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Adaptive Learning of Tensor Network Structures

(Supplementary Material)

A PROOF OF PROPOSITION 1

Proposition. Let G g RRukx X Rismr o X i X Rie o1 X0 X Rie p for k € [p] be the core tensors of a
tensor network and let 1 < i < j < p. Let Ry1jy = Ry j» + 1if (i',5') = (4,7) and Ry ; otherwise,

~(k ~ - ~ -
and define the core tensors g( ) € REuRX X Rem1 o X i X R o1 XX Bip for k€ [p] by

e @)y, ~ (4 Gy, ~ (k o
")) = {(9 O)U)} (6" = {(9 0)(1)} and G = 6" fork € [p)\ {i. j}
where 0 denotes a row vector of zeros of the appropriate size in each block matrix.

Then, the core tensors G ) correspond to the same tensor network as the core tensors G (k), ie.,
~(1 -
(g, 6"y =ngD,... g,

Proof. Let T =TN(GW ... .GgP)and T = TN(Q(U7 e ,Q(p)). We first split the TN 7" and T~

in two parts by isolating the ith and jth nodes from the other nodes of the TN:

o let G\(9) g RITkzis dexTliz; Bose Il ik be the tensor obtained by contracting all the
core tensors of T~ except for the ith and jth cores,

o let G e R%*di XTIz RionxIlizi Rk pe the tensor obtained by contracting G and
gl along their shared index (i.e., the jth mode of the ¢th core is contracted with the jth
mode of the 7th core),

o let Q(i’j) € R%*¥dixTlis; Rise X1 Bk pe the tensor obtained by contracting Q(i) and
()
g

along their shared index.

One can check that the contraction between the last two modes of G'\("7) and the last two modes
of g(i’j )is a reshaping of 7. Similarly, since Q(k) = g(’“) for any k distinct from ¢ and j, the
contraction over the last two modes of G\("7) and G (9) gives rise to the same reshaping of T.
Therefore to prove 7 = 7' it suffices to show that G (1.7) — Q (i’j).

This argument is illustrated in the tensor network diagrams below for the particular case p = 4, ¢ = 1,
j=2.

Let (g(i’j))m} (resp. (Q(i’j))[m]) be the matricization of G (resp. Q(i’j)) with mode 1 and 3 as
the rows and modes 2 and 4 as the columns. We have

= (4,5) 5T 5(4) i j i\
G J )[173] — g<j> g<;> — gEj))Tg%) + 00" = (g(m))[lyg]’
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where the notation AE:?)) denotes the matrix obtained by transposing the mth mode of A (0 the
first mode and matricizing the resulting tensor along the nth mode if m < n and along the (n + 1)th

mode if m > It then follows that g“ﬂ‘) = Q(i’j), hence 7 = T.

Continuing with the particular case p = 4, ¢ = 1, 7 = 2, the second part of the proof can be illustrated
by the following tensor network diagrams.

B ALGORITHM DETAILS

B.1 SUBROUTINES OF GREEDY—-TN

The pseudo-code of the subroutines of Greedy—TN (Algorithm[I) are given in Algorithms 2} [3]and

Algorithm 2 add—slice(g(i),j)

Input: Core tensor to add new slice to g“), mode to add new slice j.
1: if j > 7 then

- (4) (g(i)) ,

2: g« reshape( _0_(]) 7(R1,i Xowe XRi—l,i X d; XRi,i—i—l Xowe XRi,j_l X (Ri7j—|—
1) X Ri,j—i-l X X Ri,p))

3: elseif j < i then
- (1) (g(i)) .

4: g — reshape( _0_(]) ,(Rlﬂ‘ ><-~-><Rj,1’i X(Rjﬂ‘—l—l) XR]*JFLZ* X"'XRifl,i X
di X Rijip1 X -+ X Ri,p))

Output: G @

"For example, if A2 € Rr1>*dxnaxna, Agg € R™3*4"1"4 5 obtained by transposing A in a tensor of
size d X n1 X n3 X ng and matricizing the resulting tensor along the 3rd mode. Similarly, Ag; € RMxdnsna

is obtained by transposing A® in a tensor of size d X n1 X n3 X ng and matricizing the resulting tensor along
the 2nd mode. Note that AET)) is always a column-wise permutation of the classical matricization AE:))
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Algorithm 3 find-best-edge(L, (W, ---,GP))

Input: Loss function £, core tensors GV, ... gP).
1: best-loss <— 0o

2: fori < 1topdo

3 for j < i+ 1topdo

4: Q(i) + add-slice(G", ;)

5 Q(j) +— add- slice(g(j),i)

6 GW,... g1 g¥ gi+v ... gu-» gV gl+n . g -

optimize ,C(TN(Q(U7 e ,Q(HX g(i), g(i—H), i ,g(j_l), g(j), g(j+1), e 7g(p)))
w.r.t. new slices in Q @ and G ‘ _ _
7. IOSS = E(TN(Q(I), e 7g(i*1)’ g(l)a g(iJrl)’ Tt 7g(j71)7 g(j)a g(j+1)7 et ’g(p)))
8: if loss < best-loss then
9: best-edge = (i, j)
10: best-loss = loss
Output: best-edge

Algorithm 4 split—nodes((g(l), e ,g@)), €)

Input: Core tensors G (1), -G ®) splitting node threshold €.
1: fori < 1topdo

2:  for every bi-partition (M, N) of [p] do

3: U,D,V'T =e¢-truncated- SVD(reshape(g(i),di HjeM R; ; x HjeN R; ;)
4: R « rank of the 5 truncated-SVD

5: if splitting node G reduces the number of parameters then

6: Vj € [pl,let R; j = R, ; if j € M and 1 otherwise.

7: G\ reshape(U,RM X oo X Ri_l’i X di X Ri,i—s-l X oo X Riyp X ]A%)

8: Vj € [p],let R, j = R; ; if j € N and 1 otherwise.

9: g(p+1) — reshape(DVT,Ru X X Ri—l,i X R X Ri,i-‘rl X oo X Ri,p X 1))
10: for j € [p] \ {i} do

11: g (7) — reshape(g 7) le o X Rj—Lj X dj X Rj,j-i-l X oo X Rj,p X 1))
12: p —p+1

Output: (G, ... g»)

B.2 COMPUTATIONAL COMPLEXITY

The overall time complexity of Greey—TN is dominated by the whose complexity is in O(p?T +
pd? R?P) where T is the time complexity of optimizing the loss function w.r.t. one of the core tensors.
The first term corresponds to the find-best—-edge subroutine and the second one corresponds to
the split—nodes sub-routine. For example, when optimizing a squared error loss with SGD, T is
in O(Rp_ldp ) where R = max; ; R; ; is the maximum rank in the tensor network and d = max; d;
is the maximum dangling dimension. Thus, in this case, when R < d the overall complexity is
dominated by the find-best-edge subroutine.
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 TENSOR DECOMPOSITION EXPERIMENT

In Figure |7} we show the most frequent tensor network structure recovered by the greedy algorithm
for each of the 4 targets used in the tensor decomposition experiment (see Figure ). We see that
Greedy-TN and Greedy-int always recover the same structure except for the Tucker target,
where Greedy—TN finds the best TN structure without internal nodes to approximate the target. We
also observe that the greedy algorithm recovers the correct TN structure for all targets most of the
time, except for the TR target.

Target tensor Greedy—TN tensor Greedy—int tensor

Figure 7: Most common tensor network structure returned by Greedy—-TN and Greedy—-int over
the 100 runs of the tensor decomposition experiment.

C.2 IMAGE COMPLETION

The images recovered at each iteration of Greedy—TN on the Einstein image completion task, along
with the relative test error and number of parameters for each step, are shown in Figures [§]and [9]

C.3 ABLATION STUDY

Here, we study if transferring the weights at each step would lead to better results. We randomly
generate 50 target tensors of size 7 X 7 x 7 x 7 x 7 with a TT structure of rank 6, 3,6,5. We run
Greedy—-TN with and without weight transfer until convergence.

The results are shown in Figure |10} where we see that using the weight transfer mechanism results in
a lower loss with the same number of parameters, compared to using a random initialization at each
greedy step. This shows that transferring the knowledge from the previous greedy iterations leads to
a better initialization for the continuous optimization.
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Iter. 3 - 135 param.
test error = 35.07%

Iter. 1 - 75 param.

Iter. 2 - 95 param.
test error = 37.739

Iter. 4 - 165 param.
test error = 33.11Y%

Iter. 6 - 298 param. Iter. 8 - 478 param.

Iter. 5 - 215 param.
test error = 25.199

Iter. 7 - 358 param

Iter. 13 - 1338 param.
test error = 19.139

Iter. 9 - 588 param, Iter. 10 - 688 param.

test error = 22.32Y%

Iter. 12 - 1078 param.

Iter. 11 - 888 param.
9 test error = 20.009

Iter. 14 - 1588 param.
test error = 18.479

Iter. 15 - 1644 param.
test error = 18.089

Iter. 16 - 1964 param.
test error = 17.19%

Iter. 17 - 2070 param.
test error = 16.749

Iter. 18 - 2390 param.
test error = 16.319

Iter. 19 - 2790 param. Iter. 20 - 3190 param. Iter. 21 - 3650 param. Iter. 22 - 4160 param. Iter. 23 - 4690 param.
=1 ) =1 = 13 = 128

Iter. 25 - 5950 param.
test error = 12.18Y%

Iter. 27 - 7370 param. lter. 28 - 7466 param.

Iter. 24 - 5270 param.
639 test error = 11.549% test error = 11.459

Iter. 26 - 6610 param.
929

Figure 8: Solutions found by Greedy—TN for the Einstein image completion experiments, labeled
by number of parameters and relative test error w.r.t. the full image. [continued on next page]
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Iter. 29 - 8216 param. lIter. 30 - 9156 param.
.28 1939

Iter. 31 - 10096 param. Iter. 32 - 11026 param. Iter. 33 - 11956 param
test error = 10.60% 10.47Y

Figure 9: Solutions found by Greedy—-TN for the Einstein image completion experiments, labeled
by number of parameters and relative test error w.r.t. the full image. [continued from previous

page]

1.00 - —
—— transfer init
0.75 - random init
@ 0.50 -
o
0.25 -
0.00 -
0 250 500 750 1000
parameters

Figure 10: Comparison of Greedy—TN with and without weight transfer on a TT structure decom-
position task. Curves represent the reconstruction error averaged over 50 runs, and shaded areas
correspond to standard deviations.
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