (DAGs) by
computing the treewidth of the moralized DAG. This is an
undirected graph obtained from the DAG by connecting
every pair of parents by an edge and then removing the
directionality of edges; see, e.g., [Darwichel 2009, Ch 9].
Causal treewidth applies only to DAGs in which some nodes
are declared as being functional. If no nodes are functional,
then the causal treewidth reduces to treewidth. While [[Dar{
wiche| [2021b]| suggested this more refined notion of causal
treewidth, it did not provide an operational definition of
causal treewidth and therefore it did not specify a method
for computing it. Moreover, while [Darwiche, 2020] showed
that inference can be sped up, exponentially in some cases,
by exploiting unknown causal mechanisms, it did not fully
exploit the two new theorems that enabled these techniques.

Our goal in this paper is to first review the two key theorems
in [Darwiche}, 2020 that enabled the computational exploita-
tion of unknown causal mechanisms, and to then use them
as basis for formally defining the notion of causal treewidth
and how it can be computed. In the process of doing so, we
will prove some results about the algorithmic techniques
proposed in [Darwiche, [2020], showing that some are opti-
mal while others are not. In other words, we will show that
the algorithmic techniques proposed in [Darwiche, 2020]
do not fully exploit the two enabling theorems identified
in that work. Hence, the main contribution of this work is
that it brings us closer, both theoretically and practically,
towards the full exploitation of unknown causal mechanisms
during inference. At a more cognitive level, our contribution
may provide further hints as to why causal knowledge is so

fc(ABC)

el R N NN e N
e e Raad Iss]
I T
[N}
o =
R N R W
e R R ad Ivs]
e o e = | Q)

—O0O O~ O~ M~

(a) CPT for C (b) Mechanism for C

Figure 1: Two CPTs for variable C' with parents A, B. The second
CPT represents a mechanism for variable C'.

central to human reasoning [Pearl and Mackenziel 2018]] as
we provide a formal account of how causal knowledge, even
in this abstract form, can be quite useful computationally.

We start next with some further motivation, technical pre-
liminaries and a review of the key results in [[Darwiche,
2020]]. We then study two key ingredients which are needed
to formally define causal treewidth: jointree thinning and
machanism replication. We finally define causal treewidth
and present some experimental results that shed more light
on this notion and its underlying ingredients. Proofs of all
results can be found in the appendix.

MOTIVATION AND PRELIMINARIES

Variables are discrete and denoted by uppercase letters (e.g.,
X)) and their values are denoted by lowercase letters (e.g., x).
Sets of variables are denoted by boldface, uppercase letters
(e.g., X) and their instantiations are denoted by boldface,
lowercase letters (e.g., x). A factor f(X) is a mapping from
instantiations x to non-negative numbers. A Bayesian net-
work is a DAG G together with one conditional probability
table (CPT) for each node X and its parents P in the DAG. A
CPT specifies a conditional distribution Pr(X|P) and will
be represented by a factor f(XP) where f(zp) = Pr(z|p)
(hence,) f(xp) = 1). To indicate that factor f(XP) is
a CPT for variable X, we will usually notate it as f (X, P)
or fx(XP). Of particular interest are CPTs (factors) that
specify functions, also referred to as mechanisms.

Definition 1. A factor f(X,P) is a mechanism for X (or
X-mechanism) iff f(x,p) € {0,1} and }_, f(z,p) = 1.

A mechanism for variable X represents a function whose
inputs are parents P and whose output is X . Figure[T|depicts
two factors over binary variables { A, B, C'}. The factor in
Figure [Th is a CPT for variable C' but is not a mechanism.
The one in Figure[Tb is also a CPT for C but is a mechanism
which corresponds to the function C' = A & B.

The use of mechanisms is ubiquitous in causality [Pearl,
2000]. In this context, root nodes in the DAG are called
exogenous and internal nodes are called endogenous. A
common class of models known as functional Bayesian net-

A=0,
B=U;-A
C=U A

&
=

Figure 2: SCM with endogenous variables A, B, C' and exogenous
variables Uy, Usa. All variables are binary. The mechanisms for
endogenous variables are specified by structural equations.

works or Structural Causal Models (SCMs) assume that
the CPTs of all endogenous variables are mechanisms. Fig-
ure [2] depicts an example SCM where the mechanisms for
endogenous variables (A4, B, C') are specified using struc-
tural equations as is commonly done. For this model to
be complete, one also needs the CPTs for exogenous vari-
ables (Uy, Uy) which specify the distributions Pr(U;) and
Pr(Us), the only source of uncertainty in the model.

A classical setup in causal inference is to only have the graph
of an SCM while assuming that the mechanisms (structural
equations) are not known. In Figure [2] this would amount
to assuming that each endogenous variable (A4, B, C) is a
function of its parents, yet without knowing what these
functions are. For example, we may not know whether the
function for variable Cis C = Uy, @ Aor C = Uy + A
or C' = Us - A or something else (there are 16 possible
mechanisms for a binary variable with two binary parents).
This situation may also arise in non-causality contexts where
the assumption of unknown mechanisms can be viewed as
background knowledge; see, e.g., [Chen et al.,|2020].

In these situations, one typically has data in addition to the
graph of a Bayesian network and the goal is to perform
inference based on this available information; for example,
by first estimating model parameters as suggested in [Zaf{
falon et al., 2021}, Darwichel 2021bl |Chen et al., [2020]. This
requires inference algorithms whose complexity is indepen-
dent of the model parameters. Until relatively recently, the
best complexity one could attain in this case is exponential
in the graph treewidth. This complexity has been improved
exponentially though due to the results in [Darwiche, [2020]
and one goal of our work is to improve and further formalize
these recent advances using the notion of causal treewidthE]

COMPUTING MARGINALS

There are two operations on factors, multiplication and sum-
out, which allow us to define the computational problem

2A reviewer suggested using the term functional treewidth
instead of causal treewidth. Our choice for the latter term is moti-
vated by the emphasis we wish to place on exploiting “unknown”
functions which are prevalent in causal inference, in contrast to the
more common and informed exploitation of “known” functions.

whose complexity we wish to bound using causal treewidth.
The product of factors f(X) and ¢(Y) is another factor
h(Z), where Z = X UY and h(z) = f(x)g(y) for the
unique instantiations x and y that are compatible with in-
stantiation z. Summing-out variables Y C X from factor
f(X) yields another factor g(Z), where Z = X \ Y and
9(z) = 3_, f(yz). We will use 3y f to denote the result-

ing factor g. We will also use)7 f to denote summing
out all variables from factor f except for variables Z. That
is, for a factor f(X), we will write > 7 f to mean) +, f
where Y = X\ Z.

The joint distribution of a Bayesian network A

is the product of its CPTs. The network on
the right has CPTs fa(A), fg(AB), fc(AC), B C
fp(BCD)and fp(CE).Its joint distributionis ",
Pr(ABCDE) = fafsfcfpfr. Wecannow p E
compute the marginal over any variables by suming out
all other variables from the joint distribution. For exam-
ple, the marginal over variable D is the factor Pr(D) =
Yoapcefafsfcfpfe = Y0 fafsfofpfe. Itis this
computation of marginals that we will be bounding using
causal treewidth. We are particularly interested in comput-
ing marginals over families, where a family is a variable and
its parents, since these marginals form the basis of parame-
ter estimation using algorithms such as gradient descent and
EM,; see, e.g., [Darwichel 2009, Ch 17].

Definition 2. Consider a DAG G with nodes X1, ..., X,
and let P; be the parents of X;. Given a set of factors
f(XiPy) fori =1,... n, the marginals problem is to com-
pute the factor Y 5 [11—, f(X;P;) for each family F.

A factor f(X;P;) will be called a family factor. The
marginals problem does not place any restrictions on family
factors so it is quite general. When these factors are CPTs,
the marginals problem corresponds to the computation of
marginals in a Bayesian network.

As mentioned earlier, if the Bayesian network has n nodes
and treewidth w, marginals can be computed in O(n -
exp(w)) time and space. The simplest proof of this result is
based on the algorithm of variable elimination (VE) which
applies more generally to the problem in Definition2|[Zhang
and Poolel 1996, Dechter, |1996]]. VE is based on two theo-
rems, the first allows us to sum out variables in any order.

Theorem 1. > vy f=> x> v f=>v > x [

The second theorem allows us to pull out factors from sums.

Theorem 2. If variables X appear in factor f but not in

factor g, theny « f-9=9> x [-

Consider the factor) , 5 f(ACE)g(BCD). A direct
computation of this factor multiplies factors f and g to yield
the factor h(ABC DE) and then sums out variables ABDE

from g. Using Theorem([I] we can arrange the above sum into
>ar >pp J(ACE)g(BCD). Using Theorem[2} we can
arrange it furtherinto) , » f(ACE) Y 5 f(BCD). This
is more efficient to compute as the largest factor constructed
in the process will be over 3 instead of 5 variables.

Suppose we eliminate variables according to order m when
computing a marginal and let w + 1 be the largest number
of variables appearing in a factor constructed in the process.
The time and space complexity of VE can then be bounded
by O(n - exp(w)) where n is the number of variables. The
number w is called the width of order 7. If the DAG has
treewidth w then there must exist an elimination order of
width w. Moreover, no elimination order can have a width
less than w; see [Darwiche), [2009, Ch 6 & 9] for a detailed
exposition of these concepts and results.

EXPLOITING UNKNOWN MECHANISMS

Two new theorems were added to VE by Darwichel[2020]]
which enabled the exploitation of unknown causal mecha-
nisms. In the following three results, we will use F, G, H
to denote sets of factors, where each set is interpreted as a
product of its factors. For example, the set of factors F will
be interpreted as the factor] rert-

Theorem 3 ([Darwiche, [2020]). Let f be a mechanism for
variable X. If f € Gand f € H, thenG-H =G> M.

According to this result, if a mechanism for X appears in
both parts of a product, then variable X can be summed out
from one part without changing the value of the product.

Corollary 1 ([Darwichel [2020]). If f is a mechanism for X,
feGandfeM then) «G-H=>3 G O xH).

That is, if a mechanism for X appears in both parts of a
product, we can sum out variable X from the product by in-
dependently summing it out from each part. Corollary [I|may
appear unusable as it is predicated on multiple occurrences
of a mechanism whereas the factors of a Bayesian network
contain a single mechanism for each variable. This is where
the second theorem comes in: replicating (i.e., duplicating)
mechanisms in a product does not change the product value.

Theorem 4 ([Darwichel2020])). For mechanism f, if f € G,
then f -G =G.

Consider the factor « = > f(XY)g(XZ)h(XW). VE
has to multiply factors f, g and h before summing out
variable X, therefore constructing a factor over four vari-
ables XY ZW . However, if factor f is a mechanism for
variable X, then we can replicate it by Theorem i} o« =
f(XY)g(XZ)f(XY)h(XW). Corollary|[I]then gives o =
Yo fFIXY)9(XZ) > f(XY)h(XW). Hence, we can
now compute factor o without having to construct any fac-
tor over more than three variables. Moreover, we were able

Algorithm 1 Complete Replication

1: procedure REPLICATE(DAG G, Functional nodes I in)
2 3 < multi-set of family factors of G

3 for each node X in I' (bottom-up traversal) do

4: if X is a leaf then continue

5: n <— number of X -feeding factors in

6 ¥ X U {n — 1 copies of the family factor for X}
7

return X

to do this without needing to know the function represented
by factor f(XY'): we only needed to know that this factor
represents a function from Y to X. As shown in [Darwiche}
2020], this technique can lead to exponential savings that
are attained without needing to know the identity of mecha-
nisms which is a major departure from earlier techniques.

As the above example shows, the exploitation of unknown
mechanisms requires their replication (duplication). A spe-
cific replication strategy was mentioned briefly and infor-
mally in [Darwiche, |2020] and referred to as a “heuristic.”
We shall call it the complete replication strategy for a reason
that will become apparent later. This strategy is described
formally in Algorithm[T]and uses the following definition.

Definition 3. A family factor f(X,P) is said to be
Y -feeding iff Y € P.

Algorithm [T] works with a multi-set of factors ¥ instead of a
set since X may contain multiple copies of the same factor.
It starts with ¥ containing all family factors and traverses
the DAG G bottom up. When visiting a functional node X,
it adds replicas of the mechanism for X to 3. Algorithm]
returns what is called a replication of family factors.

Definition 4. A replication of factors F is a multi-set F' D
F obtained by replicating some of the mechanisms in F.

Consider the DAG in Figure [3(a)] where nodes B and
C are functional. Calling Algorithm [I| on this DAG and
these functional nodes returns the following replication
Fa(A), fo(AB), f5(AB), f5(AB), fo(BC), fo(BC),
fp(BCD), fg(CE), which contains three replicas of the
mechanism for B and two replicas of the mechanism for C.

Even though a replication is technically a multi-set, we
will simply refer to it as set for convenience. We will study
(complete) mechanism replication extensively later.

A popular mechanization of VE is based on the notion of a
Jjointree. We will review jointrees next as we shall use them
to mechanize the exploitation of Theorems [3]and] and to
formally define the notion of causal treewidth.

Definition 5. A jointree for factors F is a tree in which
every leaf node 1 is assigned a non-empty set of factors F;
where the sets {F;}; form a partition of factors F. E]

3Standard jointrees allow factors to be assigned to any node.

-
. fo(AB))
VI \\B /

@/Q OO

TN “ N
(f(CE f (BCD,
& &

(a) DAG (b) jointree for DAG factors

/ “ ~
@ <& L N
(o)

(c) separators and clusters

Y _
(‘r 1aB))
I &

/—u
> |
&
\

o | O
0 | £.(AB))
PN A (Ges)
- @ @

(1,BCD)) — @Bcrh @BC)\
N4 4 -

(d) jointree for a replication

Figure 3: A DAG with a jointree for its family factors (b,c) and a jointree for a replication of these factors (d).

When a factor appears in F;, we will say that leaf node ¢
hosts the factor. We will use vars(i) to denote the vari-
ables of factors F;. For a jointree edge (4, j), we will use
vars(i, j) to denote the union of vars(k) for every leaf
node k on the i-side of the edge. Figure depcits a join-
tree for the family factors of the DAG in Figure[3(a)] Each
leaf node of this jointree hosts exactly one factor.

A jointree induces edge and node labels as follows.

Definition 6. The separator S;; of jointree edge (3, j) is
defined as vars(i,j) N vars(j,i). If node i is a leaf, its
cluster C; is defined as vars(i), otherwise asJ; Si;. The
width of a jointree is the size of its largest cluster minus one.

Figure [3(c)|depicts the separators and clusters for the join-
tree in Figure [3(b)] The width of this jointree is 2 since its
largest cluster has 3 variables.

Jointrees play at least two key roles. First, their structure
provides a specific recipe for when to multiply factors and
when to sum out variables when applying VE. Second, their
separators and clusters define the variables of factors con-
structed by VE so the sizes of these separators and clusters
can be used to precisely determine the complexity of VE.
We explain both roles next, starting with the following theo-
rem which shows how a jointree can be used to direct VE
towards the computation of marginals over separators.

Theorem 5. Consider a jointree for factors f1, ..., fn. De-
fine the message from jointree node i to its neighbor j as:

Mo — Zgu Fi for leaf node i
v >_8:,; Lz M for internal node i

]

Assigning factors to leaves, even one factor per leaf, does not
preclude jointrees with optimal width; see [Darwiche, 2009, Ch 9].

“To compute the marginal over the family of variable X,
choose a leaf node ¢ in the jointree which hosts the family factor
for X and multiply this factor by message M ;; where j is the
single neighbor of i; see [Darwiche, [2009, Ch 7].

For all jointree edges (i,7), M;jM;; = Zgu i,

Each message corresponds to a factor over some separator
in the jointree. Hence, separators determine the space com-
plexity of the message-passing algorithm of Theorem[5] A
message M;; can be computed in O(exp(|C;|) time and
space given messages My, for k # j. Since |C;| < w + 1,
where w is the jointree width, all messages can be computed
in O(n - exp(w)) time and space where n is the number
of jointree factors. Given an elimination order of width w,
one can always construct a jointree of width < w; see [Dar{
wiche, 2009, Ch 9]. Hence, the mechanization of VE using
jointrees preserves the treewidth complexity bound.

In our context, jointrees play a third key role as they provide
a direct method for exploiting Theorems [3]and] as shown
in [Darwiche, 2020]]. Instead of computing a jointree for the
original set of factors F, one computes a jointree for a repli-
cation 7/ D F as licensed by Theorem [4} see Figure 3(d)]
One can then remove variables from separators and clusters
in the expanded jointree based on Theorem 3] while preserv-
ing the soundness of the message passing algorithm. This
reduces the jointree width and can lead to an exponential
reduction in complexity. As in [Darwichel 2021bf|, we refer
to the process of removing variables from separators and
clusters as the process of thinning a jointreeE] We will show
in the next section that the thinning procedure in [Darwiche,
2020] is not complete as it can miss opportunities that are
licensed by Theorem [3] We will also provide a complete
thinning procedure (with respect to Theorem [3)) which paves
the way for the formal definition of causal treewidth.

THINNING JOINTREES

Suppose we have a replication 7' O F of some factors F.
Given a jointree for the replication F’, we will next define
the notion of a jointree thinning and show that it is optimal
(i.e., cannot be improved using Theorem [3)). The replica-
tion 7' may not be optimal though. Constructing optimal
replications will be discussed in the next section.

5The term “thin jointree” was used earlier in the context of
approximate inference [Bach and Jordan, [2001]].

50 166

Figure 4: A Bayesian network with functional nodes B and C.

Definition 7. A jointree node i is said to be X -connected to
a factor f iff i hosts f or X appears in every separator on
the path between i and some leaf node j that hosts factor f.

Definition 8. A jointree thinning maps every edge (i,7)
in the jointree to a set of variables S7; C S;;, called a
thinned separator, and satisfies two properties. First, for
each functional variable X € S7., we have:

(a) Node i is not X-connected to any X-mechanism on
the i-side of edge (i, j), or node j is not X -connected
to any X -mechanism on the j-side of the edge.

(b) If node i is not a leaf, then X € S%, for some k # j.
(c) If node j is not a leaf, then X € S%, for some k # 1.

Second, no other mapping from edges to supersets of S7;
satisfies the above property.

The separators S;; of a jointree are determined by the loca-
tions of factors (the leaf nodes they are hosted at). Hence, the
separators of a jointree are unique. However, a thinned sepa-
rator S7; depends on both the locations of factors and other
thinned separators. Hence, a jointree may have multiple
thinnings. We define next the quality of a jointree thinning.

Definition 9. A jointree thinning induces a thinned cluster
C? for each jointree node i: If i is a leaf, C} = vars(F;);
otherwise, Cr = k S;;- The width of a jointree thinning is
the size of its largest thinned cluster minus one.

A jointree thinning leads to the notion of a causal jointree.

Definition 10. A causal jointree is a jointree in which edges
are annotated with thinned separators and nodes are anno-
tated with thinned clusters. The causal width of a jointree
is the smallest width attained by any of its causal jointrees.

The width of a jointree can be determined by examining
its cluster sizes. However, determining the causal width
of a jointree is more involved as, in principle, it requires
examining all thinnings of the jointree (causal jointrees).

Theorem 6. The width of a jointree thinning and the causal
width of a jointree are no greater than the jointree width.

w) f.(A)
A A
p P
a8 . B (18) c
CAI/\CS!) cAl 19
5 (16) f(GC)) f(GC))
) BCA @1,373) |eca
g P 408)
(o BCA

El HC
7 14
f.(EB)
— \yj") W an s W™
5 BCA 12 5 T BCA 12
C
QFEA) 3§ A (0) \(HA) @:E’W 8cA IHA)

=2 (3) (10) N
cA

BA, CA B —\CA BA, CA B,
1 2 8 9 15 2 8 9
f,(BA) f.(CA) f,(BA) f(CA)) f(BA) NACY @)/’ f.(CA)

(a) jointree thinning of width 2 (b) jointree thinning of width 3

Figure 5: Two jointree thinnings. Each edge (4, j) is marked by
separator S;;. Red variables are not in the thinned separator S7;.

Figure [] depicts a Bayesian network with two functional
nodes (B, C) and nine factors 7 = fa, fB,..., fr. Con-
sider now the replication 7' O F which results from du-
plicating mechanisms fp and fo once (that is, 7’ has 11
factors). Figure [5| depicts a jointree for the replication F’
and two of its thinnings according to Definition[§] The one in
Figure [5(a)|has width 2. The one in Figure [5(b)|has width 3.

Using thinned separators as given by Definition [§ preserves
the correctness of the message passing algorithm.

Theorem 7. Theorem 5] continues to hold if we use thinned
separators S7; (as given by Definition|8) instead of classical
separators Sj (as given by Definition|6)).

The following result shows that we cannot improve Defini-
tion [§ of jointree thinnings based only on Theorem 3]

Theorem 8. Consider a jointree thinning (Definition[8)). If
we remove any functional variable from a thinned separator,
then Theorem |3| will no longer be sufficient to prove the
soundness of the message-passing algorithm (Theorem[5)).

We next provide a characterization of jointree thinnings,
which is more suitable for verifying whether the removal of
variables from classical separators leads to a valid thinning.

Theorem 9. A mapping from each jointree edge (i, j) to
variable set Sfj is a jointree thinning according to Defini-
tion@iﬁ‘ (1) for each non-functional variable X, X € S;
iff X € vars(i,j) N vars(j,4); (2) for each functional
variable X : (a) if X € vars(i) for a leaf node i, then
1 is X -connected to exactly one mechanism for X; (b) if
X € Sj; for some non-leaf i, then X € S}y for some k # j.

Definition [§]tells us what a thinning is but it does not tell us
how to obtain one. We next provide a set of thinning rules
that will generate every thinning admitted by Definition 8}

Theorem 10. We can obtain a jointree thinning by starting
with S7; = S;; and then removing variables from S7; ac-
cording to the following rules, until no rules can be applied.
Remove functional variable X from S7; if either

(a) Node i is X-connected to some X -mechanism on the
i-side of edge (i, j) and node j is X -connected to some
X-mechanism on the j-side of the edge; or

(b) X ¢ Sy, for all k # j when node i is not a leaf; or

(c) X ¢ S3y, for all k # i when node j is not a leaf.

We will use R, (4, j, X) to mean that Rule (a) is applicable to
variable X and edge (¢, j) and call it a rule application. Sim-
ilarly for Ry(i, 7, X) and R.(4,j,X). A jointree thinning
can now be specified using a sequence of rule applications.
The thinning in Figure corresponds to R,(6,15,C),
R.(4,6,C), R.(3,4,C), R.(2,3,C), R,(6,15, B). The
one in Figure[5(a)|corresponds to R, (6,15, C), R.(4,6,C),
R.(3,4,C), R.(2,3,C), R,.(13,15,B), R.(11,13,B),
R.(10,11, B), R.(8,10, B).

Definition 11. A thinning sequence is a list of rule applica-
tions R, ..., R"™ where each rule is valid when it is applied
and no rules are applicable after the sequence terminates.

Theorem [10]says that the thinning rules are sound. The next
result says they are complete (with respect to Definition [g).

Theorem 11. Every causal jointree can be obtained using
some thinning sequence.

Two distinct thinning sequences may yield the same jointree
thinning since the order of applying rules may not matter in
some cases. The following result suggests a restriction on
thinning sequences that does not compromise their ability
to discover every possible jointree thinning.

Theorem 12. Every jointree thinning can be obtained by
a thinning sequence in which all applications of Rule (a)
come before the applications of Rules (b,c).

That is, we can first exhaust all applications of Rule (a)
and then apply Rules (b,c). In fact, once we exhaust all
applications of Rule (a), applying Rules (b,c) becomes de-
terministic. In other words, the jointree thinning obtained
by a thinning sequence is fully determined by its Rules (a).

Thinning sequences mechanize the thinning process but
finding an optimal thinning sequence remains a computa-
tionally challenging task given the large number of such
sequences (even under the above restriction). Hence, one
needs either sophisticated search algorithms or a heuristic to
decide which thinning rule to apply and when. One heuris-
tic that we found effective is to prefer R, (¢, j, X) with the
largest S7;, followed by X that is contained in the fewest
neighboring separators, followed by minimizing the number
of X-connected X -mechanisms on either side of edge (i, j).

[Darwichel 2020]] proposed three thinning rules that ap-
ply only to binary jointrees in which each node has one
or three neighbors [Shenoy, |1996]. The rules are not com-
plete though as they can miss thinnings admitted by Defini-
tion[8] As in the rules we defined above, one starts by setting

%Func = 25 %Func = 50

100 100
90 90
80 80
70 70
5 g
® 60 @ 60
& &
g 50 g S0
S 40 S 40
ﬁ >
g 30 g 30
20 20
——
10~ 10~

i

0 0
10 20 30 40 50 60 80 100 150 10 20 30 40 50 60 80 100 150

nodes # nodes

%Func = 75 %Func = 100

100 100

90 20

80 80

5 70 @ 70

» 60 @ 60
o] g

E 50 g 50

© 40 © 40

] 30 g 30
E E

20 20

10 10
[+ -

0 0
10 20 30 40 50 60 80 100 150 10 20 30 40 50 60 80 100 150

nodes # nodes

Figure 6: Comparing the thinning rules in Theorem with the
ones in [Darwichel 2020]]. Functional nodes are restricted to be
internal (non-root) nodes. The average time for applying the new
thinning rules to networks with 150 variables and 100% func-
tional (hardest configuration) is 6.86 sec, with a min/max time of
0.8/28.8 sec.

thinned separators Sj; to classical separators S;; and then
tries to remove variables from Sfj using the rules. However,
these rules can only be applied when visiting the jointree
nodes in a particular order. A leaf node h is identified first
and then nodes are visited based on their distance from h,
where the closer nodes are visited first. Suppose we are vis-
iting a non-leaf node i. Let p be its neighbor that is closest
to leaf h and let ¢; and ¢, be its two other neighbors. The
first two rules require the following conditions: X € S7, ,
X € 8j,,, an X-mechanism is hosted on the c;-side of edge
(c1,1) and an X -mechanism is hosted on the co-side of edge
(c2,1). If we further have X € S}, the first rule licenses
the removal of X from either S7. or S7_ . If X ¢ S, the
second rule licenses the removal of X from both S7, and

7e,- The final rule applies to the single neighnor 7 of leaf
h, allowing us to remove variable X from S} when an
X-mechanism is hosted at leaf h and also at some other
leaf in the jointree. The first rule involves a choice which is

made using a heuristic described in [Darwiche} [2020)]].

Consider now the Bayesian network in Figure [and its
thinned jointree in Figure [5(a)] which has width 2. The best
thinning that can be obtained by the rules in [Darwichel
2020] has width 3, regardless of which leaf node h we
choose and regardless of what choices we make when ap-
plying the first rule. Figure[6]depicts a comparison between
these rules and the ones in Theorem@] on random (binary)
jointrees, for the factors of complete replications generated
by Algorithm[I] The plots in this figure vary the number of

Bayesian network nodes from 10 to 150 and consider dif-
ferent percentages of functional nodes (25, 50, 75 and 100)
which are restricted to be non-root nodesE] They report the
mean of maximal cluster size (width+1) over 10 jointrees
for each data point. The plots are for the cluster sizes of (1)
a classical jointree (blue), (2) a causal jointree obtained by
the incomplete rules (red) and (3) a causal jointree obtained
by the proposed rules (yellow). Four patterns are clear: more
thinning takes place as we increase the number of functional
nodes; the proposed thinning rules are much more effective;
the gap between the two sets of rules grows as we increase
the number of Bayesian network nodes and the number of
functional nodes; the exploitation of unknown mechanisms
can lead to significant reduction in inference complexity.

MECHANISM REPLICATION

The definition of thinning that we developed in the previous
section was with respect to a particular replication F and
a particular jointree for the factors in F. Some replications
are better than others in that they lead to causal jointrees of
smaller width. We formalize this next.

Definition 12. The width of a replication F is defined as
the minimum width attained by any causal jointree for F.

Given a replication F, we need to examine two search
spaces before we can determine its width. First, we must
choose a jointree for the factors in F. Second, we must
choose a particular thinning of the jointree. Hence, determin-
ing the width of a replication is not a straightforward task.
Moreover, the width of a replication is not the only measure
of its quality as we need to also consider its size. This is
a critical issue that was not discussed in [Darwichel 2020,
2021b] and that we need to explore carefully before we are
ready to provide the formal definition of causal treewidth.

The size of a replication is the number of factors it contains
(replicas are counted individually). To highlight the impor-
tance of a replication size, consider two replications F; and
JFo with respective sizes n1 and no. Suppose now that repli-
cation F7 has width w; and replication F» has width wo.
This means that there exists a causal jointree for replication
JF1 of width w; and no other causal jointree can have a
smaller width (and similarly for replication F3). If we use
these optimal causal jointrees, inference using these replica-
tions can be done in O(n; - exp(w1)) and O(ng - exp(ws))
time and space, respectively. One may be tempted to choose
the replication with smaller width since complexity is ex-
ponential in width but linear in size. However, the size of

80ur method for generating a Bayesian network with nodes
X1, ..., X, assumes that each node has at most five parents. We
visit nodes X; from ¢ = 1 to ¢+ = n. When visiting node X,
we randomly choose a number from {0, ..., min(5,7 — 1)} to
represent the number of parents for X; and then randomly choose
that many parents from Xq,..., X;_1.

)
o a0
©

a replication may also be exponential as we show next. In
fact, the key result of this section is that the replication strat-
egy proposed in [Darwiche} [2020]], shown in Algorithm [T}
satisfies two interesting properties. First, it is optimal: no
other replication strategy will have a smaller width. Second,
it can lead to replications of exponential size. We will in
fact provide a bound on the size of replications produced by
this strategy and suggest how it can be improved to avoid a
blow up in replication size.

We start with the following result which shows that exces-
sive replication can never hurt width.

Theorem 13. Consider two replications F, and F> of some
factors F where F C F1 C Fo. If the width of replication
JF1 is w, then the width of replication F5 is < w.

We next identify a class of replications that possess some
significant properties.

Definition 13. A replication F is complete iff it satisfies the
following property for each functional variable X and its
mechanism fx. If n is the number of X -feeding factors in
F and n > 0, then F contains n replicas of mechanism fx.
Otherwise, F contains only one replica of fx.

The first property of complete replications is uniqueness.

Theorem 14. The family factors of any DAG have a unique
complete replication. Moreover, the replications generated
by Algorithm[I|are complete.

The second property of complete replications is optimality.

Theorem 15. Let F and F' be two replications of the family
factors of a DAG. If replication F is complete, then its width
is no greater than the width of replication F’.

The third property of complete replications is that their
size can be exponential. Consider the family of DAGs in
Figure [7]which have 3n + 2 nodes for n > 1. Algorithm|[I]
which generates complete replications, starts with a set &
containing the 3n + 2 family factors. It then visits functional
nodes bottom-up and replicates their mechanisms. One can
easily show that after visiting functional node X;, the set X
will contain 2¢ replicas of the mechanism for X;.

We next provide a bound on the number of factors in a com-
plete replication which suggests a method for controlling
the potential blow up in its size.

Definition 14. A functional chain of length k in a DAG is a
set of functional nodes n1, . . ., ng where node n; is a parent
ofnoden;qfori=1,...,k—1.

Theorem 16. Consider a DAG with n nodes. Let c be the
largest number of children for any node and let k be the
length of longest functional chain. The (unique) complete
replication of this DAG will contain at most nc® factors.

This bound immediately provides a method for controlling
the number of replicas in a complete replication. If we treat
variable X, /5 in Figure[/|as a non-functional variable, the
length of the largest functional chain will be cut by half.
Hence, by selectively ignoring some functional variables we
can bound the size of functional chains and therefore ensure
that Algorithm [T will produce replications with size that is
polynomial in the number of DAG nodes.

We are now ready to define causal treewidth formally.

Definition 15. Consider a DAG G with n nodes, some of
which are declared as functional. The causal treewidth of
DAG G is the smallest width attained by any replication F
for G where the size of F is polynomial in n.

For the class of DAGs with bounded functional chains, one
can use the complete replication F to determine the causal
treewidth of the DAG. That is, determining causal treewidth
becomes a matter of finding an optimal causal jointree for
the factors in F. The situation is more intricate for DAGs
with unbounded functional chains. The complete replication
cannot be used in this case and one must search among repli-
cations of polynomial size. It remains to be seen whether the
space of replications to be explored can be restricted to sub-
sets of the complete replication as suggested earlier. This is a
subject of future work. We note here that [Darwiche, |2021b|]
identified a family of DAGs with O(n?) nodes, bounded
depth and treewidth n + 1, while constructing thinned join-
trees of width 2 for the family, assuming all internal nodes
are functional. This is an example where the treewidth is
unbounded while the causal treewidth is bounded, showing
that causal treewidth dominates treewidth.

The appendix contains an experiment that reveals the im-
portance of replication strategies and how such strategies
interact with jointree construction methods. The experiment
exhibited a number of patterns. First, the causal width was al-
ways smaller than the width, and quite substantially smaller,
even when using random replications. Next, complete repli-
cations always produced a smaller causal width compared
to random replications, particularly when the number of
functional nodes is largest (100%). Finally, increasing the
size of a random replication almost always correlated with
decreasing the causal width but up to a certain point after
which increasing the size of a replication did not help.

CONCLUSION

We provided a formal definition of the notion of causal
treewidth, which dominates the classical and influential
notion of treewidth. We also studied the three ingredients
needed to define causal treewidth: mechanism replication,
jointree construction and jointree thinning which yields
causal jointrees. On the first front, we presented a num-
ber of results about a replication strategy that we called
complete replication, showing that it is optimal while pro-
viding a bound on the size of replications it produces and
suggesting a technique for controlling their size. On the sec-
ond front, we highlighted the relevance (and irrelevance) of
classical jointree construction methods to the construction
of jointrees for replications. On the third front, we provided
a complete characterization of causal jointrees and provided
three thinning rules that are sound and complete for gener-
ating causal jointrees. We also proved some properties of
these rules which can be of practical significance. We finally
presented some experimental results to shed further light
on the developments in this paper, which also showed that
causal jointrees can lead to exponential improvements in the
complexity of inference in comparison to jointrees.

Acknowledgements

We wish to thank Yunqiu Han for useful feedback. This work
has been partially supported by NSF grant #ISS-1910317
and ONR grant #N00014-18-1-2561.

References

Durgesh Agrawal, Yash Pote, and Kuldeep S. Meel. Parti-
tion function estimation: A quantitative study. In IJCAI,
pages 4276-4285. ijcai.org, 2021.

Francis R. Bach and Michael I. Jordan. Thin junction trees.
In NIPS, pages 569-576. MIT Press, 2001.

Hans L. Bodlaender. Treewidth: Characterizations, applica-
tions, and computations. In WG, volume 4271 of Lecture
Notes in Computer Science, pages 1-14. Springer, 2006.

Craig Boutilier, Nir Friedman, Moisés Goldszmidt, and
Daphne Koller. Context-specific independence in
bayesian networks. In UAI, pages 115-123. Morgan
Kaufmann, 1996.

Mark Chavira and Adnan Darwiche. Compiling Bayesian
networks with local structure. In Leslie Pack Kaelbling
and Alessandro Saffiotti, editors, I/JCAI-05, Proceedings
of the Nineteenth International Joint Conference on Arti-
ficial Intelligence, Edinburgh, Scotland, UK, July 30 - Au-
gust 5, 2005, pages 1306—1312. Professional Book Center,
2005. URL http://ijcai.org/Proceedings/
05/Papers/0931.pdfl

http://ijcai.org/Proceedings/05/Papers/0931.pdf
http://ijcai.org/Proceedings/05/Papers/0931.pdf

Mark Chavira and Adnan Darwiche. On probabilis-
tic inference by weighted model counting. Artif. In-
tell., 172(6-7):772-799, 2008. doi: 10.1016/j.artint.
2007.11.002. URL https://doi.org/10.1016/
J.artint.2007.11.002.

Mark Chavira, Adnan Darwiche, and Manfred Jaeger. Com-
piling relational Bayesian networks for exact inference.
Int. J. Approx. Reason., 42(1-2):4-20, 2006.

Yizuo Chen, Arthur Choi, and Adnan Darwiche. Supervised
learning with background knowledge. In PGM, volume
138 of Proceedings of Machine Learning Research, pages
89-100. PMLR, 2020.

Adnan Darwiche. A differential approach to inference in
Bayesian networks. J. ACM, 50(3):280-305, 2003.

Adnan Darwiche. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, 2009.

Adnan Darwiche. An advance on variable elimination with
applications to tensor-based computation. In ECAI, vol-
ume 325 of Frontiers in Artificial Intelligence and Appli-
cations, pages 2559-2568. 10S Press, 2020.

Adnan Darwiche. Tractable Boolean and arithmetic
circuits. In Pascal Hitzler and Md Kamruzzaman
Sarker, editors, Neuro-Symbolic Artificial Intelligence:
The State of the Art, volume 342 of Frontiers in Arti-
ficial Intelligence and Applications. 10S Press, 2021a.
https://arxiv.org/abs/2202.02942.

Adnan Darwiche. Causal inference with tractable
circuits. In Why-21 Workshop, NeurIPS, 2021b.
https://arxiv.org/abs/2202.02891.

Rina Dechter. Bucket elimination: A unifying framework
for probabilistic inference. In Proceedings of the Twelfth
Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI), pages 211-219, 1996.

Rina Dechter. Constraint processing. Elsevier Morgan
Kaufmann, 2003.

F. V. Jensen, S. Lauritzen, and K. Olesen. Bayesian updat-
ing in recursive graphical models by local computation.
Computational Statistics Quarterly, 4:269-282, 1990.

David Larkin and Rina Dechter. Bayesian inference in the
presence of determinism. In Proceedings of the Ninth In-
ternational Workshop on Artificial Intelligence and Statis-
tics (AISTATS), 2003.

Judea Pearl. Causality. Cambridge University Press, 2000.

Judea Pearl and Dana Mackenzie. The Book of Why: The
New Science of Cause and Effect. Basic Books, 2018.

Neil Robertson and Paul D. Seymour. Graph minors. II.
algorithmic aspects of tree-width. J. Algorithms, 7(3):
309-322, 1986.

Prakash P. Shenoy. Binary join trees. In UAI, pages 492-499.
Morgan Kaufmann, 1996.

Marco Zaffalon, Alessandro Antonucci, and Rafael Cabanias.
Causal expectation-maximisation. In NIPS, NeurIPS 2021
WHY-21 Workshop, 2021.

Nevin Lianwen Zhang and David Poole. Exploiting causal
independence in bayesian network inference. Journal of
Artificial Intelligence Research, 5:301-328, 1996.

https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1016/j.artint.2007.11.002

PROOFS

Our proofs are ordered sightly differently than the corre-
sponding results in the paper as we need some results when
proving others. In the upcoming proofs, we will also use fx
to denote a mechanism for variable X . We will also say that
a leaf node i in a jointree contains variable X iff X appears
in a factor that is hosted at leaf node .

PROOF OF THEOREM

See [Darwichel 2009, Ch 7].

PROOF OF THEOREM |§I

Follows directly from Definitions [9]and

PROOF OF THEOREM

In this proof, we will assume we have a mapping from
jointree edges (4, j) to sets S;; C S;; that satisfy conditions
(a,b,c) of Definition [§](that is, these sets satisfy only the first
part of this definition but not the second part so they are
not necessarily thinned separators). We will also say that
jointree nodes ¢ and j are (X, S’)-connected iff i = j or
variable X appears in every set S’ that is attached to an edge
on the path between ¢ and j. We will first state and prove
two lemmas which we need for the proof of this theorem.

Lemmal. If X € S;j, then node i is (X, S')-connected to
some leaf node on the i-side of edge (i, j) which contains
variable X and node j is (X,S’)-connected to some leaf
node on the j-side of the edge which also contains X.

Proof. Suppose node i is not (X, S’)-connected to some
leaf node on the i-side of edge (4,5) which contains X.
Consider a longest path , ..., r, [on the i-side of the edge
such that X appears in S’ for each edge on the path. If [is
a leaf node, then it must contain variable X by definition
of separators, which is a contradiction. Suppose now that
[is not a leaf node. Then X ¢ Sj, for k # r, otherwise
the path would not be longest. This contradicts the assumed
condition (b) of Deﬁnitionon sets S’. Hence, node ¢ must
be (X, S’)-connected to some leaf node that contains X on
the i-side of edge (¢, 7). We can similarly show the second
part of the lemma. O

Lemma 2. Suppose sets ng were obtained by exhaust-
ing thinning rules on separators S;;. If node k is (X,S’)-
connected to some leaf node that contains X, then node k
is (X, S')-connected to exactly one leaf node that hosts fx.

Proof. Suppose node k is (X, S’)-connected to some leaf
node that contains X. Then node k cannot be (X,S’)-

connected to more than one leaf node hosting fx; other-
wise, Rule (a) will apply. We next show that node k must be
(X, S’)-connected to at least one mechanism fx. We will
show this by induction on the number of rule applications.
We will use S™ to denote the state of separators after the
n*" rule application. For the base case (before any thinning
rules are applied), node k must be (X, S°)-connected to
some fx by the definition of separators in a jointree. For
the inductive step, suppose node k is (X, S™)-connected to
some leaf node that contains X only if node k is (X, S™)-
connected to at least one leaf node that hosts fx. Suppose
now that node k is (X, S™*!)-connected to some leaf node
that contains X. We will next show that node £ must be
(X, S™*1)-connected to at least one mechanism fx.

First, node & must be (X, S™)-connected to some leaf node
that contains X. Hence, by the induction hypothesis, node
k must be (X, S™)-connected to at least one mechanism
fx. We will consider an edge (i, j) such that X € S}’ and

X¢ SZH (such an edge must exist) and do a case analysis

on which rule applied to this edge.

Case: Rule (a). We will show next that node k£ must be
(X, S™*1)-connected to at least one mechanism fy while
assuming that node k is on the i-side of edge (4, 7). A similar
argument will show the same if node & is on the j-side of
the edge. Suppose node k is on the i-side of edge (¢, 7).
If node & is (X, S™)-connected to some fx on the i-side,
then node k is (X, S™*!)-connected to the same fx on
the i-side. If node k is (X, S™)-connected to some fx on
the j-side, then node k is (X, S™*!)-connected to node i.
By the definition of Rule (a), node i must be (X, S"*1)-
connected to some fx on the i-side. Therefore, node k£ must
be (X, S"™*1)-connected to the same fx on the i-side.

Case: Rule (b). Then none of the neighboring separators
except Sfj contains X . If node & is on the i-side, then node
k must be (X, S™) to some fx on the i-side and therefore
must be (X, S"1) to the same fx on the i-side. The same
argument applies if node & is on the j-side.

Case: Rule (c). Symmetric to the previous case. O

Proof of Theorem[I0} First note that conditions (a,b,c) of
Definition [§|hold when we exhaust thinning rules. Suppose
sets S;j were obtained by exhausting thinning rules on sep-
arators S;; (and hence satisfy the three conditions). We just
need to prove that no supersets of S/, ; satisfy these condi-
tions. Suppose by contradiction such supersets S;’j exist and
consider an edge (i, j) such that X € S} and X ¢ Si;.
By Lemma 1| since sets S, satisfy the three conditions,
node ¢ must (X, S”)-connect to some leaf node & on the
i-side which contains X. Since leaf node k contains X, it
(X, S’)-connects to itself. By Lemma[2] the leaf node & is
(X, S')-connected to some fx on the i-side since X ¢ S;.
Hence, leaf node k is also (X, S”)-connected to the same
fx on the i-side since sets S, are supersets of Sj;. We

have shown that node i is (X, S”)-connected to leaf node
k which is (X, S”)-connected to some fx on the i-side,
therefore node i is (X, S”)-connected to some fx on the
i-side. By a similar argument, node j is (X, S”)-connected
to some fx on the j-side. However, this implies that the
supersets S;’] violate condition (a), which is a contradiction.
Hence, the supersets S cannot exist. O

PROOF OF THEOREM

We need the following lemma which states the same prop-
erty of Lemma [2] except under different conditions. The
proof of this lemma uses the notion of “a closest leaf & to
node ¢ which hosts mechanism fx." This is a leaf node that
hosts fx where the path ¢ = pg,p1,...,Pn—1,Pn = k has

a minimal number of sets S;ipi " that do not contain X.

Lemma 3. Consider thinned separators S* according to
Definition[8|and let X be a functional variable. If node i is
(X, S*)-connected to some leaf node that contains X, then
node i is (X, S*)-connected to exactly one leaf node that
hosts mechanism fx.

Proof. Suppose node i is (X, S*)-connected to some leaf
node that contains X . Node ¢ cannot be (X, S*)-connected
to two different leaves that host fx as this would vio-
late condition (a) of Definition |8} Suppose now that node
i is not (X, S*)-connected to any mechanism fx. We
will next show a contradiction. Consider the path ¢ =
P0sP1y- -+ Pn1,Pn = k where k is a closest leaf to node ¢
which hosts mechanism fx. We claim that adding X to all
sets 7., ., Which do not contain X on the path results in a
jointree thinning that still satisfies conditions (a,b,c) of Defi-
nition [8] This would be a contradiction as it implies there is
a superset of thinning S* that satisfies these conditions.

To show the above claim, note that conditions (b,c) will
immediately continue to be satisfied if we add variables to
sets S, Piit We next show that condition (a) will continue
to be satisfied as well.

Suppose we are adding X to sets S7,, ~ which do not

contain variable X using the given order of these sets. Let
S’ be the separators after adding X to S¥. iy, When the first
violation to condition (a) takes place. Then node p; will be
(X, S’)-connected to a leaf node p/ that hosts mechanism
fx on the p;-side of edge (p;, p;+1)- This contradicts with

the definition of k as p} will be closer to ¢ than k. O

Proof of Theorem[I1} Given a jointree thinning S* that sat-
isfies Definition [8] we will next show how to construct a
thinning sequence that produces it.

A key observation is that rule applications for a variable X
are independent of rule applications for a variable Y # X;
that is, we can always rearrange a thinning sequence so
rules that apply to the same variable are consecutive. Hence,

we will construct a thinning sequence that produces S* by
constructing a set of rule applications for each variable and
then paste them together.

To construct the rule applications for variable X, we start
with some leaf node [which hosts mechanism fx and then
traverse nodes away from [. Suppose we are visiting node
1 now which has a neighbor j that has not been visited. If
X ¢ S and X € S;;, we consider two cases. If X ¢ 87,
forall k, we add R.(, j, X). Otherwise, we add R, (7, j, X).
Every variable that has been thinned will now be accounted
for by a rule. Moreover, these rules will be applicable in
the reverse order in which they have been constructed. Each
R, (i, j, X) will be applicable by Lemmas [I{ and |3| Each
R.(i,j, X) will be applicable by definition. O

PROOF OF THEOREM @

Proof. A jointree thinning according to Definition [§] satis-
fies the two properties of the theorem by Definition [§]and
Lemma 3] Suppose now the two properties hold for a map-
ping S*. We will show there exists a thinning sequence
that produces S* from the classical separators S. We first
note that no thinning rules can be applied to a mapping S*
that satisfies the two properties of the theorem. To apply
thinning rules to separators S, we consider each functional
variable X, then locate all connected subtrees where X does
not appear in any separator of a subtree. Consider one such
connected subtree I and let B = {S7 , ,..., S} , } bethe
boundary separators of the subtree. WLG, assume u; are
at the subtree boundary. Observe that each u; can either be
a leaf node that hosts a mechanism fx or a non-leaf node
such that X € Sj, . for r; # t;. Similar to the proof for
Lemmal[l] we can show that each u; is (X, S*)-connected to
some fx.Let {Sy,t,,-.-,Su,.t, be the original classical
separators of the jointree, then the separators S* for the con-
nected subtree I" can be obtained by the following thinning
sequence. We first apply thinning Rule (a) to all boundary
separators Sy, ¢, - - -, Su,t, but one. Suppose we apply the
rule to separators Sy, - - - ; Su,t,- Lhis is sound since u;
is (X, S)-connected to all ug,...,u, by the property of
classical separators. Starting from these thinned boundary
separators, we can then thin X from all separators in subtree
T" using Rules (b,c). O

PROOF OF THEOREM

Proof. Suppose S* is a jointree thinning according to Def-
inition [§] and and let X be a functional variable such that
X € Sj; for some edge (i, j). By Theorem@ we must have
some leaf node k with X € vars(i) that is X -connected
to exactly one mechanism for X, fx, through edge (4,).
WLG, suppose leaf k is on the i-side of the edge and mecha-
nism fx is on the j-side of the edge. Suppose further that we
remove variable X from S7; leading to new separators S’

This will lead to a violation of Condition (2a) in Theorem 9]
In particular, leaf node £ will no longer be X -connected to
any mechanism for X. Now let be the factors on the ¢-side
of edge (4, j), G be the factors on the j-side of the edge and
m be the number of mechanisms fx in F U G. Let M* de-
note messages computed using separators S* and M’ denote
the messages computed using the separators S’. The compu-
tation of messages M7, and M7, must involve at least m —1
distinct sum-outs of X. This follows because the mecha-
nisms fx cannot be X connected. Since M, = M7

ij
and M}, = > Mj;, computing the product M- M,
involves (m — 1) +2 = m + 1 distinct sum-outs of variable
X.IfPr(S};) = Zg, F-G = Mj;- Mjj; then Mj; - M,

is a factorization of Zs’ F - G that involves m + 1 distinct

sum-outs of variable X . However since factors F U G con-
tain exactly m replicas of mechanism fx, any factorization
of ZS, F - G cannot include more than m distinct sum-
outs of var1able X that are based on Theorems[2land[3l This
follows because each sum-out of X based on Theorem [3]
will consume a mechanism fx and the sum-outs based on
Theorem@] do not consume mechanisms. Hence, the equal-
ity ZE,'U F -G = M;; - M;; cannot be justified based only
on these two theorems. That is, TheoremE] will no longer
be sufficient to imply the soundness of the message-passing

algorithm as stated in Theorem [5 O
PROOF OF THEOREM

Lemma 4. Consider a thinning sequence R =
{X,Ri,Y,R;,Z} where X = {Ry,...,Rp_1}, Y =

{Rk+41,---,Re—1}tandZ = {Ry11,..., Ry} Suppose Ry,
and R; are applications of Rule (a) and no member of Y
is an application of Rule (a). Then the following is a valid
thinning sequence R' = {X, Ry, R+, Y, Z}.

Proof. When applying the thinning sequence R, we start
with S7; = S;; and reduce a set Sj; after each rule appli-
cation. The key observation here is that if an application
of Rule (a) is valid at some state of the thinned separators,
it will be valid at any earlier state of these separators (be-
cause no thinned separator can be smaller at an earlier state).
Moreover, if an application of Rules (b,c) is valid at some
state of the thinned separators, it will be valid at any later
state of these separators. O

Proof of Theorem[I2] Consider a thinning sequence R.. We
can apply Lemma [repeatedly to obtain a valid thinning
sequence R’ that has the same rule applications as R and in
which Rules (a) appear before Rules (b,c). The sequences
R and R’ generate the same jointree thinning since they
contain the exact same rule applications. O

PROOF OF THEOREM

Our proof starts with the correctness of the message passing
algorithm using classical separators and then shows that
the algorithm continues to be sound after we apply a thin-
ning rule to remove a variable from some separator (recall
that every jointree thinning can be obtained by a sequence
of thinning rules). We will use S’ to indicate the state of
separators after some rule applications.

Our proof uses the following variant on Definition[7] We will
say that a jointree node i is strongly (X, S’)-connected to a
factor f iff 7 hosts f or vars(f) appears in every separator
S7,; on the path between node ¢ and some leaf node j that
hosts f. Similarly, we will say that jointree nodes 7 and j are
strongly (X, S')-connected iff i = j or variables vars(fx)
appear in every separator S}, on the path between ¢ and j.

The thinning rules for distinct variables do not interact with
one another. Hence, we will assume in this proof that all
thinning rules are applied according to a reverse topological
ordering 7 of the variables in the underlying DAG.

We will use two lemmas in this proof. The first says that
X -connection (Definition (/) and strong X -connection (de-
fined above) are equivalent when applying thinning rules
according to reverse topological ordering 7.

Lemma 5. Suppose S’ is the state of separators after apply-
ing thinning rules to variables that do not follow variable
X in order w. For jointree edge (i,), node i is (X,S’)-
connected to some fx on the i-side of the edge and node j
is (X, S')-connected to some fx onthe j-side of the edge iff
i is strongly (X, S')-connected to some fx on the i-side and
j is strongly (X, S")-connected to some fx on the j-side.

Proof. The if part follows from the fact that X € vars(fx).
We next show the only-if part. Suppose node ¢ is (X, S’)-
connected to node [that hosts fx on the i-side and node j
is (X, S’)-connected to node r that hosts fx on the j-side.
By the property of classical separators, vars(fx) C Sz
for all edges (z,y) on the path between [and r. Since 7
is a reverse topological ordering of the variables, none of
the parents of X (vars(fx) \ {X}) are thinned from the
separators. Therefore, vars(fx)\{X} C S}, for all edges
(x,y) on the path between [and r. Since node i is (X, S')-
connected to ! and node j is (X, S’)-connected to r, we
conclude that node i is strongly (X, S’)-connected to [and
node j is strongly (X, S”)-connected to . O

The second lemma extends Theorem [3] to a more general
setting. For factors f and F, we will write f € F to mean
that 7 = f - g for some factor g.

Zsk’Yk -H
,Yx are arbitrary factors, fx € H and

Lemma 6. Consider factor G = isﬂl e
where 71, ...

vars(fx) C Si,...,vars(fx) C Sy for some mecha-
nism fx of variable X. If fx € F, then F -G = F - G’

where G' = Zsﬂl e Es,ﬂk YoxH

Proof. Suppose fx € F.Then F = fx -F' for some factor
F'. Moreover, F - G equals to

-F/fXZ’)/l Z%H

- F. Z e ka«fX'H

_ . Zsﬂlmzsk% fx ZH (by Theorem 3)
X

- }"~fX‘isl"/1“'iSk7k'ZH
X

= F-G. O

We are now ready for the soundness proof. For jointree
edge (7,7), let M;; and M/, denote the messages be-
tween ¢ and j under separators S’. We will next show
Pr(S};) = MM, for all edges (i,) by induction on
rule applications. For each rule application, we will use S
to denote the separators before thinning by the rule and S’
to denote the separators after thinning by the rule. Initially,
Pr(S;;) = M;;M; for all edges (i, j) by Theorem 5] We
next show that this equality holds after each rule application.
We consider three cases, one for each rule type.

(1) Rule (a) is applied to edge (¢,7): X € S;; and X ¢ S;j.
By definition of Rule (a) and Lemma 5] node i is strongly
(X, S)-connected to some mechanism fx hosted at leaf
node [on the i-side and node j is strongly (X, S)-connected
to some mechanism fx hosted at leaf node r on the j-side.

First, we have M;; ./\/l' = M;; - Mj; by Corollary I
Consider now any edge (k z) on the path [...k—z.
between leaf nodes [and r and suppose WLG that edge (z j)
is on the subpath z . ..r. Using Lemmal6| with F = /\/l kz»
Q M, and H = M],, we get My, - Mo, = M, -
&~ That is, removing X from the separator of edge (3,)
does not affect the product of messages for edge (k, z).
Finally, consider any edge (k, z) that is not on the path
between leaf nodes [and r. Let ¢ be the node on this path
which is closest to edge (k, z). Let I’, r’, u be the neighbors
of ¢ that are closest to I, r and edge (k, z), respectively.
To show My, - M., = M, - M’,, it suffices to show
. = My WLG, suppose node j is closer to ¢ than node

i. Since My, = stv - Myrg - My, where ~ denotes the
product of other invariant messages, we can use Lemma [6]
again with F = My, G = M,y and H = M,; to get
s ML, = My - M, Hence, applying Rule (a)
preserves the product of messages for all jointree edges.

(2) Rule (b) is applied to edge (4,75): X € S;; and X ¢
S;j. By definition of Rule (b), node ¢ is not a leaf and

X ¢ Syi for k # j. Then Mj; = > M;; = M,; since
messages My; do not contain X. Moreover, Pr(S;;) =
2ox Pr(Si) =3 x Mij - My = Mij - (3o x Mji) =
M, - M. We next consider edges other than (i, j).

Since ng = M, all messages outgoing from node j are
invariant. Hence, the product of messages is invariant for
any edge on the j-side of edge (4,j). We next show that
all message outgoing from i to neighbors k # j are also
invariant. This shows that the product of messages is also
invariant for all edges on the k-side of any edge (k,).

SHE
1k £
I M

>, QM)
X ttk,t#]

t#k,1#]

My, =

_ ’
- ik

The second step follows since X ¢ Sg; and also X & Sy;.
The third step follows since messages M,; are invariant to
thinning variable X from separator S;;.

(3) Rule (c) is applied to edge (i, 7). Similar to case (2).

PROOF OF THEOREM

Proof. Suppose replication F; has width w. Then it must
have a causal jointree 7; of width w. We can turn 77 into
a causal jointree 7> for replication F» by assigning more
factors to leaf nodes in 7;. In particular, for each replica
fx € Fa\ Fi, assign this replica to a leaf node in 7; which
hosts a mechanism fx. This guarantees that 75 will also
have width w. Since replication F> has a causal jointree of
width w, its width must be < w.]

PROOF OF THEOREM

Proof. The fact that Algorithm[I|computes a complete repli-
cation follows directly from the statement of the algorithm.
Suppose there exists another complete replication F' that
is different from the complete replication F computed by
Algorithm[I] Then 7’ and F must differ on the number of
mechanisms fx for some functional variable X. Suppose
X is the first variable visited by Algorithm [I|on which this
disagreement takes place. Then F and F' must have the
same number of X-feedings factors; otherwise, they will
have a different number of mechanisms for some descendant
of variable X. Since F and F' both satisfy Definition
and they have the same number of X -feeding factors, they
must have the same number of mechanisms fx. This con-
tradicts the assumption that 7’ and F differ on the number
of mechanisms for variable X. Hence, F = F'. O

PROOF OF THEOREM

Lemma 7. Consider a replication F that contains n > 1
mechanisms for variable X and m X -feeding factors where
n > m. Let F' be the result of removing one mechanism for
X from F (hence, |F'| = |F| — 1). The width of F' is no
greater than the width of F.

Proof. Let T be a causal jointree for F. We can turn 7
into a causal jointree 77 for F’ with no greater width as
follows. Suppose there exists a leaf node in 7 that hosts
two mechanisms fx. We can then remove one of these
mechanisms from the leaf without increasing the width.
Suppose now that each leaf node in 7 hosts at most one
mechanism fx. The edges of 7 which contain variable
X in their (thinned) separators form a set of connected
subtrees. Each one of these subtrees will contain at most
one mechanism fx (otherwise thinning Rule (a) will apply).
By the pigeonhole principle, at least one of these subtrees
must contain a mechanism fx but no X-feeding factors.
We can show that removing this mechanism fx from the
subtree would not increase the causal width of resulting tree.
Hence, if F has a causal jointree of width w, then F’ has
a causal jointree of no greater width. This implies that the
width of 7' is no greater than the width of F. O

Proof of Theorem We first construct a new replication
G=FUF . By Theorem the width of G is no greater
than the width of F’. We then go through the functional
variables in reverse-topological order (as visited by Al-
gorithm [I)). For each variable X, we compare if the X-
mechanisms in F and G are equal. If so, we proceed to
the next functional variable in the order. Otherwise, G con-
tains more mechanisms than F and thus there are more
X-mechanisms than X -feeding factors in G. By Lemmal[7]
we are licensed to remove the excess X -mechanisms from
G without increasing its width. By the end of this process,
G will become equal to complete replication . Hence, the
width of F is no greater than the width of F’. O

PROOF OF THEOREM

Proof. In a complete replication, the number of mecha-
nisms for a functional variable is upper-bounded by the
total number of mechanisms of its children. Let X be a
functional variable and f(X) be the number of mechanisms
in the complete replication, then f(X) = > . f(Ci) <
¢-maxc, f(C;) where C; are the children of X in the DAG.
Hence, we can recursively bound the number of mechanisms
for all the functional nodes in a functional chain. Since the
longest functional chain has a length of k£, we can recur-
sively apply the above bound for at most k steps. When the
recursion terminates, mazc, f(C;) = 1 since all f(C;) will
be non-functional variables. Therefore, f(X) < c* for each
functional variable X in the replication. The inequality also

replication type
% fune — 5c 10¢ I5c | 20c 25¢ | 30c | complete
25% | 1262 | 3341 | 5946 | 8543 | 1114.1 | 13736 | 16342 | 18L1
50% | 1512 | 561.4 | 10760 | 1588.9 | 2104.1 | 26183 | 3132.3 | 5134
75% | 17877 | 799.3 | 15756 | 2352.0 | 3128.2 | 3907.0 | 4682.3 | 25643
100% | 187.0 | 867.7 | 1721.0 | 2573.5 | 3429.6 | 4280.1 | 5132.8 | 4448.0

Table 1: Average size of replications. Replication nc means: the
number of replicas for a node X is between (n — 1)c and nc where
c is the number of children for node X.

holds for non-functional variables, f(X) = 1 = ¢ < c*.
Given a total of n nodes in the DAG, we have at most
O(nck) factors in the complete replication. O

FURTHER EXPERIMENTS

We report here an additional experiment that reveals the
importance of replication strategies and how such strategies
interact with jointree construction methods.

We first note that classical methods for constructing jointrees
do not directly apply to the construction of jointrees for
replications. To see why, consider a set of factors F with
no replicas. The classical method for constructing a jointree
for such factors is to first construct a primal graph. This is a
graph with nodes corresponding to the variables in factors
F and which includes an edge between two variables iff
they appear in the same factorm Consider now a replication
F' of factors F. It follows immediately that the primal
graph of F’ is precisely the primal graph of F. Hence,
a classical jointree construction method will produce the
same jointree for factors F and for all their replications.
[Darwichel 2020]] proposed a jointree construction method
that targets complete replications. For a non-leaf functional
variable X, the method uses a distinct name for X in each
of its n replicas and these distinct names are also used in
the X -feeding factors whose count is also n. A jointree is
then constructed using a classical technique followed by a
reversal of the renaming process. While this method proved
generally effective, it applies only to complete replications.

The experiment we conducted compared the complete repli-
cation strategy with random replications of increasing size,
while varying the percentage of functional, non-root nodes
in a Bayesian network (25, 50, 75, 100). The comparison
was based on constructing jointrees using the minfill heuris-
tic (see Footnote . We used the method of [|[Darwichel,
2020] for complete replications, and adapted it somewhat
arbitrarily for random replications. In particular, when the
number of X -feeding factors did not match the number of
X -mechanisms, we renamed variables in the X -feeding fac-

"There are various methods for constructing a jointree based
on a primal graph; see [Darwiche, 2009, Ch 9]. One of the popular
methods is to construct a low-width elimination order for the
primal graph using the minfill heuristic and to then convert the
order into a jointree of no greater width. This is what we used.

30

25

20

15

max cluster size

10

c 5c 10c 15¢ 20c 25¢c 30c complete

replication strategy
-~ width ——25%_causal_width 50%_causal_width
—&—75%_causal_width -»—100%_causal_width

Figure 8: Illustrating the impact of replication strategies.

tors distinctly to the extent possible and randomly thereafter.

Table [T] shows the size of random and complete replications,
with some random replications being larger than complete
replications. Figure [§] shows the mean maximal cluster size
(width+1) for jointrees and causal jointrees where each data
point is an average over 100 random Bayesian networks,
each containing 100 nodes. A few patterns are clear. First,
the causal width is always smaller than the width, and quite
substantially smaller, even when using random replications.
Second, complete replications always produced a smaller
causal width compared to random replications, particularly
when the number of functional nodes is largest (100%).
Third, increasing the size of a random replication almost al-
ways correlated with decreasing the causal width but up to a
certain point after which increasing the size of a replication
did not help. The few exceptions to this pattern highlight
the suboptimality of the jointree construction method we
used (see Theorem [I3) and the suboptimality of the heuris-
tic for applying thinning rules. Beyond emphasizing some
of the theoretical results we presented earlier, this experi-
ment further highlights the practical significance of causal
treewidth and causal jointrees as they can lead to an expo-
nential reduction in inference complexity. The experiment
also highlights the need for developing principled jointree
construction methods that target replications which are not
complete, and highlight the need for further heuristics to
guide the application of thinning rules.

