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1 DETAILS OF BENCHMARKS
To the best of our knowledge, there are currently no unified bench-
marks for motion customization tasks. Most representative motion
customization methods [6–8] typically select 8-12 different types of
motions from UCF101 [3], UCF Sports Action [2], NTU RGB+D [1]
for evaluation, covering a wide range of human-centric sports and
daily activities. Following this setting, we have constructed our
benchmark. Considering that the existing datasets contain many
simple motions with small movement amplitudes, such as walk-
ing frontally and snapping fingers, we do not directly use them
for evaluation. Instead, we select videos with larger movement
amplitudes and higher quality to enhance the diversity and com-
plexity of our benchmark. We have carefully selected 12 motions
including bowing, clapping, skateboarding, drinking water, lifting
weights, kicking something, playing golf, riding a bicycle, pointing
to something, playing the guitar, waving hand, and wiping face.

2 ANALYSIS AND DISCUSSIONS
2.1 Discussion on Motion Fidelity Metric
Considering the diverse composition of our benchmark, which in-
cludes not only sports actions but also various limb movements that
accentuate dynamic processes, conventional metrics focused on
single frame-to-text alignment, such as Textual Alignment (CLIP-T)
and Entity Alignment (CLIP-E), may not provide sufficient measure-
ment for motion quality. For instance, given the prompt "A tiger
is drinking water in the forest", existing video foundation models
often generate videos showing a tiger merely standing by a lake.
While such outputs might achieve high CLIP-T and CLIP-E scores
and ostensibly align with the textual description, they frequently
misrepresent the specific motion in reference videos. To address
this challenge, we have introduced a novel metric named Motion
Fidelity (MoFid). This metric leverages the advanced video under-
standing capabilities of VideoMAE [4] to quantitatively assess how
well the motion in generated videos matches the motion observed
in the training dataset.

Considering the different action types covered by VideoMAE
and our method, this mismatch potentially leads to inaccuracies
in motion type prediction. For instance, a video generated in re-
sponse to the prompt "an alien is bowing" might be interpreted by
VideoMAE as depicting "robot dancing", while a video produced for
"a cat is wiping its face" could be erroneously categorized as "cat
petting". Such discrepancies underscore the limitations of using
straightforward classification accuracy to measure Motion Fidelity.
Instead, we employ the cosine similarity of video representations
to measure Motion Fidelity as mentioned in the main manuscript.

2.2 Tradeoff between Text/Entity Alignment
and Motion Fidelity

We aim to explore the correlation between Text/Entity Alignment
and Motion Fidelity, as depicted in Fig. 1. When a single reference

MoFid (Few-Shot)
MoFid (One-Shot)
CLIP-T (Few-Shot)
CLIP-T (One-Shot)
CLIP-E (Few-Shot)
CLIP-E (One-Shot)

Figure 1: Relationship between Text/Entity Alignment and
Motion Fidelity. A highMoFid score coupled with low CLIP-T
and CLIP-E scores indicate that the synthesized video’s ap-
pearance is excessively fitted to the reference video, resulting
in a lack of appearance diversity.

Table 1: Quantitative comparison results of motion cus-
tomization on multiple videos.

Methods CLIP-T (↑) CLIP-E (↑) TempCons (↑) MoFid (↑)

DreamVideo 0.1791 0.2208 0.9680 0.4243
MoTrans 0.2168 0.2225 0.9776 0.5386

image is provided, the finetuned ZeroScope achieves the highest
Motion Fidelity score, yet its CLIP-T and CLIP-E metrics score the
lowest. These results indicate a high similarity in both appearance
and motion between the synthesized video and the reference video.
In other words, while finetuned ZeroScope may accurately model
the motion in the reference videos, it fails to generate the new
context or entity implied by the prompts, thus limiting the overall
creativity and diversity of the generated content.

Additionally, the videos synthesized by the few-shot methods
align more closely with the text prompt, as evidenced by higher
CLIP-E score. This suggests that the few-shot setting, compared to
the one-shot setting, is better at synthesizing the subject specified in
the prompt and avoids replicating appearances from the reference
video. Based on the analysis above, it can be concluded that although
Motion Fidelity is a useful metric for assessing how consistently
a video’s motion matches that of the reference, it only provides a
limited view of overall performance. High Motion Fidelity coupled
with very low CLIP-T and CLIP-E scores typically indicates an
overfitting to the reference’s appearance. In contrast, our method
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Figure 2: Qualitative comparisons between MoTrans and DreamVideo.

consistently achieves high CLIP scores and Motion Fidelity in both
one-shot and few-shot settings, demonstrating its effectiveness in
modeling the motion pattern in reference videos without overfitting
to their appearances.

3 ADDITIONAL RESULTS
3.1 Comparisons with DreamVideo
We conduct additional qualitative and quantitative comparisons
with DreamVideo [5] to further demonstrate the superiority of
our proposed MoTrans. DreamVideo employs an updated Mod-
elScopeT2Vmodel, which has been fine-tuned on its internal dataset
at a resolution of 256. This fine-tuned version has not been made
available to the public. Consequently, for our comparative analysis,
we utilize the originally released ModelScopeT2V. DreamVideo is

optimized for generating videos at a resolution of 256x256. For
consistency and to enable a direct comparison, we also synthe-
size videos at this resolution. As shown in Table 1, DreamVideo
can generate subjects specified by the prompt but often struggles
to synthesize specific motions contained in the reference videos
and the context specified by the prompt. Correspondingly, while
its CLIP-E score is relatively high and comparable to our method,
there is a significant difference in its CLIP-T andMoFid scores when
compared to ours. The visual results in Fig. 2 further confirm these
observations. Compared to DreamVideo, our method demonstrates
superior motion modeling capabilities.

3.2 More Qualitative Results
Fig. 3 and 4 respectively present additional video examples synthe-
sized by our approach, given a single reference video and multiple
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reference videos. We further compare our approach with other
baselines, as demonstrated in Fig. 5. Supplementary results from
ablation studies are presented in Fig. 6.
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Figure 3: Results of motion customization of the proposed MoTrans on single reference video. The first row specifies the
reference video, showcasing a woman performing a skateboarding tic-tac action. Then the motion is transferred to various
subjects specified by the new prompt.
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Figure 4: Results of motion customization of the proposed MoTrans on multiple reference videos. The left side displays the
reference video, while the right side shows the results of transferring the motion from the reference video to new subjects.
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Figure 6: Additional ablation study.


	1 Details of Benchmarks
	2 Analysis and Discussions
	2.1 Discussion on Motion Fidelity Metric
	2.2 Tradeoff between Text/Entity Alignment and Motion Fidelity

	3 Additional Results
	3.1 Comparisons with DreamVideo
	3.2 More Qualitative Results

	References

