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Abstract
Value iteration networks (VINs) enable end-to-
end learning for planning tasks by employing
a differentiable “planning module” that approx-
imates the value iteration algorithm. However,
long-term planning remains a challenge because
training very deep VINs is difficult. To address
this problem, we embed highway value iteration—
a recent algorithm designed to facilitate long-term
credit assignment—into the structure of VINs.
This improvement augments the “planning mod-
ule” of the VIN with three additional components:
1) an “aggregate gate,” which constructs skip con-
nections to improve information flow across many
layers; 2) an “exploration module,” crafted to
increase the diversity of information and gradi-
ent flow in spatial dimensions; 3) a “filter gate”
designed to ensure safe exploration. The result-
ing novel highway VIN can be trained effectively
with hundreds of layers using standard backprop-
agation. In long-term planning tasks requiring
hundreds of planning steps, deep highway VINs
outperform both traditional VINs and several ad-
vanced, very deep NNs.

1. Introduction
Planning is a search for action sequences that are predicted
to achieve specific goals. The value iteration network (VIN)
(Tamar et al., 2016) is a neural network (NN) architecture
that enables end-to-end training for planning tasks using an
embedded “planning module,” a differentiable approxima-
tion of the value-iteration algorithm (Bellman, 1966). VINs
have exhibited remarkable proficiency in various tasks, in-
cluding path planning (Pflueger et al., 2019; Jin et al., 2021),
autonomous navigation (Wöhlke et al., 2021), and complex
decision-making in dynamic environments (Li et al., 2021b).
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Figure 1: Success rates of reaching the goal in a 25 × 25
maze problem. The success rate of a 30-layer VIN con-
siderably decreases as the shortest path length increases,
and training a 300-layer VIN is difficult and exhibits poor
performance.

However, VIN encounters significant challenges in long-
term planning. For example, in path planning tasks where
the shortest path length exceeds 120, the success rate of
VINs in reaching the goal drastically decreases below 10%
(Fig. 1). A promising approach to improve the long-term
planning capabilities of VIN is increasing the depth of its
embedded “planning module.” A deeper planning mod-
ule can integrate more planning steps in VINs, potentially
improving their ability to perform long-term planning.

Nonetheless, increasing the depth of an NN can introduce
complications, such as vanishing or exploding gradients,
which is a fundamental problem in deep learning (Hochre-
iter, 1991). Although very deep NNs can be effectively
trained in classification tasks using different methods (Sri-
vastava et al., 2015b;a; He et al., 2016; Huang et al., 2017),
these methods have not been equally successful in planning
tasks (Table 1 in Section 5). This disparity may arise from
the unique architecture of the VIN, particularly its planning
module, which incorporates a specific inductive bias from re-
inforcement learning (RL). This inductive bias is grounded
in the value iteration algorithm, known for its theoretical
soundness (Bellman, 1966; Sutton & Barto, 2018). Herein,
additional RL-relevant prior knowledge is integrated into
the VIN architecture to address these challenges.

This study aims to integrate well-established techniques
from both the fields of NNs and RL to create an effective
and theoretically sound method. Central to the foundation
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of this proposed approach is highway value iteration (Wang
et al., 2024). This method was designed to facilitate effi-
cient long-term credit assignment in the context of RL. We
also leverage the architectural innovations of highway net-
works (Srivastava et al., 2015b;a) and their variants residual
networks (He et al., 2016) and DenseNets (Huang et al.,
2017), particularly their use of skip connections, which are
advantageous for training exceptionally deep NNs.

Building on this foundation, the VIN is enhanced by em-
bedding the highway value iteration algorithm into its core
“planning module.” This integration introduces three key
innovations: (1) an “aggregate gate” for creating skip con-
nections and improving information flow between layers; (2)
an “exploration module” that injects controlled stochasticity
during training, thereby diversifying information and gra-
dient flow across spatial dimensions; (3) and a ”filter gate”
designed to “filter out” useless exploration paths, ensuring
safe and efficient exploration. These improvements result in
the highway value iteration network (highway VIN), a new
VIN variant specifically tailored for long-term planning. Re-
markably, highway VINs can be efficiently trained with hun-
dreds of layers using standard backpropagation techniques.
This study highlights the connections between highway RL
and highway networks and their combined potential to ad-
vance the capabilities of deep learning models in complex
planning tasks. Notably, in scenarios requiring extensive
planning, highway VINs outperform traditional VINs and
several advanced deep NN models. This showcases their
superior capability in handling complex, long-term planning
challenges. The source code of highway VIN is available at
https://github.com/wangyuhuix/HighwayVIN.

2. Related Work
Variants of Value Iteration Networks. VINs (Tamar
et al., 2016) are important architectures that integrate plan-
ning capabilities directly into NNs. VINs have a notable
advantage over classical RL methods, as they learn poli-
cies that generalize better on novel tasks. However, VINs
are challenged by issues such as training instability, hy-
perparameter sensitivity, and overestimation bias. These
issues can be addressed using gated path-planning networks
(GPPN) (Lee et al., 2018), a recurrent version of the VIN,
which replaces convolutional networks with gated recurrent
networks, resulting in more stable and effective learning.
For higher-dimensional planning tasks, AVINs (Schleich
et al., 2019) extend VINs with multi-level abstraction mod-
ules. These modules can capture various types of useful
information during learning. Another significant challenge
arises in generalizing VINs to target domains with limited
data. Transfer VINs (Shen et al., 2020) tackle this issue by
proposing a transfer learning approach, effectively adapting
VINs to different, unseen target domains. Unfortunately,

existing methods are considerably limited to extend to real-
world and large-scale planning problems as shallow NNs
lack long-term planning ability.

Neural Networks with Deep Architectures. Deep learn-
ing involves assigning credits to NN components that affect
the performance of the NN across multiple layers, or in
the case of sequential data, over several time steps. In
1965, Ivakhnenko & Lapa (1965) introduced the first learn-
ing algorithms for deep feedforward NNs (FNNs) with any
number of hidden layers. However, training FNNs with
more than six layers by gradient descent remained a chal-
lenge until the early 2010s (Ciresan et al., 2010). Similarly,
in the 1980s, recurrent neural networks (RNNs) were lim-
ited to problems spanning fewer than ten time steps due to
the “vanishing gradient problem” (Hochreiter, 1991), the
fundamental problem of deep learning. In very deep NNs,
and in RNNs processing sequences with significant time
lags between relevant events, the backpropagated gradients
tend to either explode or vanish. In 1991, advances in his-
tory compression and neural sequence chunking through
self-supervised pre-training enabled training RNNs over
hundreds or thousands of steps (Schmidhuber, 1991; 1992).
However, this worked only for sequences with predictable
regularities. This limitation was overcome using residual
recurrent connections (Hochreiter, 1991) in long short-term
memory (LSTM) RNNs (Hochreiter & Schmidhuber, 1997).
This and the later gated LSTM version (Gers et al., 2000)
informed the first very deep FNNs called highway networks
(Srivastava et al., 2015b). LSTM RNNs are particularly
well-suited for tasks involving credit assignment over thou-
sands of steps, whereas similar highway networks were the
earliest FNNs with hundreds of layers (previous FNNs had
at most tens of layers). Following the same principle, the
popular ResNet FNN architecture (He et al., 2016) keeps the
highway gates permanently open, allowing uninterrupted
information flow from the first to the last layer. Residual
connections (Hochreiter, 1991) have become essential for
many successful deep-learning architectures (Huang et al.,
2017), including graph neural networks with hundreds of
layers (Li et al., 2019; 2021a).

3. Preliminaries
Reinforcement Learning. RL is usually formalized as
a Markov decision process (MDP) problem (Puterman,
2014). An MDP comprises states s ∈ S, actions a ∈
A, a reward function R(s, a, s′), and a transition func-
tion T (s′|s, a) that represents the likelihood of transition-
ing to the next state s′ from the current state and ac-
tion (s, a). We assume that the action space is finite
and the state space is countable. A policy π(a|s) de-
fines a probability distribution over actions for each state.
The value function V π(s) is defined as the expected dis-
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counted sum of rewards for following policy π from state
s, i.e., V π(s) ≜ E [

∑∞
t=0 γ

tR(st, at, st+1)|s0 = s;π],
where γ ∈ [0, 1) is a discount factor. It is also con-
venient to define the action-value function Qπ(s, a) ≜∑

s′ T (s′|s, a) [R (s, a, s′) + γV π (s′)] . The objective of
RL is to find a policy yielding the maximum expected
sum of rewards. To achieve this, the optimal value func-
tion is defined as follows: V ∗(s) = maxπ V

π(s) and
Q∗(s, a) = maxπ Q

π(s, a), which allow us to construct
an optimal policy π∗(s) = argmaxa Q

∗(s, a) that satisfies
V π∗

(s) = V ∗(s)∀s. The Bellman optimality operator and
Bellman expectation operator are commonly used to obtain
these value functions as follows:

(BV )(s) ≜max
a

∑
s′

T
(
s′|s, a

) [
R

(
s, a, s′

)
+ γV

(
s′
)]

,

(BπV )(s) ≜
∑
a

π(a|s)
∑
s′

T
(
s′|s, a

) [
R

(
s, a, s′

)
+ γV

(
s′
)]

.

(1)

(2)

Iteratively applying B and Bπ to any initial value function
V (0) will result in the convergence to V ∗ and V π, respec-
tively. The value iteration (VI) algorithm is a concrete
example of such a convergence, which iteratively applies
the Bellman optimality operator as V (n+1) = BV (n).

Value Iteration Networks. VINs are NNs that integrate
the process of planning into the learning architecture. VINs
feature a “planning module”, which approximates the VI
process based on a learned latent MDP M. Below, we
will use · to denote all the terms associated with the latent
MDP M. VINs use learnable mapping functions to transit
an observation ϕ(s) to a latent MDP by R = fR(ϕ(s)) and
T = fT(ϕ(s)). Then, it implements the VI update in Eq. (1)
using a Value Iteration module, which applies a convolu-
tional operation along with a max-pooling operation:

Q
(n)

a,i,j =
∑
i′,j′

(
Ta,i′,j′Ri−i′,j−j′ + Ta,i′,j′V

(n−1)

i−i′,j−j′

)
, (3)

V
(n)

i,j = max
a

Q
(n)

a,i,j . (4)

Here, the indices i, j correspond to the coordinates of the
latent state, and a is the index of the action in the latent
MDP M. Eq. (3) sums over a matrix patch centered around
position (i, j). Fig. 4(a) shows the computation process
of the VI module. By stacking the VI module for several
layers, it approximates the optimal value function V

∗
, which

is then mapped to a policy applicable to the actual MDP
M. Fig. 2 shows the VIN architecture. As each component
of the architecture is differentiable, VINs can be trained
end-to-end.

Highway Value Iteration. Highway value iteration (high-
way VI) is an algorithm derived from the theory of highway

(a) VIN/HighwayVIN (b) Planning Module of VIN

Figure 2: (a): Architecture of VIN and highway VIN. (b):
Architecture of the planning module of VIN, which includes
N layers of value iteration modules. The architecture of the
value iteration module is detailed in Fig. 4(a).

RL (Wang et al., 2024), which is a framework for improv-
ing the efficiency of long-term credit assignment. This
approach introduces a multi-step operator, which averages
n-step bootstrapping values using various policies, termed
lookahead policies, each executed for different n time steps.
Here, n represents the lookahead depth. This operator is
formally defined as follows:

GΠ,α̃
N ,αV ≜ smaxα̃

π∈Π
smaxα

n∈N
max

{
(Bπ)◦(n−1) BV,BV

}
. (5)

In this formula, Π denotes the set of lookahead policies
and N denotes the set of lookahead depths. The soft-
max function, with a softmax temperature α, is defined
as: smaxα

x∈X
f (x) ≜

∑
x∈X

exp(αf(x))∑
x′∈X exp(αf(x′))f (x) . Here,

(·)◦k indicates the composition of operator (·) for k times.
Based on this operator, the algorithm highway VI iteratively
updates the value function as V (n+1) = GΠ,α̃

N ,αV
(n). Two

critical aspects of highway VI are highlighted:
Remark 1. (Convergence to the Optimal Value Function)
The highway VI algorithm is proved to converge to the opti-
mal value function V ∗ regardless of the choice of lookahead
policies Π, lookahead depths N , and softmax temperatures
α̃ and α. For a detailed formal statement, please refer to
their Theorem A.2 (Wang et al., 2024).
Remark 2. (Importance of the Maximization Operation)
The maximization operation, max

{
(Bπ)

◦(n−1) BV,BV
}

,
is crucial for ensuring convergence to V ∗. Convergence
is not guaranteed without this component. For a detailed
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formal statement, please refer to their Theorem 1, 2 (Wang
et al., 2024).

4. Method
Motivation. NNs with increased depth have superior rep-
resentational and generalization capabilities (Szegedy et al.,
2014; Ciresan et al., 2011; 2012; Telgarsky, 2016). Building
on this knowledge, we propose that increasing the depth of
VIN can considerably boost their long-term planning abili-
ties in the context of RL. This proposition is grounded in the
intrinsic design of VINs, which includes a value iteration
planning module. A theoretical study (see Theorem 1.12,
(Agarwal et al., 2019)) indicates that increased iterations in
this module can result in a more accurate estimation of the
optimal value function, subsequently improving the policy
performance.

Overview. The traditional VIN (Section 3) propagates
information layer-by-layer, based on the step-by-step ap-
proach of the VI process. The proposed novel method, i.e.,
highway VINs, enhances VINs by incorporating a distinct
planning module inspired by highway VI. As detailed in Sec-
tion 3, highway VI uses information from various policies
and multiple steps ahead, forming a new VIN architecture
that facilitates the information flow from various dimen-
sions. The planning module of highway VINs follows the
computational process of highway VI in Eq. (5). Below,
we detail the transition from the n-th activation V

(n)
, repre-

sentative of the iterative process of the proposed planning
module.

First, V (n)
is fed into the value iteration module to generate

a new activation V
(n+1)

, as in VINs (Eq. 3 and 4). This
step corresponds to the Bellman optimality operator B(·) in
highway VI (see Eq. 5).

Then, to facilitate information flow over spatial dimensions,
we introduce a new value exploration (VE module) module.
Each VE module is equipped with an embedded policy π,
defined on the latent MDP M and determining the path of
the information flow. Conceptually, it corresponds to one
application of the Bellman Expectation operator Bπ(·) in
highway VI.

Then, to further facilitate spatial information flow in depth,
we stack Np parallel VE modules for Nb − 1 layers, corre-
sponding to multiple compositions (Bπ)◦(Nb−1)(·) in high-
way VI. These stacked and parallel VE modules process the
input V

(n)
, leading to new activations {V(n+nb)

np
}np,nb

for
various indexes of the parallel modules np = 1, · · · , Np

and various depths nb = 1, · · · , Nb, where the initial
V(n+1)

np
= V

(n+1)
for each np.

Finally, the outputs from these parallel and stacked VE

Figure 3: Planning module of highway VIN. Here, we
demonstrate the planning module of highway VIN using a
highway block of depth Nb = 4 and incorporating Np = 2
embedded policies.

modules are combined using an aggregate gate and a filter
gate. This combination forms a skip connection architecture,
which eases the training of very deep NNs. These gates
mirror the operations smaxα̃

π
smaxα

n
max{·} in highway

VI.

We term the above four procedures as a highway block.
The planning module of highway VIN comprises NB such
highway blocks. Fig. 3 overviews this planning module.
The subsequent sections detail the components of the VE
module, filter gate, and aggregate Gate.

4.1. Value Exploration Modules

The value iteration module in VINs greedily takes the largest
Q value, as shown in Eq. (4). Consequently, this mechanism
can result in a distinctive information flow for each layer,
thereby channeling gradients toward certain specific neu-
rons. To facilitate the information and gradient flow across
spatial dimensions, we introduce a new VE module. Each
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(a) Value Iteration Module (b) Value Exploration Module

Figure 4: Architecture of the value iteration module and VE
module, respectively. The operation maxA×1×1 denotes a
max operation over the action axis, as shown in Eq. (4). The
operation linearA×1×1 represents a linear combination of
the input Q matrix Qnp

and the policy matrix πnp over the
action axis, as shown in Eq. (7).

VE module is equipped with an embedded policy, which
determines the path of the information flow. The VE module
computes values according to Bellman expectation operator
Bπ(·) in highway VI:

Q(n+nb)

π,a,i,j =
∑
i′,j′

(
Ta,i′,j′Ri−i′,j−j′ + Ta,i′,j′V

(n+nb−1)

π,i−i′,j−j′

)
(6)

V(n+nb)

np,i,j =
∑
a

π
(n+nb)
np,a,i,j

Q(n+nb)

np,a,i,j (7)

where π
(n+nb)
np ∈ R|A|×m×m represents the np-th embed-

ded policy for (n+ nb)-th layer. Here, the value functions
are denoted as V and Q to distinguish them from the value
functions V and Q of the VI module. As implied by Eq. (7),
instead of taking maximization over the actions as in the VI
module (see Eq. 4), the proposed VE module takes expecta-
tion over actions based on the distribution of the embedded
policy πnp

. The computation process of the VE module is
shown in Fig. 4(b).

Note that, as stated in Remark 1, convergence in highway
VI is assured regardless of the chosen lookahead policies.
These policies correspond to embedded policies within sev-
eral VE modules of highway VINs. Generally, the em-
bedded policy can be generated using a learnable mapping

function π
(n+nb)
np = fπ

(
Q(n+nb)

np
, ϕ(s);W

(n+nb)
np

)
, where

W
(n+nb)
np are learnable parameters. Drawing inspiration

from the dropout technique, which introduces stochasticity
into the activations to increase robustness (Srivastava et al.,
2014; Hanson, 1990; Hertz et al., 1991; Baldi & Sadowski,
2013), we randomly generate multiple embedded policies
as follows:

π
(n+nb)
np,a,i,j

=

{
1, a = â ∼ P

(
·;Q(n+nb)

np,·,i,j , ϵ
)

0, otherwise,
(8)

where ϵ is the embedded exploration rate, and â is
a sampled action drawn from the ϵ-greedy distribution
P
(
·;Q(n+nb)

np,·,i,j , ϵ
)

, defined as:

P
(
a;Q(n+nb)

np,·,i,j , ϵ
)
=

1− ϵ+ ϵ
|A| , a = argmax

a′
Q(n+nb)

np,a′,i,j

ϵ
|A| , otherwise.

During the training phase, the embedded policies are gen-
erated randomly for each iteration. In contrast, we adopt
greedy policies during the evaluation phase, where trained
models are applied in realistic environments, defined as
follows:

π
(n+nb)
np,a,i,j

=

{
1, a = argmaxa′ Q(n+nb)

np,a′,i,j

0, otherwise.

This equation indicates that, during the evaluation phase,
VE modules function in the same way as VI modules. In
practice, we observe that incorporating this stochastic mech-
anism substantially improves robustness and is essential for
achieving high performance. Moreover, this stochasticity
does not impact the convergence to the optimal value func-
tion. As stated by the theory of highway VI in Remark 1,
convergence is guaranteed irrespective of any chosen em-
bedded policies, even if they are fully stochastic.

4.2. Aggregate and Filter Gates

We aim to integrate the proven efficacy of skip connections
in training very deep NNs (Srivastava et al., 2015b; He et al.,
2016). However, theoretically validating this architecture
within the RL framework and ensuring its compatibility
with the stochasticity in the VE modules are challenging.
The highway VI algorithm offers a guiding principle for
this design. By implementing the smaxα̃

π
smaxα

n
max{·}

operations of highway VI, the activations are aggregated as
follows:

V
(n+Nb)

i,j =

Np∑
np=1

Ã
(n+Nb)
np,i,j

Nb∑
nb=1

A
(n+nb)
np,i,j

V ′(n+nb)
np,i,j︷ ︸︸ ︷

max

{
V(n+nb)

np,i,j , V
(n+1)
i,j

}
.

︸ ︷︷ ︸
V ′′(n+Nb)

np,i,j
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Here, Ã(n+Nb)
np,i,j

and A
(n+nb)
np,i,j

are termed as the aggregate
gate, reflecting the degree to which activations contribute
to the output, similar to the concept in highway networks
(Srivastava et al., 2015b;a). The aforementioned equation
illustrates the aggregation of activations from various layers
across multiple parallel VE modules, i.e.,

{
V(n+nb)

np

}
np,nb

,

for np = 1, · · · , Np and nb = 1, · · · , Nb. Fig. 3 illustrates
the information flow of this computation process. Aggregate
gates can be generally generated using mapping functions as

follows: A
(n+nb)
np = fA

({
V

(n+n′
b)

np

}
n′
b

, ϕ(s);U
(n+nb)
np

)
.

Here, U (n+nb)
np are learnable parameters. For simplicity and

consistency with highway VI, we use softmax weights in
the following form:

Ã
(n+Nb)
np,i,j

=

exp

(
α
Ã
V

′′(n+Nb)

np,i,j

)
∑
n′
p

exp

(
α
Ã
V

′′(n+Nb)

n′
p,i,j

) , for various np,

A
(n+nb)
np,i,j

=

exp

(
αAV

′(n+nb)

np,i,j

)
∑
n′
b

exp

(
αAV

′(n+n′
b)

np,i,j

) , for various nb,

where α
Ã

and αA are the softmax temperatures that vary for
each highway block and learnable via backpropagation.

The maximization operation max{·}, which we term filter

gate, compares the (n + nb)-th activation V(n+nb)

np
with

the (n + 1)-th one V
(n+1)

, selecting the maximum value.
This filter gate is essential for discarding any activations
V(n+nb)

np
that are lower than V

(n+1)
, effectively filtering

out explorations in VE modules that do not contribute to
convergence. Furthermore, as suggested in Remark 2, this
operation is crucial for ensuring convergence.

4.3. Relation to Highway Networks

Section 4.2 and Fig. 3 illustrate the planning module of
highway VIN, which features an architecture with skip con-
nections similar to those found in established NNs such
as highway networks (Srivastava et al., 2015b;a) and their
variants residual networks (He et al., 2016) and DenseNets
(Huang et al., 2017). A straightforward approach is to di-
rectly implement skip connections in VINs as follows:

V
(n+Nb)

i,j =

Nb∑
nb=1

A
(n+nb)
i,j V

(n+nb)

i,j . (9)

Here, V
(n+nb)

i,j is derived from the VI module (Eqs. 3 and

4), using V
(n+nb−1)

i,j as the input. While this method helps
to address optimization challenges in training very deep

VINs, it has not shown effectiveness in improving long-term
planning capabilities (Table 1 in Section 5). Highway VINs
include two additional critical components: a VE module
that improves the diversity of information and gradient flow,
and an innovative filter gate designed to eliminate useless
information generated by the VE modules. This study also
reveals the underlying connections between the highway
RL and highway networks, which were initially proposed
under different contexts and purposes but share fundamental
similarities.

5. Experiments
We conduct a series of experiments to evaluate how highway
VINs can improve the long-term planning capabilities of
VINs for complex tasks. We also explore the significance
of each component within the highway VINs.

5.1. 2D Maze Navigation

We evaluate the algorithms on 2D maze navigation tasks
of various sizes m × m, specifically 15 × 15 and 25 ×
25. In these tasks, the agent can move forward, turn 90
degrees left or right, and has four orientations. We follow
the experimental setup described in the paper on GPPN
(Lee et al., 2018). We train the models for 30 epochs using
imitation learning on a labeled training dataset, select the
best model based on validation dataset performance, and
test it on a separate test dataset. Each dataset contains
numerous planning tasks, each involving a maze with a start
position, an image of the m×m map, and a goal position
represented by a 4×m×m matrix (where 4 corresponds to
the four orientations). These datasets involve tasks requiring
planning over hundreds of steps to reach the goal. For
more detailed information about the dataset, please refer to
Appendix A.

We measure the planning abilities of an agent based on the
success rate (SR), which is defined as the ratio of the number
of successfully completed tasks to the total number of plan-
ning tasks. The agent is considered to succeed in a task if it
generates a path from the start position to the goal position
within a limited number of steps. To assess the planning
ability of the algorithms across different scales, we evaluate
them on navigation tasks with varying shortest path lengths
(SPLs) from start to goal. These lengths are calculated in ad-
vance using Dijkstra’s algorithm with access to the maze’s
underlying structure. Tasks with longer SPLs typically de-
mand greater long-term planning capabilities. We follow
the GPPN paper’s setting, evaluating each algorithm with 3
random seeds. We report the mean and standard deviation
on the test dataset.

Subsequently, we compare the highway VINs against sev-
eral advanced NNs for planning tasks. The baseline model
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Table 1: The success rates for each algorithm with various depths under 2D maze navigation tasks with different ranges of
shortest path length. Please also refer to Appendix Table 4 for the results of all the other depths.

Maze Size 15× 15 25× 25
Shortest Path Length [1, 30] [30, 60] [60, 100] [1, 60] [60, 130] [130, 230]

VIN
(Tamar et al., 2016)

N = 20 99.83± 0.11 96.48± 0.58 63.03± 3.20 N = 30 98.84± 0.16 49.25± 4.16 2.96± 0.66
N = 40 99.79± 0.10 95.84± 0.69 76.16± 1.87 N = 60 96.47± 1.33 48.26± 4.21 7.87± 3.54
N = 100 0.80± 0.03 0.00± 0.00 0.00± 0.00 N = 150 0.22± 0.08 0.00± 0.00 0.00± 0.00
N = 200 0.56± 0.00 0.00± 0.00 0.00± 0.00 N = 300 0.24± 0.00 0.00± 0.00 0.00± 0.00

GPPN
(Lee et al., 2018)

N = 20 99.98± 0.01 92.68± 1.07 51.12± 5.00 N = 30 98.98± 0.25 25.98± 5.78 2.76± 1.68
N = 40 99.99± 0.01 96.16± 3.56 65.17± 12.4 N = 60 99.09± 0.19 28.87± 1.47 1.32± 0.55
N = 100 99.95± 0.05 93.34± 4.16 60.57± 13.6 N = 150 98.51± 0.31 21.62± 3.50 0.73± 0.68
N = 200 99.98± 0.01 92.79± 1.28 50.88± 3.59 N = 300 95.38± 2.01 6.29± 4.35 0.02± 0.03

Highway network
(Srivastava et al., 2015b)

N = 40 99.65± 0.17 96.04± 0.63 75.86± 10.0 N = 60 97.93± 0.56 62.95± 8.79 17.46± 5.45
N = 100 99.36± 0.32 91.11± 2.64 60.32± 8.87 N = 150 85.42± 4.20 12.55± 3.89 0.35± 0.23
N = 200 0.73± 0.12 0.00± 0.00 0.00± 0.00 N = 300 0.24± 0.00 0.00± 0.00 0.00± 0.00

Highway VIN
(ours)

N = 40 99.77± 0.09 98.83± 0.25 90.00± 2.12 N = 60 97.87± 0.60 77.02± 6.30 20.68± 9.89
N = 100 99.93± 0.03 99.52± 0.12 98.61± 0.66 N = 150 97.77± 0.48 89.56± 0.95 75.42± 10.1
N = 200 99.94± 0.01 99.13± 0.12 98.20± 1.75 N = 300 98.73± 0.50 92.28± 3.50 90.06± 3.13

is the original VIN (Tamar et al., 2016). We also compare
highway VINs against GPPNs (Lee et al., 2018), which
improve the training stability of VINs using gated recurrent
operators such as LSTM updates and the highway networks
(Srivastava et al., 2015b), which incorporate skip connec-
tions for training of very deep NNs (adapted here for VINs,
Section 4.3). We follow the hyperparameter settings listed
in the paper on GPPNs (Lee et al., 2018). To ensure a fair
comparison, we set the number of parallel VE modules of
highway VINs to Np = 1 unless stated otherwise. The
embedded exploration rate is set to ϵ = 1 (defined in Eq. 8).
Note that this setting does not result in a sub-optimal solu-
tion of the latent value function due to the filter gate, which
excludes actions detrimental to convergence. The baseline
uses a 20-layer VIN and GPPN for the 15× 15 Maze, and
a 30-layer VIN and GPPN for the 25× 25 Maze. For both
highway networks and highway VINs, we set NB = 20
highway blocks for the 15× 15 maze and NB = 30 for the
25×25 maze. We set various highway block depths Nb ≥ 2,
which yields various total depths: N = Nb ∗ NB , specifi-
cally N ∈ {40, 60, 80, 120, 160, 200} for the 15× 15 maze
and N ∈ {60, 90, 120, 150, 180, 240, 300} for the 25× 25
maze. The baselines VIN and GPPN are also tested using
the same depths.

Peformance with the Best NN Depth. Fig. 5 shows the
SRs of various algorithms under tasks with different SPLs.
To ensure a fair comparison, we select the best results from
varying NN depths for each algorithm as each algorithm
may perform optimally at different depths (please refer to
Fig. 9 in Appendix for a comprehensive view of the results
across all depths). The results demonstrate that the SRs for
all compared methods considerably decrease with increasing
SPLs. Remarkably, when the SPL exceeds 200 in the 25×25
Maze, the SRs of all methods nearly drop to 0%. In contrast,
highway VIN maintains an impressive 98% SR with an SPL
of 100 in the 15 × 15 Maze and 90% SR with an SPL of
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Figure 5: Success rates of the algorithms are presented as a
function of varying shortest path length. For each algorithm,
the optimal result from a range of depths is selected. For a
comprehensive view of the results across all depths, please
see Fig. 9 in the Appendix.

(a) 25× 25 Maze (b) VIN (c) Highway VIN

Figure 6: (a) An example of 25 × 25 Maze. (b) and (c)
learned feature maps of VIN and highway VIN, respectively.

200 in the 25× 25 Maze.

Additionally, Fig. 6 shows the feature map of the VIN and
highway VIN, which can conceptually be understood as the
learned value function. The figure reveals that the learned
values of highway VIN for states distant from the goal are
larger than those of VIN, implying that highway VIN learns
an effective value function for long-term planning.

Peformance with Various Depths. Table 1 shows the
SRs of each algorithm across various depths and tasks with
different SPL ranges (see Table 4 in the Appendix for results
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across all depths). The table shows that the highway VINs
generally perform better with increased depth. Notably, we
observe a +69.38% improvement in the SR of the 25 ×
25 maze with an SPL range of [130, 230] as the depth N
increases from 60 to 300.

The performance of the VIN decreases with increasing
depth. Specifically, the SR of VINs drops to nearly 0%
for all tasks at a depth of N > 150. The highway network,
in contrast, maintains its performance even at greater depths.
However, an increase in depth does not considerably im-
prove its long-term planning capabilities. We hypothesize
that integrating the skip connections of highway networks
into VINs does not introduce additional architectural induc-
tive bias beneficial for planning.

The GPPN effectively mitigates the challenges of training
very deep models and performs robustly across various
depths. In particular, the GPPN excels in tasks with short
SPLs, achieving a 99.09% SR on a 25× 25 maze with an
SPL range of [1, 30]. However, the GPPN does not show
a notable improvement in long-term planning capabilities
with an increased depth. For instance, the SR of the GPPN
drops to less than 3% on a 25× 25 maze with an SPL range
of [130, 230]. This might be because the GPPN, as a black
box method with less inductive bias towards planning, is
more suited to learning patterns for short-term planning
tasks rather than those requiring long-term planning skills.

5.2. Ablation Study

Several ablation studies were conducted to evaluate: 1) the
effectiveness of the filter gate (Section 4.2); 2) the impact of
the VE module (Section 4.1). We also evaluate the influence
of the number of parallel VE modules in Appendix B.2. In
the highway VIN experiments, the default hyperparameters
include an exploration rate ϵ of 1, a single parallel VE
module (Np = 1), and depth configurations of 200 for the
15× 15 mazes and 300 for the 25× 25 mazes.

Filter Gate. The SRs of highway VINs, with and without
the filter gate, are shown in Fig. 7. The performance con-
siderably decreases when the filter gate is absent. This is
because, without a filter gate, highway VINs could easily
suffer the adverse effects of exploration in VE modules,
which could prevent convergence.

VE Modules. We also evaluate a variant of highway VIN
without the VE module (referred to as w/o VE modules),
which means that all VE modules are replaced with VI mod-
ules. Fig. 8 shows the SRs for the variants with and without
the VE module. Without VE modules, the performance
of highway VINs notably diminishes in the 25× 25 maze.
In comparison, the variant equipped with the VE modules
performs much better. This improvement is likely due to
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Figure 7: Success rates of highway VIN with and without
the filter gate.

the use of diverse latent actions, which could facilitate in-
formation flow among various neurons in the NN. Table 2
lists the entropy of the selected latent actions of VIN and
highway VIN. For VIN, it always selects the action that
leads to the maximum Q value. Although the selected latent
actions generally vary for each layer because the Q values
dynamically change for each layer, they will converge to
the same actions when the Q values converge. Therefore,
the diversity of the selected actions for VIN is much more
limited. Instead, in the proposed highway VIN, we employ
the value exploration module to maintain diversity.
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Figure 8: Success rates of highway VIN with and without
the VE modules,

Table 2: The entropy of the selected latent actions of
VIN and highway VIN with various depths. The entropy
is computed by

∑
a∈A [−p(a) log p(a)], where p(a) =

cnt(a)∑
a∈A cnt(a) and cnt(a) is the number of selected latent

actions equals to a over the latent actions across all hidden
layers.

Maze Size 15× 15 25× 25
Depth 40 100 200 60 150 300
VIN 0.51 0.14 0.00 0.63 0.07 0.00

Highway VIN (ours) 2.04 3.53 4.17 2.27 3.77 4.35

5.3. 3D ViZDoom Navigation

We evaluate the proposed approach in 3D ViZDoom environ-
ments (Wydmuch et al., 2019). Following the experimental
setting of the GPPN paper (Lee et al., 2018), the input to the
model consists of RGB images capturing the first-person
view, rather than the top-down 2D maze. Based on these
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observations, a CNN is employed to predict the maze map,
which is then inputted into the planning model (such as VIN
or highway VIN), using an architecture and hyperparame-
ters similar to the 2D maze setup. We select the optimal
depth from N = 40, 100, 200 for each algorithm. Highway
VIN performs optimally at depth 100, while other methods
perform best at depth 40. Table 3 shows the SRs in 15× 15
3D ViZDoom maze navigation. Our highway VINs excel in
tasks with SPLs exceeding 30.

Table 3: Success rates of each algorithm with various depths
under 3D ViZDoom maze navigation tasks with different
ranges of SPLs.

[1, 30] [30, 60] [60,100]

VIN 98.57± 1.54 92.03± 2.03 69.37± 2.63
GPPN 99.91± 0.10 89.95± 9.21 44.42± 8.14

Highway network 97.82± 1.01 91.99± 2.54 63.78± 11.49
Highway VIN (ours) 99.43± 0.18 98.70± 0.38 96.98± 1.20

5.4. Computational Complexity

The proposed approach introduces a minimal number of ad-
ditional parameters to the existing VIN architecture, specifi-
cally the softmax temperatures for each highway block de-
noted as {(α(nB)

Ã
, α

(nB)
A )}NB

nB=1. Note that NB indicates the
total number of highway blocks, which are set to NB = 20
for the 15 × 15 maze and NB = 30 for the 25 × 25 maze.
Additionally, the following table details the GPU memory
consumption and training duration for each method when
employing 300 layers on NVIDIA A100 GPUs.

VIN GPPN Highway network Highway VIN (ours)
GPU Memory 3.1G 103.0G 3.3G 15.0G
Training Time 7.5 hours 6.5 hours 7.7 hours 9.0 hours

6. Conclusions
This paper presents a general framework based on highway
RL to improve the long-term planning ability of VINs. We
improve traditional VINs by incorporating three key compo-
nents: an aggregate gate, which establishes skip connections
and facilitates long-term credit assignment; an exploration
module, crafted to diversify information and gradient flow
between neurons; and a filter gate, designed to eliminate
non-essential information. Our experiments demonstrate
that highway VINs enable long-term planning by training
neural networks with hundreds of layers, surpassing the per-
formance of several advanced methods. Future research will
investigate the integration of multiple parallel VE modules
with various types of embedded policies to improve perfor-
mance. Additionally, future work will focus on scaling up
to larger tasks.
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A. Experimental Details
Our experimental settings follow those outlined in the paper on GPPN (Lee et al., 2018). For maze navigation tasks, the
training, validation, and test datasets comprise 25K, 5K, and 5K mazes, respectively.

All models are trained for 30 epochs using the RMSprop optimizer with a learning rate of 0.001 and a batch size of 32. We
also specify a kernel size of 5 for convolutional operations in the planning module, as mentioned in Eq. (3). For the neural
network that maps the observation to the latent MDP, we set the hidden dimension to 150.

B. Additional Experimental Results
B.1. Various Depths of Highway VIN

Table 4 and Fig. 9 show the SRs of various algorithms across different depths. For each algorithm, we also provide the rate
at which it can plan the optimal path that yields the shortest path length, summarized in Table 5.

B.2. Number of Parallel VE Modules

We evaluate highway VIN with varying numbers of parallel VE modules Np under varying depths N . As shown in Fig. 10,
under different depths N , the number of parallel VE modules has a different effect on the performance of highway VIN.
For example, under depth N = 300, with fewer parallel VE modules, i.e., Np = 1, highway VIN performs the best. While
under depth N = 100, with more VE modules, Np = 3, highway VIN performs the best. These results imply that the
additional parallel VE modules may be detrimental to the performance of very deep networks.

B.3. Examples of 2D Maze Navigation

In Fig. 11, we show examples where highway VIN succeeds, but other methods fail.
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Table 4: Success rates of each algorithm with various depths under 2D maze navigation tasks with different ranges of
shortest path lengths.

Maze Size 15× 15 25× 25
Shortest Path Length [1, 30] [30, 60] [60, 100] [1, 60] [60, 130] [130, 230]

VIN
(Tamar et al., 2016)

N = 20 99.83± 0.11 96.48± 0.58 63.03± 3.20 N = 30 98.84± 0.16 49.25± 4.16 2.96± 0.66
N = 40 99.79± 0.10 95.84± 0.69 76.16± 1.87 N = 60 96.47± 1.33 48.26± 4.21 7.87± 3.54
N = 60 99.83± 0.03 92.53± 1.33 66.18± 6.91 N = 90 0.21± 0.08 0.00± 0.00 0.00± 0.00
N = 80 0.65± 0.16 0.00± 0.00 0.00± 0.00 N = 120 0.21± 0.08 0.00± 0.00 0.00± 0.00
N = 100 0.80± 0.03 0.00± 0.00 0.00± 0.00 N = 150 0.22± 0.08 0.00± 0.00 0.00± 0.00
N = 120 0.80± 0.03 0.00± 0.00 0.00± 0.00 N = 180 0.24± 0.00 0.00± 0.00 0.00± 0.00
N = 160 0.64± 0.12 0.00± 0.00 0.00± 0.00 N = 240 0.24± 0.00 0.00± 0.00 0.00± 0.00
N = 200 0.56± 0.00 0.00± 0.00 0.00± 0.00 N = 300 0.24± 0.00 0.00± 0.00 0.00± 0.00

GPPN
(Lee et al., 2018)

N = 20 99.98± 0.01 92.68± 1.07 51.12± 5.00 N = 30 98.98± 0.25 25.98± 5.78 2.76± 1.68
N = 40 99.99± 0.01 96.16± 3.56 65.17± 12.4 N = 60 99.09± 0.19 28.87± 1.47 1.32± 0.55
N = 60 99.96± 0.02 91.47± 3.50 54.52± 7.32 N = 90 98.59± 0.06 25.35± 2.66 0.86± 0.59
N = 80 99.97± 0.03 95.44± 4.48 66.85± 15.5 N = 120 98.67± 0.37 25.60± 4.87 1.35± 0.98
N = 100 99.95± 0.05 93.34± 4.16 60.57± 13.6 N = 150 98.51± 0.31 21.62± 3.50 0.73± 0.68
N = 120 99.99± 0.01 95.57± 3.27 66.99± 15.2 N = 180 90.49± 8.62 7.40± 8.56 0.41± 0.58
N = 160 99.96± 0.01 95.51± 3.13 66.74± 12.8 N = 240 93.98± 2.48 8.64± 5.21 0.15± 0.11
N = 200 99.98± 0.01 92.79± 1.28 50.88± 3.59 N = 300 95.38± 2.01 6.29± 4.35 0.02± 0.03

Highway network
(Srivastava et al., 2015b)

N = 40 99.65± 0.17 96.04± 0.63 75.86± 10.0 N = 60 97.93± 0.56 62.95± 8.79 17.46± 5.45
N = 60 99.69± 0.11 94.31± 0.55 64.94± 5.61 N = 90 94.59± 1.51 49.91± 11.8 13.98± 5.86
N = 80 99.70± 0.05 93.50± 1.15 62.22± 5.87 N = 120 93.65± 0.81 38.79± 2.68 4.05± 0.61
N = 100 99.36± 0.32 91.11± 2.64 60.32± 8.87 N = 150 85.42± 4.20 12.55± 3.89 0.35± 0.23
N = 120 99.51± 0.17 88.45± 2.60 51.88± 4.24 N = 180 0.23± 0.01 0.00± 0.00 0.00± 0.00
N = 160 99.50± 0.05 90.11± 0.93 60.57± 3.33 N = 240 0.25± 0.04 0.00± 0.00 0.00± 0.00
N = 200 0.73± 0.12 0.00± 0.00 0.00± 0.00 N = 300 0.24± 0.00 0.00± 0.00 0.00± 0.00

Highway VIN
(ours)

N = 40 99.77± 0.09 98.83± 0.25 90.00± 2.12 N = 60 97.87± 0.60 77.02± 6.30 20.68± 9.89
N = 60 99.83± 0.10 98.53± 0.72 94.35± 4.15 N = 90 95.31± 1.69 80.57± 7.40 34.72± 6.27
N = 80 99.76± 0.02 98.03± 0.02 94.79± 0.67 N = 120 96.37± 1.82 84.81± 2.12 61.09± 3.50
N = 100 99.93± 0.03 99.52± 0.12 98.61± 0.66 N = 150 97.77± 0.48 89.56± 0.95 75.42± 10.1
N = 120 99.88± 0.04 98.62± 0.35 96.72± 1.76 N = 180 95.99± 1.75 85.18± 2.28 75.40± 4.05
N = 160 99.86± 0.04 98.81± 0.24 96.76± 1.02 N = 240 97.64± 1.49 90.12± 3.68 82.40± 8.95
N = 200 99.94± 0.01 99.13± 0.12 98.20± 1.75 N = 300 98.73± 0.50 92.28± 3.50 90.06± 3.13
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Table 5: Optimality rates of each algorithm with various depths under 2D maze navigation tasks with different ranges of
shortest path lengths. The optimality rate is defined by the ratio of tasks completed within the steps of the shortest path
length to the total number of tasks.

Maze Size 15× 15 25× 25
Shortest Path Length [1, 30] [30, 60] [60, 100] [1, 60] [60, 130] [130, 230]

VIN
(Tamar et al., 2016)

N = 20 99.15± 0.20 90.50± 0.59 53.31± 2.28 N = 30 93.94± 0.33 38.32± 3.64 2.25± 0.35
N = 40 98.54± 0.13 86.71± 0.56 69.49± 2.77 N = 60 88.64± 2.81 33.74± 3.27 6.16± 2.38
N = 60 98.29± 0.23 81.58± 2.57 61.12± 6.42 N = 90 0.20± 0.09 0.00± 0.00 0.00± 0.00
N = 80 0.61± 0.16 0.00± 0.00 0.00± 0.00 N = 120 0.20± 0.09 0.00± 0.00 0.00± 0.00
N = 100 0.72± 0.06 0.00± 0.00 0.00± 0.00 N = 150 0.21± 0.09 0.00± 0.00 0.00± 0.00
N = 120 0.72± 0.06 0.00± 0.00 0.00± 0.00 N = 180 0.24± 0.00 0.00± 0.00 0.00± 0.00
N = 160 0.58± 0.04 0.00± 0.00 0.00± 0.00 N = 240 0.24± 0.00 0.00± 0.00 0.00± 0.00
N = 200 0.56± 0.00 0.00± 0.00 0.00± 0.00 N = 300 0.24± 0.00 0.00± 0.00 0.00± 0.00

GPPN
(Lee et al., 2018)

N = 20 99.35± 0.12 83.42± 2.24 46.97± 5.81 N = 30 96.33± 0.33 19.94± 4.66 2.46± 1.50
N = 40 99.64± 0.16 90.47± 6.65 62.09± 12.1 N = 60 96.53± 0.65 21.20± 1.05 1.01± 0.58
N = 60 99.36± 0.18 82.08± 4.75 49.27± 7.18 N = 90 94.78± 0.21 17.96± 2.25 0.66± 0.66
N = 80 99.41± 0.24 88.89± 7.41 61.21± 13.3 N = 120 95.44± 0.38 18.97± 3.67 1.22± 0.89
N = 100 99.27± 0.27 84.47± 5.51 55.82± 12.6 N = 150 95.05± 0.66 15.52± 2.88 0.70± 0.65
N = 120 99.48± 0.12 88.22± 4.97 64.14± 14.6 N = 180 82.70± 11.6 5.40± 6.49 0.40± 0.56
N = 160 99.26± 0.19 85.70± 3.63 60.75± 11.1 N = 240 87.76± 3.64 5.82± 3.55 0.12± 0.08
N = 200 99.38± 0.08 84.65± 2.02 47.10± 3.90 N = 300 88.50± 4.61 4.10± 2.93 0.02± 0.03

Highway network
(Srivastava et al., 2015b)

N = 40 98.98± 0.12 89.37± 0.73 71.27± 9.95 N = 60 92.57± 1.68 46.95± 6.95 13.72± 4.40
N = 60 98.85± 0.06 85.92± 0.31 59.57± 6.76 N = 90 85.25± 3.39 35.28± 9.05 10.88± 4.04
N = 80 98.62± 0.19 83.36± 0.17 56.04± 4.09 N = 120 83.27± 0.19 26.71± 2.02 2.48± 0.57
N = 100 97.88± 0.24 80.06± 3.08 55.21± 9.75 N = 150 71.57± 5.70 7.47± 2.58 0.10± 0.10
N = 120 97.89± 0.33 78.04± 2.05 46.05± 4.48 N = 180 0.23± 0.01 0.00± 0.00 0.00± 0.00
N = 160 97.88± 0.42 78.57± 0.95 54.11± 3.72 N = 240 0.25± 0.04 0.00± 0.00 0.00± 0.00
N = 200 0.65± 0.09 0.00± 0.00 0.00± 0.00 N = 300 0.24± 0.00 0.00± 0.00 0.00± 0.00

Highway VIN
(ours)

N = 40 98.78± 0.04 92.81± 0.74 85.49± 2.83 N = 60 93.47± 0.67 62.70± 7.87 17.15± 8.31
N = 60 98.47± 0.12 91.46± 1.55 88.67± 3.33 N = 90 89.72± 2.16 63.87± 8.26 27.84± 5.12
N = 80 98.62± 0.23 91.29± 0.50 90.99± 0.41 N = 120 90.41± 1.76 64.20± 0.79 49.63± 2.57
N = 100 98.43± 0.05 90.67± 0.51 94.64± 1.61 N = 150 92.00± 0.58 71.91± 2.37 64.70± 9.88
N = 120 98.37± 0.16 90.24± 1.31 93.16± 3.63 N = 180 90.65± 1.93 66.42± 1.83 66.25± 2.94
N = 160 98.30± 0.11 89.15± 1.30 92.00± 0.44 N = 240 91.32± 2.24 70.78± 4.28 71.09± 8.04
N = 200 98.26± 0.10 89.33± 0.92 92.76± 2.08 N = 300 93.36± 1.85 73.35± 4.15 81.08± 2.87
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(a) VIN
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(b) Highway network
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(c) GPPN
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(d) Highway VIN (our)

Figure 9: Success rates of each algorithm as a function of varying shortest path lengths on 2D maze navigation tasks.
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(a) Depth N = 200
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(b) Depth N = 300
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(c) Depth N = 100
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Figure 10: Success rates of highway VINs with varying numbers of parallel VE modules Np under varying depths N of the
network.
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Highway Value Iteration Networks

(a) Highway VIN (b) VIN (c) GPPN

(d) Highway VIN (e) VIN (f) GPPN

Figure 11: Examples of 2D maze navigation tasks where highway VIN succeeds, but other methods fail.
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