
A Policy Optimization Method Towards Optimal-time
Stability

Anonymous Author(s)
Affiliation
Address
email

Abstract: In current model-free reinforcement learning (RL) algorithms, stability1

criteria based on sampling methods are commonly utilized to guide policy opti-2

mization. However, these criteria only guarantee the infinite-time convergence of3

the system’s state to an equilibrium point, which leads to sub-optimality of the4

policy. In this paper, we propose a policy optimization technique incorporating5

sampling-based Lyapunov stability. Our approach enables the system’s state to6

reach an equilibrium point within an optimal time and maintain stability there-7

after, referred to as "optimal-time stability". To achieve this, we integrate the8

optimization method into the Actor-Critic framework, resulting in the development9

of the Adaptive Lyapunov-based Actor-Critic (ALAC) algorithm. Through evalua-10

tions conducted on ten robotic tasks, our approach outperforms previous studies11

significantly, effectively guiding the system to generate stable patterns.12

Keywords: Reinforcement Learning, Robotic Control, Stability13

1 Introduction14

State space

𝑐! 𝑠 ≤ 𝑏

𝑠"

𝑐! 𝑠 = 0

Diverging trajectory

Optimal trajectory w/ stability

Sub-optimal trajectory w/ stability

Unstable trajectory

Figure 1: Intuitive example showing the optimality
and stability. The stability condition is the mean cost
stability defined in Definition 2.1. The figure shows
the relationship between three sets, like the whole state
space, {s | cπ(s) ≤ b} and {s | cπ(s) = 0}. The red
line represents a diverging trajectory. The yellow line
represents a trajectory without stability. The trajectories
coloured cyan and purple remain stable, whereas the
state in the purple trajectory reaches the set {s | cπ(s) =
0} more quickly.

Model-free reinforcement learning (RL) con-15

trollers have achieved excellent performance in16

a large variety of robotic tasks [1, 2]. How-17

ever, current methods lack a stability guarantee,18

which poses additional risks to both the robots19

and their environments, especially in the pres-20

ence of external disturbances [3]. Therefore,21

ensuring stability in RL-based methods is a cru-22

cial requirement.23

In control-theoretic methods, there exists an24

effective tool, Lyapunov functions, to assess25

the stability [4]. Recently, researchers have26

employed neural networks to search for fea-27

sible Lyapunov functions [5, 6, 7, 8]. No-28

tably, model-free methods have integrated pol-29

icy and Lyapunov function learning based on30

discrete sampling-based stability, demonstrat-31

ing promising results in robotic control tasks32

[9, 10, 11, 12, 13] (See Appendix A for related33

work). However, these methods only guarantee34

the eventual convergence of the system’s state35

to an equilibrium point. Figure 1 illustrates a limitation of this guarantee, where two stability-36

maintaining state trajectories (colored cyan and purple) cannot be differentiated by current methods,37

despite the purple trajectory exhibiting better stability convergence efficiency. In our experiments,38

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

we find that this loose guarantee fails to provide adequate guidance for policy learning. Inspired by39

finite-time stability in continuous-time control theory [14], we propose an improved objective where40

the state converges to the equilibrium point within an optimal time, which we refer to as "optimal-time41

stability" in this paper. This optimal condition facilitates rapid convergence to the equilibrium point42

while ensuring stability in the system. Our objective is to develop a policy capable of generating the43

purple trajectory depicted in Figure 1.44

To ensure optimal-time stability in the system, we introduce a sampling-based Lyapunov stability45

certification, which guarantees the fulfillment of the mean cost stability condition. Subsequently, we46

design a policy optimization method that facilitates the gradual convergence of the policy towards47

the optimal point, where the system achieves optimal-time stability. By leveraging this policy48

optimization technique, we develop the Adaptive Lyapunov-based Actor-Critic algorithm (ALAC)49

for learning both a Lyapunov function and policy. Experimental results validate the effectiveness50

of our approach in ensuring optimality and stability across various robotic control tasks, including51

legged robot walking and free-floating space robot trajectory planning. Specifically, our method52

significantly outperforms baselines in ten robotic control environments, and the trained Lyapunov53

function provides effective guidance for policy learning compared to previous methods1.54

2 Problem Formulation55

A robotic system can be modelled as a Markov Decision Process (MDP). MDP mainly consists of56

five elements, S, A, P , C and ρ. Here, S is the state space, A is the action space, P is the dynamic57

transition function, and C is the cost function. Besides, the distribution of starting state denotes58

s0 ∼ ρ. At timestep t, st ∈ S represents the state the robot observes. Then, at ∈ A is the action59

executed by the agent (robot). Note that at is sampled from the agent’s policy π(at|st). According to60

P(st+1|st, at), the state of system transfers to the next state st+1 with a certain probability. At the61

same time, the agent receives the cost C(st, at). And then, we can define the state distribution T :62

T (s|ρ,π, t+ 1) =

∫
S

∫
A
π(at|st)P(st+1|st, at) da T (s|ρ, π, t) ds (1)

Note that T (s|ρ, π, 0) = ρ holds.63

An MDP system corresponds to a continuous-state and discrete-time dynamical system with state64

space S and action space A. Generally speaking, the system’s stability can be verified by a classical65

tool, Lyapunov’s stability function (Appendix B.1). However, the classical definition should be66

satisfied in the whole state space S, so it is unsuitable for sampling optimization, especially for67

model-free RL methods. To extend the stability to a reasonable case in model-free RL, we introduce68

the Mean Cost Stability as the stability condition in this paper.69

Definition 2.1 (Mean Cost Stability). A robotic system remains stable in mean cost when satisfying70

the following equation, where cπ(st) = Ea∼πC(st, at) and b is a constant [9].71

lim
t→∞

Est∼T cπ(st) = 0, cπ(s0) ≤ b (2)

Concretely, for most robotic tasks, the mean cost stability is related to the stability of the closed-loop72

system [9]. Our aim is to reach an equilibrium point within an optimal time and behave stably around73

it, to achieve the optimal-time stability. Thus, we construct the problem formulation represented as74

follows:75

min
π

Eρ,π,P [

∞∑
t=0

γtcπ(st)] s.t. lim
t→∞

Est∼T cπ(st) = 0 (3)

Specifically, the constraint part can facilitate the system’s state to converge to an equilibrium point.76

The objective of the task is to minimize the sum of discounted costs. When the sum of discounted77

costs becomes smaller, the system converges to an equilibrium point more quickly. Therefore, by78

minimizing the sum of discounted costs, we ensure that the system’s state converges to an equilibrium79

point within an optimal time.80

1For more information, please visit our project page at https://sites.google.com/view/adaptive-lyapunov-
actor-critic.

2

https://sites.google.com/view/adaptive-lyapunov-actor-critic
https://sites.google.com/view/adaptive-lyapunov-actor-critic

3 Policy Optimization with Sampling-based Stability81

First, we present a sampling-based Lyapunov stability certification that satisfies the mean cost stability82

condition defined in Definition 2.1. Additionally, we introduce a Lyapunov candidate and learnable83

parameters into the stability condition, to design a policy optimization method for the problem (3).84

3.1 Sampling-based Stability Certification85

The sampling-based Lyapunov stability we propose is based on some mild assumptions as shown86

in Appendix C.1. Furthermore, we define the sampling distribution Uπ = limT→∞
1
T

∑T
t=0 T (s |87

ρ, π, t). Then, the sampling-based Lyapunov stability is given over the sample distribution Uπ .88

Theorem 3.1 (Sampling-based Lyapunov Stability). An MDP system is stable with regard to the89

mean cost as shown in Definition 2.1, if there exists a function L : S → R meets the following90

conditions:91

αcπ(s) ≤ L(s) ≤ βcπ(s) (4)
92

L(s) ≥ cπ(s) + λEs′∼Pπ
L(s′) (5)

93

Es∼Uπ
[Es′∼Pπ

L(s′)− L(s)] ≤ −k[Es∼Uπ
[L(s)− λEs′∼Pπ

L(s′)]] (6)

where α, β, λ and k is positive constants. Among them, Pπ(s
′|s) =

∫
A π(a|s)P(s

′|s, a) da holds.94

For proof, please see Appendix C.2.95

In practice, the theorem reveals that the guarantee of sampling-based Lyapunov stability corresponds96

to the existence ofL function. It is worth noting that our method extends the previous method to a more97

general case. Intuitively, the previous method is a special case when L(s) = cπ(s) + λEs′∼PπL(s′)98

holds [9]. Taking advantage of the sampling-based Lyapunov stability, we can obtain the policy that99

guarantees the system’s stability in the RL framework.100

3.2 Policy Optimization Towards Optimal-time Stability101

To mitigate the searching difficulty under multiple constraints, we propose a Lyapunov can-102

didate Lπ(s) which naturally meets the constraints in Equation (4) and (5), Lπ(s) =103

Eπ[
∑∞

t=0 γ
tcπ(st)|s0 = s]. Please see Appendix B.2 for a detailed demonstration. Recalling the104

optimization problem (3), we find that the constraint part equals Equation (6) with respect to Lπ(s),105

as well as the objective part can be represented as minπ Es∼ρLπ(s). Therefore, the optimization106

problem can be rewritten as:107

min
π

Es∼ρLπ(s)

s.t. Es∼Uπ
[Es′∼Pπ

Lπ(s
′)− Lπ(s)] ≤ −k[Es∼Uπ

[Lπ(s)− λEs′∼Pπ
Lπ(s

′)]]
(7)

A potential approach to tackle the problem (7) is to formulate a unified objective function that removes108

the constraints. However, directly combining the objective with constraints through simple addition109

may lead to a sub-optimal policy or an invalid Lyapunov function. Therefore, we propose a policy110

optimization method that progressively seeks the optimal policy while ensuring stability by making111

the constraints’ parameters λ and k learnable. The method is outlined as follows.112

max
λ,k

Es∼Uπ
∆Lπ(s) s.t. π ∈ {π|Es∼Uπ

∆Lπ(s) ≤ 0} (8)

where113

∆Lπ(s) =Es′∼PπLπ(s
′)− Lπ(s) + k[Lπ(s)− λEs′∼PπLπ(s

′)] ≤ 0 (9)

Intuitively, the constraint part corresponds to the constraints defined in Equation (7). The objective114

seeks to find optimal values for λ and k to maximize Es∼Uπ∆Lπ(s). Alternatively, we can view this115

objective as enhancing the strength of the constraints by maximizing Es∼Uπ∆Lπ(s). By gradually116

improving the constraints, minimizing Lπ(s) can be achieved in Equation (7). Because, as the117

constraints improve, the policy should ensure that Lπ(s
′) at the next state becomes smaller, as118

3

𝑠, 𝑎, 𝑠!, 𝑐 ∼ 𝐷

Replay Buffer Lyapunov Candidate

TD-like Learning

Lyapunov Critic Learning

Lagrangian-based Policy Learning

max",$	  𝔼&Δℒ'!(𝑠, 𝑎)
s.t. 𝜋 ∈ {𝜋|𝔼&Δℒ'!(𝑠, 𝑎) ≤ 0}

Optimization Problem

𝓛𝝅(𝒔)
𝓛𝜽(𝒔, 𝒂)

𝜵𝜽(;)

Lagrange Multiplier
𝝀𝒍

Adaptive Factors
𝝀, 𝒌

𝜵𝝓(;)

Policy Network

Lyapunov Value

Optimal Policy with Mean
Cost Stability

Figure 2: Architecture illustrating the practical implementation of ALAC. The RL agent is optimized
by an Actor-Critic framework. The main contents consist of two parts. For the Lyapunov critic
learning, the constrained Lyapunov network is updated by the TD-like learning with respect to the
Lyapunov candidate. During the policy Learning, we use the Lagrangian-based method to solve the
optimization problem shown in Equation (8). Meanwhile, the parameters λ and k are adjusted by the
Lagrange multiplier λl adaptively.

dictated by the constraint part in Equation (8). Considering the sampling distribution Uπ , Lπ becomes119

simultaneously smaller at every state along the state trajectories. This also applies to Lπ under120

the initial state distribution ρ. As the strength of the constraints reaches its maximum value, the121

minimization of Lπ(s) is achieved. Furthermore, Equation (8) decouples the learning of policy and122

constraints’ parameters to simplify the complexity of the problem.123

In addition, we offer a comprehensive illustration to explain the decrease of Lπ(s
′) using a classical124

tracking task, which is provided in Appendix C.4. Interestingly, the form of Equation (9) bears125

resemblance to the finite-time tracking method in continuous-time systems (Appendix C.3).126

4 Adaptive Lyapunov-based Actor-Critic Algorithm127

In this section, we propose the Adaptive Lyapunov-based Actor-Critic algorithm (ALAC) to solve the128

problem shown in Equation (8). The main contents are as follows: 1) we construct an Actor-Critic129

framework that facilitates the learning of both the Lyapunov function and the policy; 2) we use a130

TD-like learning method to update the parameters of the constrained Lyapunov network; 3) we apply131

the Lagrangian-based method to realize the process of policy optimization. Concretely, Figure 2132

shows the architecture of the ALAC algorithm.133

First, we construct two neural networks, namely actor πϕ(a|s) and Lyapunov critic Lθ(s, a). Among134

them, ϕ and θ represent the parameters of two networks, respectively. The actor πϕ(a|s) maps a135

given state s to a distribution over action. The action distribution is modelled as a Gaussian, with a136

state-dependent mean µϕ(s) and diagonal covariance matrix Σϕ(s).137

4.1 Lyapunov Critic Learning138

The learning of Lyapunov critic Lθ(s, a) aims to fit the value of the target Lyapunov candidate Lπ(s).139

As a matter of fact, Lπ(s) is the expectation of Lθ(s, a) over the distribution of actions. Specifically,140

EπLθ(s, a) = Lπ(s) holds. In the context of this property, the above theoretical results about Lπ(s)141

are also suitable for our critic network.142

For the training of Lθ(s, a), because we choose the value function as the Lyapunov candidate, we143

can update θ according to the TD error:144

θk+1 = θk + αθ(∇θ(Lθ(s, a)− (cπ + γL′(s′, π′(·|s′))))2) (10)

where k is the number of iterations. L′ and π′ are the target networks parameterized by θ′ and145

ϕ′, respectively. In the Actor-Critic method, the parameters θ′ and ϕ′ are usually updated through146

4

exponentially moving average of weights controlled by a hyper-parameter σ ∈ (0, 1). In order to147

encourage accurate and efficient learning, we construct a constrained critic network. The constrained148

network ensures that the output is non-negative and the Lyapunov value should be zero when the state149

is an equilibrium point. For the details, please see Appendix C.5.150

4.2 Lagrangian-based Policy Learning151

Policy learning aims to search feasible parameters of λ, k and the policy network to solve the152

optimization problem defined in Equation (8). According to Equation (9), we denote ∆Lπϕ
(s, a) as153

Lθ(s
′, πϕ(· | s′))− Lθ(s, a) + k[Lθ(s, a)− λLθ(s

′, πϕ(· | s′))].154

First, we solve the sub-problem of Equation (8), finding πϕ when satisfying the constraint with155

arbitrary λ. Applying the Lagrangian-based method [15], the parameters of πϕ are updated by:156

ϕk+1 = ϕk + αϕ(λl∇a∆Lπϕ
(s, a)∇ϕπϕ(s, a)) (11)

where αϕ is the learning rate of ϕ. λl represents the Lagrange multiplier of the constraint. During the157

training, λl is updated by gradient ascent to maximize ∆Lπϕ
(s, a).158

λk+1
l = λkl + αλl

∆Lπϕ
(s, a) (12)

Note that λl should always be positive. αλl
is the learning rate. It is worth noting that λl is clipped159

by 0 and 1, to bound the value.160

In Section 3.2, we discuss the need to find suitable values for λ and k to maximize ∆Lπϕ
(s, a) and161

enhance the constraints. Referring to Equation (9), we observe that λ should decrease towards 0 to162

improve the constraints. Meanwhile, we find the Lagrange multiplier λl ranging from 1 to 0, where163

it decreases as the constraints are satisfied. To update λ, we use the rule λ← min(λl, γ), with the164

range of λ restricted based on Theorem 3.1, where it should be between γ and 0. As for the selection165

of k, we adjust its value based on the Lagrange multiplier, setting k ← 1− λl. By increasing k, the166

strength of the constraints gradually improves throughout the training process. Finally, when λ and k167

stabilize, indicating that the Lagrange multiplier λl remains constant, we can observe that ∆Lπϕ
(s, a)168

approaches 0 according to Equation (12). This implies that the objective of maximizing ∆Lπϕ
(s, a)169

is achieved since the maximum value of ∆Lπϕ
(s, a) does not exceed 0 due to the constraint part170

in Equation (8). Besides, the updating of k and λ has the corresponding effect on the strength of171

constraints, so it doesn’t cause the training collapse.172

In addition, to improve the exploration efficiency, we add a constraint about the minimum entropy as173

the same as the maximum entropy RL algorithms. Until now, we have designed the complete ALAC174

algorithm, and the pseudo-code is provided in Appendix D.175

4.3 Theoretical Analysis176

Theorem 3.1 has assumed that the expectation is obtained perfectly, but this is not the case in practical177

settings due to finite samplings. Thus, we derive the bias between the practical computing and178

theoretical analysis about Uπ .179

To be concrete, we need an infinite number of trajectories with infinite time steps to estimate180

the distribution Uπ. Whereas in practice, only M trajectories of T time steps are accessible. To181

better illustrate the issue, we define a finite sampling distribution UT
π , apparently where UT

π =182

1
T

∑T
t=0 T (s | ρ, π, t). First, we provide a quantitative bound of expectation from Uπ and UT

π .183

Theorem 4.1. Suppose that the length of sampling trajectories is T , then the bound can be expressed184

as:185

|Es∼Uπ∆Lπ(s)− Es∼UT
π
∆Lπ(s)| ≤ 2

(k + 1)cπ
1− γ

T q−1 (13)

where cπ is the maximum of cost and q is a constant in (0, 1). For proof, please see Appendix C.6.186

Next, we take the number of trajectories into consideration and derive the probabilistic bound of the187

difference of ∆Lπ(s) estimated by UT
π distribution and M trajectories.188

5

Table 1: Performance evaluations of the cultivated costs and stability constraint violations on ten
environments compared with six baselines. All quantities are provided in a scale of 0.1. Standard
errors are provided in brackets. (if the mean constraint violations are less than 0.2, the sign is ↓ else
↑.‘-’ indicates the algorithm does not contain the stability constraints.)

Task Metrics ALAC SAC-cost SPPO LAC LAC∗ POLYC LBPO TNLF

Cartpole-cost Cost Return 26.2(7.0) 22.7(12.6) 102.3(59.3) 31.0(10.1) 31.5(5.1) 104.8(70.7) 205.3(27.0) 33.5(24.5)

Violation ↓ - ↑ ↓ ↓ ↓ - ↓

Point-circle-cost Cost Return 111.1(4.5) 111.8(2.4) 247.9(58.2) 958.6(15.5) 112.0(5.0) 207.0(62.4) 722.1(126.1) 145.8(38.0)

Violation ↓ - ↑ ↓ ↑ ↓ - ↓

Halfcheetah-cost Cost Return 1.7(0.7) 16.6(25.2) 144.0(14.6) 119.5(37.3) 1.8(0.5) 168.8(10.7) 37.8(24.8) 6.5(1.4)

Violation ↓ - ↑ ↓ ↓ ↓ - ↓

Swimmer-cost Cost Return 44.6(4.8) 53.7(12.4) 52.5(4.2) 47.5(1.3) 44.8(3.0) 104.7(11.0) 52.3(11.3) 46.5(2.4)

Violation ↓ - ↑ ↓ ↑ ↓ - ↓

Ant-cost Cost Return 101.0(42.1) 155.2(29.9) 255.0(31.2) 166.9(13.6) 125.6(12.5) 259.8(37.1) 114.6(26.1) 186.8(11.0)

Violation ↓ - ↑ ↓ ↑ ↓ - ↓

Humanoid-cost Cost Return 354.6(97.1) 441.9(18.3) 531.8(22.9) 431.3(14.9) 368.3(76.6) 490.4(32.5) 452.4(13.9) 317.7(31.1)

Violation ↓ - ↑ ↓ ↑ ↓ - ↓

Minitaur-cost Cost Return 493.0(67.9) 692.2(93.0) 950.0(72.3) 612.2(47.8) 666.6(306.7) 608.3(65.6) 838.3(237.0) 382.9(62.6)

Violation ↓ - ↑ ↓ ↑ ↓ - ↓

Spacereach-cost Cost Return 1.6(0.2) 8.9(8.8) 19.4(2.5) 35.2(1.6) 1.8(0.4) 125.7(20.8) 31.0(19.1) 112.1(53.0)

Violation ↓ - ↓ ↓ ↓ ↓ - ↓

Spacerandom-cost Cost Return 2.3(0.3) 38.4(28.6) 53.2(32.7) 33.9(3.5) 2.8(0.9) 112.8(19.4) 35.82.9) 85.9(42.3)

Violation ↓ - ↓ ↓ ↓ ↓ - ↓

Spacedualarm-cost Cost Return 26.1(3.5) 36.1(8.3) 201.9(48.8) 66.3(10.6) 63.6(62.1) 140.6(17.4) 37.87.5) 280.1(99.3)

Violation ↓ - ↓ ↓ ↓ ↓ - ↓

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

300

350

400

450

500

550

Co
st

 R
et

ur
n

Humanoid-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

5

10

15

20

25

30

Vi
ol

at
io

n

Humanoid-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

400

600

800

1000

Co
st

 R
et

ur
n

Minitaur-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

2

4

6

8

10

12

Vi
ol

at
io

n

Minitaur-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

Figure 3: Ablation studies of the sampling-base stability we propose. ALAC(original) shows
comparable or the best performance compared with other certifications on each task.

Theorem 4.2. Suppose that the length of sampling trajectories is T and the number of trajectories is189

M , then there exists the following upper bound:190

P(| 1

MT

M∑
m=1

T∑
t=1

∆Lπ(s
m
t)− Es∼UT

π
∆Lπ(s)| ≥ α) ≤ 2 exp(− Mα2(1− γ)2

((1− kλ)2 + (k − 1)2)cπ
2)

(14)
where smt represents the state in the m-th trajectory at the time t. For proof, please see Appendix C.7.191

Theorems 4.1 and 4.2 highlight the theoretical gap between infinite and finite samples in practical192

usage. In addition, they provide valuable insights into the choice of k. Theorem 4.1 suggests that193

when k approaches 0, the gap becomes small in practice. On the other hand, Theorem 4.2 indicates194

that k is better to be set to 1. This implies that the optimal choice of k lies within the range of 0 to 1.195

5 Experiments196

In this section, we demonstrate empirical evidence that ALAC captures an improved trade-off between197

optimality (sum of costs) and stability compared to the baseline approaches. We test our method and198

baselines in ten robotic control environments. Details of the environments are given in Appendix199

E.1. Furthermore, we benchmark the ALAC method against five algorithms with a neural Lyapunov200

function, including POLYC [10], LBPO[16], TNLF[11], SPPO[17] and LAC [9] 2. We also take201

2We find LAC with a large α3 (see Appendix E.2.1) performs better, so we call it LAC∗ for the distinction
between them.

6

Cartpole-cost HalfCheetah-cost Minitaur-cost
𝑔𝑜𝑎𝑙!

𝑔𝑜𝑎𝑙" 𝑔𝑜𝑎𝑙#

Spacerandom-cost

Steps

𝜑

𝜑 ̇

ℒ!!

Values

Figure 4: Visualization of states for ALAC method by t-SNE and phase trajectory techniques.
The top row of the figure depicts the t-SNE dimension reduction technique. (Cartpole-Cost is
visualized within 2 dims while others within 3 dims.) The bottom row shows the phase trajectories
and Lyapunov-value surfaces of environments. ψ and ψ̇ denotes the angular position and velocity
respectively.

Table 2: Average evaluation score and standard deviation on our environments for ALAC with and
without the errors under different biases of goals. (w/ errors means using errors between the desired
and achieved goals as extra elements of states for the agent)

Task Point-circle-cost Halfcheetah-cost Spacereach-cost
Biases of goals -20% 0% 20% -20% 0% 20% -20% 0% 20%

ALAC w/ errors 85.2(4.5) 110.1(3.9) 148.5(12.2) 3.9(0.8) 2.5(0.6) 8.3(4.7) 6.4(1.7) 2.4(1.4) 8.7(1.7)

ALAC w/o errors 178.8(7.8) 118.9(11.4) 247.8(11.9) 10.1(2.1) 3.3(1.2) 13.4(2.1) 11.9(0.4) 1.6(0.2) 11.5(0.3)

SAC-cost w/ errors 84.2(4.2) 109.3(2.2) 140.1(3.0) 60.1(27.5) 81.6(50.2) 129.5(85.6) 21.9(12.3) 22.1(16.9) 20.6(18.1)

SAC-cost w/o errors 180.9(6.3) 115.3(4.0) 240.3(3.7) 15.9(15.7) 16.7(25.5) 33.5(34.0) 16.1(6.2) 8.8(8.8) 15.0(7.2)

the SAC-cost [18] method into account because the method is very close to our method without the202

stability condition. For the detailed hyper-parameter settings see Appendix E.2.1 and E.2.2.203

5.1 Comparing with Baselines204

In this part, we evaluate the optimality and stability of our methods and baselines. The results205

demonstrate ALAC using optimal-time stability makes the system’s state converge to an equilibrium206

point within an optimal time compared with baselines. To fairly evaluate the performance of the207

methods mentioned above, we run the experiments over 5 rollouts and 5 seeds for all algorithms. We208

use the accumulated cost in a testing episode as the metric of optimality and the stability constraint209

violations as the stability metric. Table 1 shows the performance on all tasks, and the training curves210

for different algorithms are in Appendix E.3. Although LAC∗ using tighter constraints achieves211

comparable performance with our method in contrast to LAC, the stability violations in LAC∗ remain212

at a high level on many tasks. Admittedly, TNLF achieves lower cost than ALAC on Minitaur-cost,213

but TNLF converges to suboptimal policies on many tasks. According to Figure 10, we notice that in214

TNLF the trained Lyapunov function is close to 0 quickly. Hence, it does not provide dense guidance215

for the policy, thus leading it to a suboptimal solution.216

5.2 Ablation Studies217

To demonstrate the effectiveness of ∆Lπϕ
≤ 0, we do the ablation studies about different constraints218

in ALAC. We compare the performance of the original ALAC with a version that uses ∆L1
πϕ

219

(λ = 0) and ∆L2
πϕ

(λ = 1), and with a version where k is a constant throughout training. The220

7

details are given in Appendix E.4. Figure 3 and Figure 9 (see Appendix D.4) depict the accumulated221

cost and constraint violations on all tasks, where the algorithms are modified from ALAC directly.222

ALAC(∆L2
πϕ

) achieve lower performance than ALAC, while ALAC(∆L1
πϕ

) performs the tasks223

comparably with ALAC. Nevertheless, more strict constraints (ALAC(∆L1
πϕ

)) negatively affect224

its performance on constraint violations, as shown in Figure 3. This is because there doesn’t exist225

a reasonable policy that meets such strict constraints. Moreover, the results of ALAC(k = 0.1)226

comparing with ALAC demonstrate that the heuristic updating of k is effective during the training.227

5.3 Evaluation Results228

In this section, we describe the impacts of the stability condition more concretely by using vari-229

ous visualization methods. Furthermore, we verify that ALAC achieves excellent robustness and230

generalization.231

Analysis of Visualization: First, we use the t-SNE method to indicate the visualization of the state in232

3 dimensions in order to illustrate better the stability of the system learned by ALAC (Cartpole-cost233

in 2 dimensions). As we can see, the top row of Figure 4 shows the states in the final stage of234

an episode converge to a point or circle. Basically, we recognize that those patterns happen in a235

stable system. The second row of Figure 4 shows the phase trajectories with variance according236

to the state pairs of joint angular position and velocity. In practice, experts can judge a system’s237

stability from a phase space of the system. Concretely, ψ and ψ̇ represent an angular position and238

velocity, respectively. The angular velocity starts from 0 to 0, and the angular position starts from the239

beginning to an equilibrium point. Based on the above phenomenons, it suggests the trained systems240

using the ALAC method satisfy focal stability or stable limit cycles. Furthermore, the Lyapunov241

value exhibits significant changes in the state space, as depicted in Figure 4 (bottom row). It indicates242

that the Lyapunov value can effectively guide the policy towards discovering stable patterns in the243

system. More implementation details for t-SNE and phase trajectories are given in Appendix E.5.244

Robustness: Generally speaking, stability has a potential relationship with robustness to some extent245

[10]. Thus, we add external disturbances with different magnitudes in each environment and observe246

the performance difference. Figure 8 (see Appendix E.6.1) shows in all scenarios, ALAC enjoys247

superior performance over other methods.248

Generalization: Furthermore, some experiments verify that the policy can generalize well to follow249

previously unseen reference signals. We introduce the error between the desired and achieved goals250

as additional information in the state. Because the Lyapunov function is significantly related to the251

error, ALAC w/ errors gains remarkable performance improvement on generalization as Table 2252

illustrated. We choose the SAC-cost algorithm as a comparison since SAC-cost is very similar to253

our method without sampling-based stability. In particular, the gap between each other enlarges with254

the increasing biases. Furthermore, we observe that the errors harm the performance of SAC-cost255

on complex tasks like Halfcheetah-cost and Spacereach-cost. For more experimental results, see256

Appendix E.6.2.257

6 Discussion and Future Work258

We propose a sampling-based Lyapunov stability condition to meet the mean cost stability. Based259

on the condition, the policy optimization with sampling-based stability is proposed to gradually260

find the optimal policy which maintains the optimal-time stability we propose. Based on the Actor-261

Critic framework and Lagrangian-based optimization, We present a practical algorithm, namely the262

Adaptive Lyapunov-based Actor-Critic algorithm (ALAC). Despite the great success in simulated263

tasks, our method is not evaluated in practical scenarios. An important direction for future work264

is to apply our method to some robotic control tasks like locomotion and navigation, which can265

demonstrate the robustness and generalization ability of the method we verified in this paper. Another266

future work on theoretical improvement is to combine the policy optimization with stability guarantee267

and safety criteria.268

8

References269

[1] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learning270

agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.271

[2] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,272

M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. The Interna-273

tional Journal of Robotics Research, 39(1):3–20, 2020.274

[3] W. Jin, Z. Wang, Z. Yang, and S. Mou. Neural certificates for safe control policies. arXiv275

preprint arXiv:2006.08465, 2020.276

[4] J. La Salle and S. Lefschetz. Stability by Liapunov’s Direct Method with Applications by Joseph277

L Salle and Solomon Lefschetz. Elsevier, 2012.278

[5] H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake. Lyapunov-stable neural-network279

control. arXiv preprint arXiv:2109.14152, 2021.280

[6] S. Lale, Y. Shi, G. Qu, K. Azizzadenesheli, A. Wierman, and A. Anandkumar. Kcrl: Krasovskii-281

constrained reinforcement learning with guaranteed stability in nonlinear dynamical systems.282

arXiv preprint arXiv:2206.01704, 2022.283

[7] N. Gaby, F. Zhang, and X. Ye. Lyapunov-net: A deep neural network architecture for lyapunov284

function approximation. arXiv preprint arXiv:2109.13359, 2021.285

[8] R. Zhou, T. Quartz, H. De Sterck, and J. Liu. Neural lyapunov control of unknown nonlinear286

systems with stability guarantees. arXiv preprint arXiv:2206.01913, 2022.287

[9] M. Han, L. Zhang, J. Wang, and W. Pan. Actor-critic reinforcement learning for control with288

stability guarantee. IEEE Robotics and Automation Letters, 5(4):6217–6224, 2020.289

[10] Y.-C. Chang and S. Gao. Stabilizing neural control using self-learned almost lyapunov critics.290

In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 1803–1809.291

IEEE, 2021.292

[11] Z. Xiong, J. Eappen, A. H. Qureshi, and S. Jagannathan. Model-free neural lyapunov control293

for safe robot navigation. arXiv preprint arXiv:2203.01190, 2022.294

[12] T. Zhao, J. Wang, X. Lu, and Y. Du. Neural lyapunov control for power system transient stability:295

A deep learning-based approach. IEEE Transactions on Power Systems, 37(2):955–966, 2021.296

[13] M. Han, Y. Tian, L. Zhang, J. Wang, and W. Pan. Reinforcement learning control of constrained297

dynamic systems with uniformly ultimate boundedness stability guarantee. Automatica, 129:298

109689, 2021.299

[14] S. P. Bhat and D. S. Bernstein. Finite-time stability of continuous autonomous systems. SIAM300

Journal on Control and optimization, 38(3):751–766, 2000.301

[15] A. Stooke, J. Achiam, and P. Abbeel. Responsive safety in reinforcement learning by pid302

lagrangian methods. In International Conference on Machine Learning, pages 9133–9143.303

PMLR, 2020.304

[16] H. Sikchi, W. Zhou, and D. Held. Lyapunov barrier policy optimization. arXiv preprint305

arXiv:2103.09230, 2021.306

[17] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamzadeh. Lyapunov-based307

safe policy optimization for continuous control. arXiv preprint arXiv:1901.10031, 2019.308

[18] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy309

deep reinforcement learning with a stochastic actor. In International conference on machine310

learning, pages 1861–1870. PMLR, 2018.311

9

[19] S. M. Richards, F. Berkenkamp, and A. Krause. The lyapunov neural network: Adaptive312

stability certification for safe learning of dynamical systems. In Conference on Robot Learning,313

pages 466–476. PMLR, 2018.314

[20] Y.-C. Chang, N. Roohi, and S. Gao. Neural lyapunov control. Advances in neural information315

processing systems, 32, 2019.316

[21] M. Mittal, M. Gallieri, A. Quaglino, S. S. M. Salehian, and J. Koutník. Neural lyapunov model317

predictive control. 2020.318

[22] H. Dai, B. Landry, M. Pavone, and R. Tedrake. Counter-example guided synthesis of neural319

network lyapunov functions for piecewise linear systems. In 2020 59th IEEE Conference on320

Decision and Control (CDC), pages 1274–1281. IEEE, 2020.321

[23] M. Lechner, Ð. Žikelić, K. Chatterjee, and T. A. Henzinger. Stability verification in stochastic322

control systems via neural network supermartingales. arXiv preprint arXiv:2112.09495, 2021.323

[24] P. L. Donti, M. Roderick, M. Fazlyab, and J. Z. Kolter. Enforcing robust control guarantees324

within neural network policies. In International Conference on Learning Representations, 2020.325

[25] K. Kashima, R. Yoshiuchi, and Y. Kawano. Learning stabilizable deep dynamics models. arXiv326

preprint arXiv:2203.09710, 2022.327

[26] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado. Learning region of attraction328

for nonlinear systems. In 2021 60th IEEE Conference on Decision and Control (CDC), pages329

6477–6484. IEEE, 2021.330

[27] N. Lawrence, P. Loewen, M. Forbes, J. Backstrom, and B. Gopaluni. Almost surely stable deep331

dynamics. Advances in Neural Information Processing Systems, 33:18942–18953, 2020.332

[28] A. Schlaginhaufen, P. Wenk, A. Krause, and F. Dorfler. Learning stable deep dynamics333

models for partially observed or delayed dynamical systems. Advances in Neural Information334

Processing Systems, 34:11870–11882, 2021.335

[29] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause. Safe model-based reinforcement336

learning with stability guarantees. Advances in neural information processing systems, 30,337

2017.338

[30] C. Dawson, Z. Qin, S. Gao, and C. Fan. Safe nonlinear control using robust neural lyapunov-339

barrier functions. In Conference on Robot Learning, pages 1724–1735. PMLR, 2022.340

[31] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A lyapunov-based approach341

to safe reinforcement learning. Advances in neural information processing systems, 31, 2018.342

[32] M. Han, Z. Zhou, L. Zhang, J. Wang, and W. Pan. Reinforcement learning for control with343

probabilistic stability guarantee. 2020.344

[33] T. Huang, S. Gao, X. Long, and L. Xie. A neural lyapunov approach to transient stability345

assessment in interconnected microgrids. In HICSS, pages 1–10, 2021.346

[34] X. Li, J. Xiao, Y. Cheng, and H. Liu. An actor-critic learning framework based on lyapunov347

stability for automatic assembly. Applied Intelligence, pages 1–12, 2022.348

[35] L. Zhang, R. Zhang, T. Wu, R. Weng, M. Han, and Y. Zhao. Safe reinforcement learning with349

stability guarantee for motion planning of autonomous vehicles. IEEE Transactions on Neural350

Networks and Learning Systems, 32(12):5435–5444, 2021.351

[36] R. M. Murray, Z. Li, and S. S. Sastry. A mathematical introduction to robotic manipulation.352

CRC press, 2017.353

10

[37] S. Zou, T. Xu, and Y. Liang. Finite-sample analysis for sarsa with linear function approximation.354

Advances in neural information processing systems, 32, 2019.355

[38] S. Wang, Y. Cao, X. Zheng, and T. Zhang. Collision-free trajectory planning for a 6-dof free-356

floating space robot via hierarchical decoupling optimization. IEEE Robotics and Automation357

Letters, 7(2):4953–4960, 2022.358

[39] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.359

Openai gym. arXiv preprint arXiv:1606.01540, 2016.360

[40] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In International361

conference on machine learning, pages 22–31. PMLR, 2017.362

[41] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics363

and machine learning. 2016.364

[42] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.365

In International conference on machine learning, pages 1889–1897. PMLR, 2015.366

[43] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization367

algorithms. arXiv preprint arXiv:1707.06347, 2017.368

11

A Related Work369

Learning-based controllers have achieved excellent performance in non-linear dynamic systems [1, 2].370

However, a lack of stability introduces additional risks to the agents and environments [3]. Fortunately,371

there exists an effective tool, Lyapunov functions, to assess the stability. Lyapunov functions can be372

designed for a linear system with specific criteria in the form of a quadratic positive-definite function.373

But how to find a suitable Lyapunov function remains an open challenge in the non-linear dynamic374

system [4].375

A.1 Model-based RL & Lyapunov Learning376

Due to the difficulty of a manual design, constructing a Lyapunov neural network has become377

increasingly popular in a non-linear dynamic system. For the model-known situation, the approaches378

jointly learn a Lyapunov function and a controller [19, 20, 21, 22, 23, 24, 7]. But it restricts the379

application of complex systems which are hard to obtain accurate models. Therefore, some researchers380

present model-learned methods with a stability guarantee, in which Gaussian Process or Neural381

Network approximates the model. The model-learned method can be separated into two types. The382

first one is learning dynamics models guided by a learnable Lyapunov function, in which policies are383

inherently included or learned by LQR method [25, 8, 26, 27, 28]. Another approach is to construct a384

learnable policy network updated by a neural Lyapunov function, thereby satisfying the stability of385

system [29, 30, 8, 5, 6]. However, we notice that most model-learned methods are only verified in386

relatively easy environments. A possible reason is that the coupling of the Lyapunov function and387

dynamic model makes learning unstable or incompatible due to interdependency.388

A.2 Model-free RL & Lyapunov Learning389

A promising direction is to study model-free methods with a stability guarantee. Recently, a large390

variety of methods have been proposed to address the issue. One method is that the policy is updated391

by a mixed objective with respect to the neural Lyapunov function and Q function. POLYC [10]392

introduced the necessary conditions required by the Lyapunov function into objectives to optimize393

the policy network. LBPO [16] applied the logarithmic barrier function based on the form of the394

Lyapunov function. TNLF [11] constructed Lyapunov V and Q functions trained by the stability395

certification. The other form is policy optimization with Lyapunov constraints. Chow et al. [31]396

designed a constrained RL algorithm to project a policy in a trust region with Lyapunov stability.397

In those previous study, there still exist a main drawback. The discrete Lyapunov condition they398

used did not meet the demand for a sampling-based stability guarantee in RL. Therefore, Han et al.399

[9] considered a sampling-based stability condition they proposed as a constraint and then used the400

prime-dual method to modify the constraint. Their latter work verified them in both on-policy and401

off-policy settings [13, 32]. Nevertheless, their method can only find an existing policy with the402

demand for stability. In contrast, our method can satisfy the sampling-based stability and search for403

the optimal policy adaptively. The optimal policy can facilitate the state to reach the equilibrium404

point rapidly.405

A.3 Applications406

Furthermore, it is worth noting that current RL-based methods with stability guarantee have been407

applied in some practical problems successfully, such as monitoring the security of interconnected408

microgrids [33], power system control [12], automatic assembly [34] and motion planning of au-409

tonomous vehicles [35].410

12

B Preliminary Remarks411

B.1 Lyapunov function412

Definition B.1 (Equilibrium Point). A state se is an equilibrium point if ∃ action ae ∈ A such that413

f(se, ae) = se. [36]414

Definition B.2 (Stabilizable in the sense of Lyapunov). A system is stabilizable if ∀ϵ > 0, ∃δ such415

that for all s0 ∈ S such that ||s0 − se|| ≤ δ, there exists {at}∞t=0 such that the resulting {st}∞t=0416

satisfies ||st − se|| ≤ ϵ ∀t ≥ 0.[36]417

Definition B.3 (Lyapunov Function). A continuous and radially unbounded function L : S → R is a418

Lyapunov function if the following conditions hold:419

1. ∀s ∈ S,∃a ∈ A, s.t. L(s) ≥ L(f(s, a)),420

2. ∀s ̸= 0,L > 0; L(0) = 0.421

If a Lyapunov function exists, a discrete-time system can achieve stability in the sense of Lyapunov422

without considering the physical energy.423

B.2 Lyapunov Candidate Bound424

In this part, we show that the Lyapunov candidate Lπ(s) meets the property in Theorem 3.1, which425

can be formulated as:426

cπ(s) + λEs′∼Pπ
L(s′) ≤ L(s) ≤ βcπ(s) (15)

where we omit the lower bound αcπ(s) which is naturally satisfied by Lπ(s).427

Firstly, according to the definition of Lπ(s), we have428

Lπ(s) = Eπ[

∞∑
t=0

γtcπ(st)|s0 = s]

= Eπ[cπ(s0) +

∞∑
t=1

γtcπ(st)|s0 = s]

= cπ(s) + Eπ[

∞∑
t=1

γtcπ(st)]

= cπ(s) + γEπ,s′∼Pπ
[

∞∑
t=0

γtcπ(st)|s0 = s′]

= cπ(s) + γEs′∼Pπ
L(s′)

(16)

Considering the left-hand side of Equation (4), we can find that if λ ≤ γ holds, the lower bound of the429

Lyapunov function can be satisfied. This is because the Lyapunov candidate Lπ(s) is positive at each430

state. Furthermore, the right-hand side of Equation 4 illustrates the higher bound of the Lyapunov431

function exists. The condition is also guaranteed for our Lyapunov candidate shown in the following432

process.433

Lπ(s) = Eπ[

∞∑
t=0

γtcπ(st)|s0 = s]

≤
∞∑
t=0

γtEπ[cπ(st)|s0 = s]

≤ cπ
1− γ

(17)

Note that cπ denotes the maximum cost. The second row of the inequality holds due to Jensen434

inequality. Only if the maximum cost exists, ∃β ∈ R+,
cπ
1−γ ≤ βcπ(s) holds.435

13

C Details of Theoretical Analysis436

C.1 Assumptions of Theorem 3.1437

438

Assumption C.1 (Region of Attraction). There exists a positive constant b such that ρ(s) > 0,∀s ∈439

{s|cπ(s) ≤ b}.440

Assumption C.2 (Ergodic Property). The Markov Chain driven by the policy π is ergodic, ωπ(s) =441

limt→∞ T (s|ρ, π, t).442

The first one ensures that the starting state is sampled in the region of attraction. The second one is443

the existence of the stationary state distribution.444

C.2 Proof of Theorem 3.1445

Theorem C.3 (Sampling-based Lyapunov Stability). An MDP system is stable with regard to the446

mean cost, if there exists a function L : S → R meets the following conditions:447

αcπ(s) ≤ L(s) ≤ βcπ(s) (18)
448

L(s) ≥ cπ(s) + λEs′∼Pπ
L(s′) (19)

449

Es∼Uπ
[Es′∼Pπ

L(s′)− L(s)] ≤ −k[Es∼Uπ
[L(s)− λEs′∼Pπ

L(s′)]] (20)

where α, β, λ and k is positive constants. Among them, Pπ(s
′|s) =

∫
A π(a|s)P(s

′|s, a) da holds.450

Proof. Firstly, we simplify the left side of the Equation (20) with reference to [9]. Introducing the451

definition of Uπ(s) leads to452

Es∼Uπ [Es′∼PπLπ(s
′)− Lπ(s)]

=

∫
S

lim
T→∞

1

T

T∑
t=0

T (s | ρ, π, t)(
∫
S
Pπ(s

′|s)Lπ(s
′)ds′ − Lπ(s))ds

(21)

Due to the boundedness of Lπ, we apply the Lebesgue’s Dominated convergence theorem. To be453

specific, when |Fn(s)| ≤ B(s),∀s ∈ S,∀n holds, we have454

lim
n→∞

∫
S
Fn(s)ds =

∫
S

lim
n→∞

Fn(s)ds (22)

Hence, we get455

Es∼Uπ [Es′∼PπLπ(s
′)− Lπ(s)]

=

∫
S

lim
T→∞

1

T

T∑
t=0

T (s | ρ, π, t)(
∫
S
Pπ(s

′|s)Lπ(s
′)ds′ − Lπ(s))ds

= lim
T→∞

∫
S

1

T

T∑
t=0

T (s | ρ, π, t)(
∫
S
Pπ(s

′|s)Lπ(s
′)ds′ − Lπ(s))ds

= lim
T→∞

1

T
(

T+1∑
t=1

ET (s|ρ,π,t)Lπ(s)−
T∑

t=0

ET (s|ρ,π,t)Lπ(s))

= lim
T→∞

1

T
(ET (s|ρ,π,T+1)Lπ(s)− ET (s|ρ,π,t=0)Lπ(s))

(23)

Note that T (s|ρ, π, t = 0) is equal to ρ. Since the expectation of Lπ(s) is a finite value, the left side456

of Equation (20) is zero.457

Now, we turn to the right side of Equation (20). According to the Equation (23), we have458

14

−k[Es∼Uπ [L(s)− λEs′∼PπL(s′)]] ≥ 0

Es∼Uπ [L(s)− λEs′∼PπL(s′)] ≤ 0
(24)

Since L(s) ≥ cπ(s) + λEs′∼PπL(s′) holds, we get459

Es∼Uπcπ(s) ≤ 0 (25)

Based on the Abelian theorem, we know there exists460

Uπ(s) = lim
T→∞

1

T

T∑
t=0

T (s | ρ, π, t)

= lim
t→∞

T (s|ρ, π, t)

= ωπ(s)

(26)

Thus, we get461

Es∼ωπ
[cπ(s)] ≤ 0 (27)

The last row of inequality holds because of Equation (26). Based on the definition of ωπ(s), we have462

lim
t→∞

ET (s|ρ,π,t)cπ(s) ≤ 0 (28)

Suppose that there exists a starting state s0 ∈ {s0 | cπ(s0) ≤ b} and a positive constant d such that463

limt→∞ ET (s|ρ,π,t)cπ(s) = d or limt→∞ ET (s|ρ,π,t)cπ(s) = ∞. Consider that ρ(s0) > 0 for all464

starting states in {s0 | cπ(s0) ≤ b} (Assumption C.1), then limt→∞ Es∼T (·|ρ,π,t)cπ(s) > 0 , which465

is contradictory with Equation (28). Thus ∀s0 ∈ {s0 | cπ(s0) ≤ b}, limt→∞ ET (s|ρ,π,t)cπ(s) = 0.466

Thus the system meets the mean cost stability by Definition 2.1.467

Furthermore, we find that when L(s) = cπ(s) + λEs′∼Pπ
L(s′) holds, our theorem is corresponding468

to the Theorem 1 in [9]. That means we extend the previous method to a more general case. To be469

specific, the introduction of λ enlarges the solution space of the policy. Thus, it facilitates the policy470

to find the optimal point as well as maintain the system’s stability.471

472

C.3 Finite-Time Feedback Tracking Method473

Lemma C.4 (Finite-Time Feedback Tracking Method). In a continuous-time system, a trajectory474

W (t) tracks the reference R(t). W (t) can track the reference within a finite time T , such that475

R(t) =W (t), t ≥ T , if the following conditions holds.476

∇tW (t) ≤ −k(W (t)−R(t)),∀t ∈ [0, T] (29)

Note that the gradient of R(t) is bounded, meaning that∇tR(t) ≤ µ holds.477

Proof. First, we build the mean square error V (t) between them.478

V =
1

2
(W (t)−R(t))2 (30)

Then, we can derive the difference of V (t) as follows479

∇tV = (W −R)(∇tW −∇tR)

≤ (W −R)(−k(W −R)−∇tR)

≤ −k|W −R|2 − (W −R)∇tR

(31)

15

Introducing the Assumption that the bounded gradient of R(t) , we have480

∇tV ≤ −2k
|W −R|2

2
−
√
2µ
|W −R|

2

≤ −2kV −
√
2µ
√
V

(32)

Observe that the above formulation belongs to a form of the Bernoulli differential equation. In this481

case, we can reduce the Bernoulli equation to a linear differential equation by substituting z =
√
V .482

Then, the general solution for z is483

z =
√
V ≤ −

√
2

2

µ

k
+ Ce−kt (33)

Applying the initial condition V (t = 0) = vt0 , we have484

C =
√
vt0 +

√
2

2

µ

k
(34)

Finally, the convergence time T can be represented as:485

T =
1

k
ln

(√
2
2

µ
k +
√
vt0√

2
2

µ
k

)
+ t0 (35)

486

C.4 Illustration of the Feedback Tracking487

First, we denote W (t) as Lπ(s), W (t + 1) as Lπ(s
′) and R(t) as λLπ(s

′), where we omit the488

expection operator for simplicity. Specifically, at time t+ 1, the value of W (t+ 1) should decrease489

by k(W (t) − R(t)). The change of λ and k results in k(W (t) − R(t)) increases correspondingly.490

Consequently, W (t+ 1) needs to decrease further to meet the requirement. Recalling the definition,491

Lπ(s
′) become smaller. Additionally, the form of Equation (9) is similar to finite-time tracking492

method in continuous-time system which we depcit in Appendix C.3.493

C.5 Constrained Lyapunov Critic Network494

Concretely, we denote the output of a neural network as f(s, a). And then, Lθ(s, a) can be described495

by:496

Lθ(s, a) = (Gs(f(s, a)))(Gs(f(s, a)))
⊤ (36)

where Gs is a linear transformation, which guarantees Gs=se(f(s = se, a)) = 0 (se is an equilibrium497

point defined in Definition B.1.). Note that Gs contains no parameters to be learned, so the operator498

does not cause harm to the representation ability of the neural network.499

Concretely, the output of the neural network of the Lyapunov critic is described by:500

f(s, a) = hO(hO−1(· · ·h2(h1(< s, a >)))) (37)

where each ho(z) has the same form:501

ho(z) = ψo(Woz + bo) (38)

Here, O represents the number of layers, and ψo is the non-linear activation function used in the o-th502

layer. Furthermore, {Wo,bo} is the weight and bias of the o-th layer.503

First of all, to meet the demand of Lθ(se, a) = 0, we introduce a linear transformation Gs, one of504

whose possible forms can be505

Gs(f) =
1∑I

i δsi + ϵ

[
δs1 δs2 · · · δsI

]  f1 f1 · · · fv
f1 f1 · · · fv
· · · · · · · · · · · ·
f1 f1 · · · fv

 (39)

16

where I denotes the number of elements of the state, and v is the number of units of the output layer.506

ϵ is a constant close to 0 to avoid singularity. Note that δs = s− se, which indicates the difference507

between the current state and an equilibrium point. As we can see, when each element of δs is zero,508

the multiplication of matrices is zero. Thus, Gs=se(f(s = se, a)) = 0 holds. Furthermore, it brings509

another benefit having no impact on the training of networks.510

C.6 Proof of Theorem 4.1511

Theorem C.5. Suppose that the length of sampling trajectories is T , then the bound can be expressed512

as:513

|Es∼Uπ
∆Lπ(s)− Es∼UT

π
∆Lπ(s)| ≤ 2

(k + 1)cπ
1− γ

T q−1 (40)

where q is a constant in (0, 1).514

Proof. First, we can get the following equation by introducing the definitions of Uπ and UT
π .515

Es∼Uπ
∆Lπ(s)− Es∼UT

π
∆Lπ(s)

=

∫
S
(Uπ(s)−

1

T

T∑
t=1

T (s | ρ, π, t))∆Lπ(s)ds

=
1

T

T∑
t=1

∫
S
(Uπ(s)− T (s | ρ, π, t))∆Lπ(s)ds

(41)

Then, eliminating the integral operator, we obtain516

|Es∼Uπ∆Lπ(s)− Es∼UT
π
∆Lπ(s)|

≤ 1

T

T∑
t=1

∥Uπ(s)− T (s | ρ, π, t)∥1∥∆Lπ(s)∥∞
(42)

Thus, the next step is to get the bounds of ∥Uπ(s)− T (s | ρ, π, t)∥1 and ∥∆Lπ(s)∥∞.517

For the first part, we introduce the assumption that first is mentioned in [37], shown as follows:518

T∑
t=1

∥Uπ(s)− T (s | ρ, π, t)∥1 ≤ 2T q, ∀T ∈ Z+, ∃q ∈ (0, 1) (43)

Frankly speaking, the assumption is easily satisfied because the L1 distance between two distributions519

is bounded by 2. At the same time, T (s | ρ, π, t) converges to Uπ(s) with time approaching.520

For the second part, we can get the bound of ∆Lπ(s) according to Equation 17.521

∆Lπ(s) = Es′∼Pπ
Lπ(s

′)− Lπ(s) + k(Lπ(s)− λEs′∼Pπ
(s′))

≤ cπ
1− γ

− 0 + k(
cπ

1− γ
− 0)

(44)

Then, we have522

∥∆Lπ(s)∥∞ ≤ (k + 1)
cπ

1− γ (45)

Adding results in Equation 46, we finally get523

|Es∼Uπ
∆Lπ(s)− Es∼UT

π
∆Lπ(s)| ≤ 2

(k + 1)cπ
1− γ

T q−1 (46)

524

17

C.7 Proof of Theorem 4.2525

Theorem C.6. Suppose that the length of sampling trajectories is T and the number of trajectories526

is M , then there exists the following upper bound:527

P(| 1

MT

M∑
m=1

T∑
t=1

∆Lπ(s
m
t)− Es∼UT

π
∆Lπ(s)| ≥ α)

≤ 2 exp(− Mα2(1− γ)2

((1− kλ)2 + (k − 1)2)cπ
2)

(47)

where smt represents the state in the m-th trajectory at the timestep t.528

Proof. First, eliminating ∆Lπ(s) by Equation 9, we rewrites the left side of Equation 47 as529

δ = P(| 1

MT

M∑
m=1

T∑
t=1

∆Lπ(s
m
t)− Es∼UT

π
∆Lπ(s)| ≥ α)

= P(| 1

MT

M∑
m=1

T∑
t=1

(Lπ(st+1)− Lπ(st) + kl(Lπ(st)− λLπ(st+1)))− Es∼UT
π
∆Lπ(s)| ≥ α)

= P(| 1

MT

M∑
m=1

T∑
t=1

((1− kλ)Lπ(st+1) + (k − 1)Lπ(st))− Es∼UT
π
∆Lπ(s)| ≥ α)

(48)

Here Es∼UT
π
∆Lπ(s) is expected value of 1

MT

∑M
m=1

∑T
t=1 ∆Lπ(s

m
t). In addition, the bounds of530

(1− kλ)Lπ(st+1) and (k − 1)Lπ(st) can be obtained easily by Equation 17. Thus, we obtain the531

Theorem 4.2 by applying Hoeffding’s inequality.532

δ ≤ 2 exp(− 2M2α2

M((1− kλ)2 + (k − 1)2) cπ2

(1−γ)2

)

≤ 2 exp(− Mα2(1− γ)2

((1− kλ)2 + (k − 1)2)cπ
2)

(49)

533

D Details of Algorithms534

As mentioned in the main text, we introduce a minimum entropy as a constraint in policy optimization535

and apply the primal-dual method to update the policy and the Lagrange multiplier λe. To be specific,536

the constraint can be expressed as537

log πϕ(a|s) ≤ −Ze (50)

where Ze is the minimum value of policy entropy, usually, Ze corresponds to the dimension of action538

space in the environment.539

18

Algorithm 1: Adaptive Lyapunov-based Actor-Critic Algorithm (ALAC)
Orthogonal initialize the parameters of actor and critic networks with ϕ, θ
Initialize replay buffer D and λl, λe, λ and k
Initialize the parameters of target network with ϕ′ ← ϕ and θ′ ← θ
for episode m = 1,M do

Sample an initial state s0
for step t = 0, T − 1 do

Sample an action from πϕ(at|st)
Execute the action at and observe a new state st+1

Store < st, at, ct, st+1 > into D
end for
for iteration n = 1, N do

Sample a minibatch B from the replay buffer D
Update θ according to Eq.(10) using minibatch B
Update ϕ, λl, λe according to Eq.(11),(12),(50) using minibatch B
Update adaptive factors λ and k
Update the parameters of target networks, θ′, ϕ′.

end for
end for

540

E Details of Experiments541

Cartpole-cost

Point-circle-cost

Swimmer-cost Halfcheetah-cost Ant-cost Humanoid-cost

Minitaur-cost Spacereach-cost Spacerandom-cost Spacedualarm-cost

Figure 5: Overview of our environments.

We test our method and baselines in ten robotic control environments, including Cartpole-542

cost,Point-circle-cost, Halfcheetah-cost, Swimmer-cost, Ant-cost, Humanoid-cost, Minitaur-cost,543

Spacereach-cost, Spacerandom-cost and Spacedualarm-cost. Most tasks in ten environments are544

goal-oriented, tracking a target position or speed, which corresponds to most control tasks. Further-545

more, the latter four environments involve models of practical robots like a quadruped robot and a546

robotic arm, making them relatively more difficult. It is worth noting that the task of Spacedualarm-547

cost is trajectory planning of a free-floating dual-arm space robot. The coupling property of the base548

and the robotic arms brings hardship for both traditional control and RL-based methods [38].549

E.1 Environmental Design550

Cartpole-cost This task aims to maintain the pole vertically at a target position. The environment551

is inherited from [32]. The state and action space are the same as the default settings in OpenAI552

19

Gym[39], so we omit the description. The cost function is c =
(

x
xthreshold

)2
+ 20 ∗

(
θ

θthreshold

)2
, where553

xthreshold = 10 and θthreshold = 20◦. The other settings can be found in Table 3.554

Point-circle-cost This task aims to allow a sphere to track a circular trajectory. The environment is555

inherited from [40]. The sphere is initialized at the original point. The cost function is represented556

as c = d, where d denotes the distance between the current position and the reference. The other557

settings can be found in Table 3.558

Table 3: Hyper-parameters of non-linear dynamic environments

Hyper-parameters Cartpole-cost Point-circle-cost
State shape 4 7

Action shape 2 2
Length of an episode 250 steps 65 steps

Maximum steps 3e5 steps 3e5 steps
Actor network (64, 64) (64, 64)
Critic network (64, 64, 16) (64, 64, 16)

Halfcheetah-cost The goal of this task is to make a HalfCheetah (a 2-legged simulated robot) to559

track the desired velocity. The environment is inherited from [32]. The state and action space are the560

same as the default settings in OpenAI Gym[39], so we omit the description. The cost function is561

c = (v − 1)2, where 1 represents the desired velocity. The other settings can be found in Table 4.562

Swimmer-cost This task aims to make a multi-joint snake robot to track the desired velocity. The563

environment is inherited from [32]. The state and action space are the same as the default settings in564

OpenAI Gym[39], so we omit the description. The cost function is c = (v − 1)2, where 1 represents565

the desired velocity. The other settings can be found in Table 4.566

Ant-cost This task aims to make an Ant (a quadrupedal simulated robot) track the desired velocity.567

The environment is inherited from [39]. The state and action space are the same as the default568

settings in OpenAI Gym [39], so we omit the description. The cost function is c = (v − 1)2, where 1569

represents the desired velocity. The other settings can be found in Table 4.570

Humanoid-cost This task aims to make a humanoid robot to track the desired velocity. The571

environment is inherited from [39]. The state and action space are the same as the default settings in572

OpenAI Gym [39], so we omit the description. The cost function is c = (v − 1)2, where 1 represents573

the desired velocity. The other settings can be found in Table 4.574

Minitaur-cost This task aims to control the Ghost Robotics Minitaur quadruped to run forward at575

the desired velocity. The environment is inherited from [41]. The state and action space are the same576

as the default settings in PyBullet environment[41], so we omit the description. The cost function is577

c = (v − 1)2, where 1 represents the desired velocity. The other settings can be found in Table 5.578

Spacereach-cost This task aims to make a free-floating single-arm space robot’s end-effector reach579

a fixed goal position. Since the base satellite is uncontrolled, collisions will cause system instability580

once collisions occur. Therefore, it is critical to plan a collision-free path while maintaining the581

stability of the base. The agent can obtain the state, including the angular positions and velocities of582

joints, the position of the end-effector, and the position of the reference point. Then, the agent outputs583

the desired velocities of joints. In low-level planning, a PD controller converts the desired velocities584

into torques, and then controls the manipulator. The cost function is defined as c = d, where d is the585

distance between the goal and end-effector. The other settings can be found in Table 5.586

Spacerandom-cost This task aims to make a free-floating single-arm space robot’s end-effector587

reach a random goal position. The agent can obtain the state, including the angular positions and588

20

Table 4: Hyper-parameters of mujoco environments
Hyper-parameters Swimmer-cost Halfcheetah-cost Ant-cost Humanoid-cost

State shape 8 17 27 376
Action shape 2 6 8 8

Length of an episode 250 steps 200 steps 200 steps 500 steps
Maximum steps 3e5 steps 1e6 steps 1e6 steps 1e6 steps
Actor network (64, 64) (64, 64) (64, 64) (256, 256)
Critic network (64, 64, 16) (256, 256, 16) (64, 64, 16) (256, 256, 128)

Table 5: Hyper-parameters of robotic environments
Hyper-parameters Minitaur-cost Spacereach-cost Spacerandom-cost Spacedualarm-cost

State shape 27 18 18 54
Action shape 8 6 6 12

Length of an episode 500 steps 200 steps 200 steps 200 steps
Maximum steps 1e6 steps 3e5 steps 5e5 steps 5e5 steps
Actor network (256, 256) (256, 256) (256, 256) (512, 512)
Critic network (256, 256, 16) (256, 256, 128) (256, 256, 128) (512, 512, 256)

velocities of joints, the position of the end-effector, and the position of the reference point. Then,589

the agent outputs the desired velocities of joints. In low-level planning, a PD controller converts590

the desired velocities into torques to control the manipulator. The cost function is defined as c = d,591

where d is the distance between goal and end-effector. The other settings can be found in Table 5.592

Spacedualarm-cost This task aims to make a free-floating dual-arm space robot’s end-effectors593

reach random goal positions. The complexity of the task increases dramatically due to two arms’594

coupling effects on the base. The agent can obtain the state, including the angular positions and595

velocities of joints, the positions of end-effectors, and the position of target points of two manipulators.596

Then, the agent outputs the desired velocities of joints. In low-level planning, a PD controller converts597

the desired velocities into torques to control the manipulators. The cost function is defined as follows:598

c = d0 + d1, where di is the distance between goal and end-effector of Arm-i. The other settings can599

be found in Table 5.600

E.2 Implementation Details601

E.2.1 Baselines602

SAC-cost Soft Actor-Critic (SAC) is an off-policy maximum entropy actor-critic algorithm [18].603

The main contribution is to add a maximum entropy objective into standard algorithms. The soft Q604

and V functions are trained to minimize the soft Bellman residual, and the policy can be learned by605

directly minimizing the expected KL-divergence. The only difference between SAC and SAC-cost is606

replacing maximizing a reward function with minimizing a cost function. The hyper-parameters of607

SAC-cost is illustrated in Table 6.608

Table 6: Hyper-parameters of SAC-cost

Hyper-parameters SAC-cost
Learning rate of actor 1.e-4
Learning rate of critic 3.e-4

Optimizer Adam
ReplayBuffer size 106

Discount (γ) 0.995
Polyak (1− τ) 0.995

Entropy coefficient 1
Batch size 256

21

SPPO Safe proximal policy optimization (SPPO) is a Lyapunov-based safe policy optimization609

algorithm. The neural Lyapunov network is constructed to prevent unsafe behaviors. Actually, the610

safe projection method is inspired by the TRPO algorithm [42]. In this paper, we modify it to apply611

the Lyapunov constraints on the MDP tasks, similar to the process in [9]. The hyper-parameters of612

SPPO is illustrated in Table 7.613

Table 7: Hyper-parameters of SPPO

Hyper-parameters SPPO
Learning rate of actor 1.e-4

Learning rate of Lyapunov 3.e-4
Optimizer Adam

Discount (γ) 0.995
GAE parameter (λ) 0.95

Clipping range 0.2
KL constraint (δ) 0.2

Fisher estimation fraction 0.1
Conjugate gradient steps 10

Conjugate gradient damping 0.1
Backtracking steps 10

Timesteps per iteration 2000

LAC Lyapunov-based Actor-Critic(LAC) algorithm is an actor-critic RL-based algorithm jointly614

learning a neural controller and Lyapunov function [9]. Particularly, they propose a data-driven615

stability condition on the expected value over the state space. Moreover, they have found that the616

method achieves high generalization and robustness. The hyper-parameters of LAC is illustrated in617

Table 8. Among them, α3 is 0.1 in LAC, while it is changed as 1 in LAC∗.618

Table 8: Hyperparameters of LAC

Hyperparameters LAC
Learning rate of actor 1.e-4

Learning rate of Lyapunov 3.e-4
Learning rate of Larange multiplier 3.e-4

Optimizer Adam
ReplayBuffer size 106

Discount (γ) 0.995
Polyak (1− τ) 0.995

Parameter of Lyapunov constraint (α3) 0.1
Batch size 256

POLYC Policy Optimization with Self-Learned Almost Lyapunov Critics (POLYC) algorithm is619

built on the standard PPO algorithm [43]. Introducing a Lyapunov function without access to the cost620

allows the agent to self-learn the Lyapunov critic function by minimizing the Lyapunov risk. The621

hyper-parameters of POLYC is illustrated in Table 9.622

LBPO Lyapunov Barrier Policy Optimization (LBPO) algorithm [16] is built on SPPO algorithm623

[17]. However, the core improvement uses a Lyapunov-based barrier function to restrict the policy624

update to a safe set for each training iteration. Compared with the SPPO algorithm, the method avoids625

backtracking to ensure safety. For the implementation in our paper, the process is similar to that of626

the SPPO algorithm. The hyperparameters of LBPO is illustrated in Table 10.627

TNLF Twin Neural Lyapunov Function (TNLF) algorithm is proposed to deal with safe robot628

navigation in [11]. Different from other approaches, the TNLF method defines a Lyapunov V function629

and Lyapunov Q function, which are trained by minimizing the Lyapunov risk. In effect, the Lyapunov630

22

Table 9: Hyper-parameters of POLYC

Hyper-parameters POLYC
Learning rate of actor 1.e-4
Learning rate of critic 3.e-4

Learning rate of Lyapunov 3.e-4
Optimizer Adam

Discount (γ) 0.995
GAE parameter (λ) 0.95

Weight of Lyapunov constraint (β) 0.1
Clipping range 0.2

Timesteps per iteration 2000

Table 10: Hyperparameters of LBPO

Hyperparameters LBPO
Learning rate of actor 1.e-4
Learning rate of critic 1.e-4

Learning rate of Lyapunov 3.e-4
Optimizer Adam

Discount (γ) 0.99
GAE parameter (λ) 0.97

Clipping range 0.2
KL constraint 0.012

Fisher estimation fraction 0.1
Conjugate gradient steps 10

Conjugate gradient damping 0.1
Backtracking steps 10

Weight of Lyapunov constraint (β) 0.01
Timesteps per iteration 2000

risk is similar to that of [10]. Since the Lyapunov function strictly decreases over time, the robot631

starting with any state in a Region of Attraction (RoA) will always stay in the RoA in the future. It632

should be pointed out that as our environments only support the cost function, the objective, except633

for Lyapunov risk, is to minimize the cumulative return of cost. The hyper-parameters of TNLF is634

illustrated in Table 11.635

Table 11: Hyper-parameters of TNLF

Hyper-parameters TNLF
Learning rate of actor 1.e-4
Learning rate of critic 3.e-4

Learning rate of Lyapunov V functiob 3.e-4
Learning rate of Lyapunov functiob 3.e-4

Optimizer Adam
ReplayBuffer size 106

Discount (γ) 0.995
Polyak (1− τ) 0.995

Weight of Lyapunov constraint (α) 0.1
Variance of noise distribution 1

Batch size 256

E.2.2 Our method636

ALAC Our method offers a significant advantage in contrast to baselines, which is to use fewer637

hyperparameters. The main hyperparameters are illustrated in Table 12. We notice that these638

parameters control networks’ learning without including the parameters of constraints. The reason is639

23

they are automatically updated according to Lagrange multipliers, λl, and λe. The initial value of640

Lagrange multipliers is set to 1, common usage in previous constrained methods.641

Table 12: Hyper-parameters of ALAC

Hyper-parameters ALAC
Learning rate of actor 1.e-4

Learning rate of Lyapunov 3.e-4
Learning rate of Lagrange multipliers (λl and λe) 3.e-4

Optimizer Adam
ReplayBuffer size 106

Discount (γ) 0.995
Polyak (1− τ) 0.995

Batch size 256

E.3 More Results on Comparison642

Figure 10 shows the learning curves of the accumulated cost and constraint violations of ALAC and643

other baselines in ten environments.644

E.4 More Results on Ablation Study645

We provide the specific formulation of ∆L1
πϕ

and ∆L2
πϕ

. Compared with ∆Lπϕ
in Equation 9, we646

intuitively find that ∆L1
πϕ

and ∆L2
πϕ

are lower and higher bound of ∆Lπϕ
respectively. In other647

words, ∆L1
πϕ

represents the strongest constraint, while ∆L2
πϕ

represents the loosest constraint. The648

comparison between them can demonstrate that the sampling-based Lyapunov stability (∆Lπϕ
) can649

search for the optimal policy with stability guarantee due to the adaptive updating of λ.650

∆L1
πϕ
(s, a) = Lθ(s

′, πϕ(·|s′))− Lθ(s, a) + k[Lθ(s, a)− 0]

∆L2
πϕ
(s, a) = Lθ(s

′, πϕ(·|s′))− Lθ(s, a) + k[Lθ(s, a)− Lθ(s
′, πϕ(·|s′))]

∆Lπϕ
(s, a) = Lθ(s

′, πϕ(· | s′))− Lθ(s, a) + k[Lθ(s, a)− λLθ(s
′, πϕ(· | s′))]

(51)

The ablation experiments on other tasks are shown in Figure 9.651

E.5 Details of Visualization652

Our RL-based policy optimization method guided by adaptive stability is difficult to express the latent653

laws of states in the convergent process of different environments as the high-dimension states-space.654

To find and show the state’s change laws in the convergent process:655

• We use the t-SNE dimension reduction technique to visualize the state-space.656

• We plot the phase trajectory with variance according to the state pairs of joint angular657

position and velocity.658

• We plot the Lyapunov-value surface and its shadow with the phase trajectory and values in659

the convergence process.660

T-SNE Visualization The top row of Figure 4 shows the results of the t-SNE state plot-661

ting with SciKit-Learn tools(i.e.sklearn.manifold.TSNE function) with varying parameters(e.g.662

early_exaggeration, min_ grad_norm). Cartpole-Cost is visualized with n_components=2 while663

other environments with n_components=3. The hyper-parameters for t-SNE are shown in Table 13.664

Phase Trajectories of Systems We select the angular position and velocity of a joint in the state665

space in each environment and plot the phase trajectory with variance in Figure 6. The convergent666

process is shown as the angular velocity starts from 0 to 0, and the joint angle starts from the beginning667

to the convergence position.668

24

1 n_components =2 or 3 ,
2 e a r l y _ e x a g g e r a t i o n =12 ,
3 l e a r n i n g _ r a t e = 2 0 0 . 0 ,
4 n _ i t e r =1000 ,
5 n _ i t e r _ w i t h o u t _ p r o g r e s s =300 ,
6 min_grad_norm =1e −7 ,
7 p e r p l e x i t y =30 ,
8 m e t r i c ="euclidean" ,
9 n _ j o b s =None ,

10 r a n d o m _ s t a t e =42 ,
11 v e r b o s e =True ,
12 i n i t =’pca’

Table 13: Other hyper-parameters of t-SNE method.

0.10 0.05 0.00 0.05 0.10 0.15
Angular Position

1.5

1.0

0.5

0.0

0.5

1.0

An
gu

la
r V

el
oc

ity

Cartpole-cost phase trajectory

0.30 0.35 0.40 0.45 0.50
Angular Position

0

1

2

3

4

An
gu

la
r V

el
oc

ity

Halfcheetah-cost phase trajectory

1.6 1.8 2.0 2.2 2.4
Angular Position

15

10

5

0

5

10

An
gu

la
r V

el
oc

ity

Minitaur-cost phase trajectory

1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
Angular Position

0.3

0.2

0.1

0.0

0.1

An
gu

la
r V

el
oc

ity

Spacerandom-cost phase trajectory

Figure 6: Phase trajectories of the systems trained by ALAC. (we report the results of 20 trials and
select a joint to graph the phase trajectory in each task.)

Lyapunov Functions of Systems We visualize the change of Lyapunov-value in 3 dimensions669

based on the phase trajectory. The second row of Figure 4 shows the Lyapunov-value surface. The670

curves of values along the phase trajectory are mapped to the whole plane with down-sampled and671

smoothed by a Gaussian filter; we add the values and the phase trajectory shadows correspondingly672

simultaneously.673

E.6 More Results on Evaluation674

E.6.1 Robustness675

We verify that ALAC achieves excellent robustness on most tasks. It is worth noting that we introduce676

periodic external disturbances with different magnitudes in each task. Furthermore, we omit the677

algorithms which do not converge to a reasonable solution in each task.678

25

0.0 0.1 0.2 0.3 0.4 0.5
Magnitude

0

25

50

75

100

125

150

175

Co
st

 R
et

ur
n

Cartpole-cost
ALAC(ours)
LAC
LAC*
POLYC
SAC-cost
SPPO
TNLF

0.0 0.1 0.2 0.3 0.4 0.5
Magnitude

0

200

400

600

800

1000

Co
st

 R
et

ur
n

Pointcircle-cost
ALAC(ours)
LAC
LAC*
POLYC
SAC-cost
SPPO
TNLF

0.0 0.1 0.2 0.3 0.4 0.5
Magnitude

0

20

40

60

80

100

120

Co
st

 R
et

ur
n

Swimmer-cost
ALAC(ours)
LAC
LAC*
POLYC
SAC-cost
SPPO
TNLF

0.0 0.1 0.2 0.3 0.4 0.5
Magnitude

0

25

50

75

100

125

150

175

Co
st

 R
et

ur
n

HalfCheetah-cost
ALAC(ours)
LAC
LAC*
POLYC
SAC-cost
SPPO
TNLF

0.0 0.1 0.2 0.3 0.4 0.5
Magnitude

0

50

100

150

200

250

300

350

Co
st

 R
et

ur
n

Ant-cost
ALAC(ours)
LAC
LAC*
POLYC
SAC-cost
SPPO
TNLF

0.0 0.1 0.2 0.3 0.4 0.5
Magnitude

0

100

200

300

400

500

600

Co
st

 R
et

ur
n

Humanoid-cost
ALAC(ours)
LAC
LAC*
POLYC
SAC-cost
SPPO
TNLF

0.0 0.1 0.2 0.3 0.4 0.5
Magnitude

0

200

400

600

800

1000

Co
st

 R
et

ur
n

Minitaur-cost
ALAC(ours)
LAC
LAC*
POLYC
SAC-cost
SPPO
TNLF

0.0 0.1 0.2 0.3 0.4 0.5
Magnitude

0

20

40

60

80

100

120

140

160

Co
st

 R
et

ur
n

Spacereach-cost
ALAC(ours)
LAC
LAC*
POLYC
SAC-cost
SPPO
TNLF

0.0 0.1 0.2 0.3 0.4 0.5
Magnitude

0

20

40

60

80

100

120

140

Co
st

 R
et

ur
n

Spacerandom-cost
ALAC(ours)
LAC
LAC*
POLYC
SAC-cost
SPPO
TNLF

0.0 0.1 0.2 0.3 0.4 0.5
Magnitude

0

50

100

150

200

250

300

350

400

Co
st

 R
et

ur
n

Spacedualarm-cost
ALAC(ours)
LAC
LAC*
POLYC
SAC-cost
SPPO
TNLF

Figure 7: Performance of ALAC method and other baselines under persistent disturbances with
different magnitudes. (The X-axis indicates the magnitude of the applied disturbance. We evaluate
the trained policies for 20 trials in each setting.)

E.6.2 Generalization679

We verify that ALAC achieves excellent generalization with the feedback of errors. In particular, the680

gap between each other enlarges with the increasing biases. Furthermore, we observe that the errors681

bring a negative impact on the performance of SAC-cost. The reason can be that SAC-cost does not682

capture the error information without the guidance of a Lyapunov function. Note that the number of683

environment steps in Halfcheetah-cost is 5e5 in this section.684

-20% -10% 0% 10% 20%
Biases of goals

75

100

125

150

175

200

225

250

Co
st

 R
et

ur
n

Pointcircle-cost
ALAC w/ error
ALAC w/o error
SAC-cost w/ error
SAC-cost w/o error

-20% -10% 0% 10% 20%
Biases of goals

0

50

100

150

200

Co
st

 R
et

ur
n

HalfCheetah-cost
ALAC w/ error
ALAC w/o error
SAC-cost w/ error
SAC-cost w/o error

-20% -10% 0% 10% 20%
Biases of goals

0

5

10

15

20

25

30

35

40

Co
st

 R
et

ur
n

Spacereach-cost
ALAC w/ error
ALAC w/o error
SAC-cost w/ error
SAC-cost w/o error

Figure 8: Evaluation of ALAC and SAC-cost methods in the presence of different biases of goals.
(The X-axis indicates the magnitude of the applied shifting. We evaluate the trained policies for 20
trials in each setting.)

26

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

50

100

150

200

250

Co
st

 R
et

ur
n

Cartpole-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

200

400

600

800

1000

Co
st

 R
et

ur
n

Pointcircle-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0 1 2 3 4 5
Timestep 1e5

0

25

50

75

100

125

150

175

200

Co
st

 R
et

ur
n

HalfCheetah-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

45

50

55

60

65

70

75

80

Co
st

 R
et

ur
n

Swimmer-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vi
ol

at
io

n

Cartpole-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

0

1

2

3

4

5

6

Vi
ol

at
io

n

Pointcircle-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0 1 2 3 4 5
Timestep 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Vi
ol

at
io

n

HalfCheetah-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Vi
ol

at
io

n

Swimmer-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

60

80

100

120

140

160

180

200

220

Co
st

 R
et

ur
n

Ant-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

0

10

20

30

40

50

60

70

80

Co
st

 R
et

ur
n

Spacereach-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0 1 2 3 4 5
Timestep 1e5

0

10

20

30

40

50

60

70

Co
st

 R
et

ur
n

Spacerandom-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0 1 2 3 4 5
Timestep 1e5

25

50

75

100

125

150

175

200

225

Co
st

 R
et

ur
n

Spacedualarm-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

1

2

3

4

5

Vi
ol

at
io

n

Ant-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Vi
ol

at
io

n

Spacereach-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0 1 2 3 4 5
Timestep 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Vi
ol

at
io

n

Spacerandom-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

0 1 2 3 4 5
Timestep 1e5

0

1

2

3

4

5

6

7

Vi
ol

at
io

n

Spacedualarm-cost
ALAC(original)
ALAC(1)
ALAC(2)
ALAC(Tanh)
ALAC(kl = 0.1)

Figure 9: Ablation studies of our method. ALAC(original) shows comparable or the best performance
compared with other certifications on each task.

27

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

50

100

150

200

250

300

Co
st

 R
et

ur
n

Cartpole-cost
ALAC(ours)
LAC
LAC*
LBPO
POLYC
SAC-cost
SPPO
TNLF

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

200

400

600

800

1000

Co
st

 R
et

ur
n

Pointcircle-cost
ALAC(ours)
LAC
LAC*
LBPO
POLYC
SAC-cost
SPPO
TNLF

0 1 2 3 4 5
Timestep 1e5

0

50

100

150

200

250

300

Co
st

 R
et

ur
n

HalfCheetah-cost
ALAC(ours)
LAC
LAC*
LBPO
POLYC
SAC-cost
SPPO
TNLF

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

40

60

80

100

120

Co
st

 R
et

ur
n

Swimmer-cost
ALAC(ours)
LAC
LAC*
LBPO
POLYC
SAC-cost
SPPO
TNLF

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

0

2

4

6

8

10

Vi
ol

at
io

n

Cartpole-cost
ALAC(ours)
LAC
LAC*
POLYC
SPPO
TNLF

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

0

2

4

6

8

Vi
ol

at
io

n

Pointcircle-cost
ALAC(ours)
LAC
LAC*
POLYC
SPPO
TNLF

0 1 2 3 4 5
Timestep 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Vi
ol

at
io

n

HalfCheetah-cost
ALAC(ours)
LAC
LAC*
POLYC
SPPO
TNLF

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Vi
ol

at
io

n

Swimmer-cost
ALAC(ours)
LAC
LAC*
POLYC
SPPO
TNLF

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

50

100

150

200

250

300

Co
st

 R
et

ur
n

Ant-cost
ALAC(ours)
LAC
LAC*
LBPO
POLYC
SAC-cost
SPPO
TNLF

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

300

350

400

450

500

550

600

Co
st

 R
et

ur
n

Humanoid-cost
ALAC(ours)
LAC
LAC*
LBPO
POLYC
SAC-cost
SPPO
TNLF

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

400

600

800

1000

1200

Co
st

 R
et

ur
n

Minitaur-cost
ALAC(ours)
LAC
LAC*
LBPO
POLYC
SAC-cost
SPPO
TNLF

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

0

25

50

75

100

125

150

175

Co
st

 R
et

ur
n

Spacereach-cost
ALAC(ours)
LAC
LAC*
LBPO
POLYC
SAC-cost
SPPO
TNLF

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

1

2

3

4

5

Vi
ol

at
io

n

Ant-cost
ALAC(ours)
LAC
LAC*
POLYC
SPPO
TNLF

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

2

4

6

8

10

12

Vi
ol

at
io

n

Humanoid-cost
ALAC(ours)
LAC
LAC*
POLYC
SPPO
TNLF

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

1

2

3

4

5

6

7

Vi
ol

at
io

n

Minitaur-cost
ALAC(ours)
LAC
LAC*
POLYC
SPPO
TNLF

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timestep 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Vi
ol

at
io

n

Spacereach-cost
ALAC(ours)
LAC
LAC*
POLYC
SPPO
TNLF

0 1 2 3 4 5
Timestep 1e5

0

20

40

60

80

100

120

140

160

Co
st

 R
et

ur
n

Spacerandom-cost
ALAC(ours)
LAC
LAC*
LBPO
POLYC
SAC-cost
SPPO
TNLF

0 1 2 3 4 5
Timestep 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Vi
ol

at
io

n

Spacerandom-cost
ALAC(ours)
LAC
LAC*
POLYC
SPPO
TNLF

0 1 2 3 4 5
Timestep 1e5

50

100

150

200

250

300

350

400

Co
st

 R
et

ur
n

Spacedualarm-cost
ALAC(ours)
LAC
LAC*
LBPO
POLYC
SAC-cost
SPPO
TNLF

0 1 2 3 4 5
Timestep 1e5

0

1

2

3

4

5

6

7

Vi
ol

at
io

n

Spacedualarm-cost
ALAC(ours)
LAC
LAC*
POLYC
SPPO
TNLF

Figure 10: Performance comparison on ten tasks. The ALAC method finds a good trade-off between
minimizing the accumulated cost and constraint violations in contrast to their rivals.

28

	Introduction
	Problem Formulation
	Policy Optimization with Sampling-based Stability
	Sampling-based Stability Certification
	Policy Optimization Towards Optimal-time Stability

	Adaptive Lyapunov-based Actor-Critic Algorithm
	Lyapunov Critic Learning
	Lagrangian-based Policy Learning
	Theoretical Analysis

	Experiments
	Comparing with Baselines
	Ablation Studies
	Evaluation Results

	Discussion and Future Work
	Related Work
	Model-based RL & Lyapunov Learning
	Model-free RL & Lyapunov Learning
	Applications

	Preliminary Remarks
	Lyapunov function
	Lyapunov Candidate Bound

	Details of Theoretical Analysis
	Assumptions of Theorem 3.1
	Proof of Theorem 3.1
	Finite-Time Feedback Tracking Method
	Illustration of the Feedback Tracking
	Constrained Lyapunov Critic Network
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Details of Algorithms
	Details of Experiments
	Environmental Design
	Implementation Details
	Baselines
	Our method

	More Results on Comparison
	More Results on Ablation Study
	Details of Visualization
	More Results on Evaluation
	Robustness
	Generalization

