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ABSTRACT

Test-Time Adaptation (TTA) aims to tackle distribution shifts using unlabeled test
data without access to the source data. In the context of multimodal data, there
are more complex noise patterns than unimodal data such as simultaneous cor-
ruptions for multiple modalities and missing modalities. Besides, in real-world
applications, corruptions from different distribution shifts are always mixed. Ex-
isting TTA methods always fail in such multimodal scenario because the abrupt
distribution shifts will destroy the prior knowledge from the source model, thus
leading to performance degradation. To this end, we reveal a new challenge named
multimodal wild TTA. To address this challenging problem, we propose two novel
strategies: sample identification with interquartile range Smoothing and unimodal
assistance, and Mutual information sharing (SuMi). SuMi smooths the adaptation
process by interquartile range which avoids the abrupt distribution shifts. Then,
SuMi fully utilizes the unimodal features to select low-entropy samples with rich
multimodal information for optimization. Furthermore, mutual information shar-
ing is introduced to align the information, reduce the discrepancies and enhance
the information utilization across different modalities. Extensive experiments on
two public datasets show the effectiveness and superiority over existing meth-
ods under the complex noise patterns in multimodal data. Code is available at
https://github.com/zrguo/SuMi.

1 INTRODUCTION

Deep learning has achieved remarkable success and has been widely adopted across a variety of
applications (Touvron et al., 2023; Podell et al., 2024; Yan et al., 2024; Lin et al., 2024). How-
ever, these models often struggle when faced with data distributions that differ from their training
data. For example, in real-world scenarios, unexpected environmental changes and noises always
occur such as weather changes and data corruption. When encountering such domain shifts, model
performance can degrade rapidly (Hendrycks & Dietterich, 2019). To address this challenge, many
adaptation techniques such as domain adaptation (Zhu et al., 2023) and domain generalization (Zhou
et al., 2023a) have been proposed to enhance the robustness of models. One of the most challeng-
ing settings is Test-Time Adaptation (TTA) (Wang et al., 2021; Niu et al., 2022), where the model
must adapt to a target domain without access to any source domain data and labels of target data.
Recently, numerous promising test-time adaptation methods (Niu et al., 2023; Yang et al., 2024; Lee
et al., 2024; Chen et al., 2024; Guo et al., 2024b) have shown great results.

However, the majority of existing TTA methods have focused on unimodal scenarios. In comparison
to unimodal tasks, multimodal tasks often face more complex noise patterns, such as simultaneous
noise corruption across multiple modalities or missing modalities. In this work, we broadly catego-
rize multimodal noise scenarios into two types (shown in Figure 1(a)): weak Out-Of-Distribution
(OOD) samples, where only one modality is corrupted by noise, and strong OOD samples, where
multiple modalities are corrupted by noise or missing modality issues occur. Considering a multi-
modal sentiment analysis system, audio corruption can arise from factors like the speaker’s accent,

∗Corresponding author

1

https://github.com/zrguo/SuMi


Published as a conference paper at ICLR 2025

0

20

40

60

Both Vmiss Amiss Mix

Ac
cu

ra
cy

Tent SAR SoTTA DeYO CEMA SuMi (Ours)

0

20

40

60

80

Tent SAR SoTTA DeYO CEMA SuMi (Ours)

Ac
cu

ra
cy

Weak OOD Strong OOD

Clean
Data

Strong
OOD
Data

Weak
OOD
Data

(b) Performance under four strong OOD scenarios

(c) Performance under weak OOD and strong OOD scenarios

(a) Noise patterns of multimodal data

0

20

40

60

80

Tent SAR SoTTA DeYO CEMA SuMi (Ours)

Ac
cu

ra
cy

Same distribution Mixed distribution

(d) Performance under same and mixed distribution shifts

Strong source

Mixed source

Figure 1: Illustration of our task where the target domain includes various domain shifts including
weak OOD and strong OOD samples. The performances of existing methods degrade significantly
on this challenging task, even worse than the source model. We get these results on Kinetics50-C.

dialect, and background noise. Video corruption can occur due to lighting variations and diverse
facial features. Furthermore, audio corruption can lead to transcription errors in text, creating text
noise and leading to simultaneous domain shifts (strong OOD) across modalities. As shown in Fig-
ure 1(b) and (c), we observe the performance of existing TTA methods can degrade significantly
when faced with the more complex noise patterns encountered in multimodal scenarios, especially
in the case of strong OOD samples. The huge distribution gap between the source domain and the
strong OOD data will damage the prior knowledge in the source model, thus leading to performance
degradation. Additionally, in real-world dynamic environments where the target domain includes
various types of distribution shifts (known as wild TTA), the performance of existing TTA methods
always fail (Niu et al., 2023). To address the challenge in wild TTA, Niu et al. (2023) propose a
sharpness-aware and reliable entropy minimization method to further stabilize TTA. However, as
shown in Figure 1(d), in the context of multimodal wild TTA where the target domain includes var-
ious distribution shifts, the results are still not satisfying. A recent work READ (Yang et al., 2024)
explores the reliability bias in multimodal data during test time. READ proposes that when one of
the modalities is corrupted, the reliability balance across the modalities will be destroyed, which
leads to a heavy performance degradation of the model. However, it only discusses the weak OOD
situations and overlooks the more complex noise patterns in multimodal data. Besides, it is based
on the mild TTA setting where test samples have the same distribution shift type.

Based on the above observations and the limitations of existing methods, in this paper, we reveal a
new challenging task named multimodal wild TTA where the target domain includes various types
of distribution shifts including weak OOD samples and strong OOD samples. To address the chal-
lenging problem, we propose two novel strategies: sample identification with interquartile range
Smoothing and unimodal assistance and Mutual information sharing (SuMi). To avoid the abrupt
distribution shifts which could destroy the prior knowledge from the source model, we propose to
smooth the adaptation process with interquartile range. Besides, we fully utilize the unimodal infor-
mation to select low-entropy samples with rich multimodal information. Furthermore, we propose
the mutual information sharing to align information between different modalities which can reduce
the discrepancies across different modalities and enhance the information utilization of different
modalities. Our main contributions can be summarized as follows:

• We show that the complex noise patterns in multimodal data will make existing TTA meth-
ods fail. To this end, we propose a new practical and challenging task named multimodal
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Figure 2: The overview of SuMi.

wild TTA where the target domain includes various types of distribution shifts including
weak OOD samples and strong OOD samples.

• We propose a novel method SuMi, consisting of sample identification with interquartile
range smoothing and unimodal assistance, and mutual information sharing.

• SuMi outperforms all the baselines consistently and significantly in weak, strong and mixed
OOD domains. Additionally, we build two benchmarks for multimodal wild TTA.

2 RELATED WORK

Test-time adaptation aims to update the source model without source domain data and labels of the
target domain data. Test-time training, such as TTT (Sun et al., 2020) and TTT+ (Liu et al., 2021)
trains a source model with both supervised and self-supervised objectives in the training stage to
enhance test-time adaptation. These methods depend on proxy tasks and assume that the training
process is controllable, which limits the scope of applications. Therefore, fully test-time adaptation
methods (Wang et al., 2021; Niu et al., 2022; Zhou et al., 2023b; Yuan et al., 2023; Gong et al.,
2023a; Park et al., 2024) are proposed to adapt the model only in test-time, without intervening in
the training stage. Tent (Wang et al., 2021) proposes to use entropy minimization to update the
normalization layers of the model. Furthermore, EATA (Niu et al., 2022) and SAR (Niu et al., 2023)
propose the sample selection criteria for entropy minimization. More recently, Lee et al. (2024) show
that using entropy alone as a measure of confidence is insufficient and propose to use a combination
of entropy and the proposed PLPD metric to identify samples. Chen et al. (2024) proposes a dynamic
unreliable and low-informative sample exclusion method for entropy minimization.

However, existing works focus on the unimodal TTA. Compared to unimodal scenarios, multimodal
data face much more complex patterns of noise in real-world applications, such as simultaneous
corruptions and missing modalities (Guo et al., 2024c). Shin et al. (2022) proposes a framework
to generate cross-modal pseudo labels as self-training signals. Guo et al. (2024b) propose a mul-
timodal TTA approach but focus on the multimodal regression tasks. A recent work (Yang et al.,
2024) explores the multimodal TTA and proposes reliable fusion and robust adaptation to address in-
formation discrepancies in multimodal data. However, it only discusses the situations where there is
only one modality corrupted. When there are multiple modalities corrupted or missing, the huge and
abrupt distribution gap between the source domain and the target domain will make the method fail.
Additionally, it focuses on the single domain adaptation. In contrast, we explore a more practical
and challenging wild TTA where the target domain includes various types of corruption.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Without loss of generality, we take two modalities as an example for clarity of presentation. Let
Mθ = (ϕu1 , ϕu2 ,F) with parameter θ be the source model pre-trained on the source domain dataset
Dsource = {(xi, yi)}Ns

i=1 where ϕu1 , ϕu2 are the encoders of modality u1 and u2, F is the multi-
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modal fusion layers with prediction head, xi = (xu1
i ,xu2

i ), and Ns is the number of samples. TTA
aims to fine-tune the source modelMθ on the target domain dataset Dtarget = {xi}Nt

i=1 where the
labels and the source dataset are unavailable. Existing TTA methods (Niu et al., 2023; Yang et al.,
2024) update the parameter θ by minimizing the entropy of test domain data:

Entθ(x) = −pθ(x) logpθ(x) = −
C∑
i=1

pθ(x)i log pθ(x)i (1)

where pθ = softmax(Mθ(x)) = (pθ(x)1, pθ(x)2, · · · , pθ(x)C) is the probabilistic distribution
outputted by the modelMθ and C is the number of classes.

In this paper, we reveal a new challenging task named multimodal wild TTA. Specifically, we broadly
categorize multimodal noise scenarios into two types: weak OOD samples, where only one modality
is corrupted by noise, and strong OOD samples, where multiple modalities are corrupted by noise
or missing modality issues occur. Multimodal wild TTA considers a more practical and challenging
TTA setting where the target datasets contain various types of distribution shifts including both weak
OOD samples and strong OOD samples. The overall architecture of SuMi is presented in Figure 2.

3.2 SAMPLE IDENTIFICATION WITH INTERQUARTILE RANGE SMOOTHING AND UNIMODAL
ASSISTANCE

3.2.1 INTERQUARTILE RANGE SMOOTHING

Many existing TTA methods rely on selecting low-entropy samples for entropy minimization (Niu
et al., 2022; Lee et al., 2024; Chen et al., 2024). However, when the target data is a mixture of
various types of distribution shifts, including weak OOD samples and strong OOD samples, the
performance of the model would degrade significantly. For example, in Figure 3(a), we present
the performance of three different settings of the adaptation process. We can observe that directly
adapting the model to the strong OOD domain will yield much poorer performance than a model
adapted on weak OOD domain. The main reason is that there is a huge distribution gap between
the source domain and the strong OOD domain. Therefore, a direct adaptation would destroy the
prior knowledge of the source model and lead to instability. In comparison, when we first perform
adaptation on the weak OOD domain before the strong OOD domain, the performance of the model
will improve. This phenomenon inspires us that a smoothing adaptation process under the wild TTA
and complex noise patterns of multimodal data is much better than an abrupt adaptation process.

Motivated by the above observations, we propose an interquartile range smoothing method for dy-
namic sample identification during the adaptation process. Interquartile range (IQR) is a measure
of statistical dispersion, which is the spread of the data (Dekking et al., 2006). We give a brief
definition of IQR below:

Definition 1 IQR is the difference between the 75th and 25th percentiles of the data. The data is
divided into four rank-ordered even parts via linear interpolation which are denoted as Q1 (lower
quartile), Q2 (median) and Q3 (upper quartile). IQR is calculated as IQR = Q3 −Q1.

IQR is often used to identify unstable samples or outliers in a dataset. Specifically, according to
Tukey’s rule (Tukey et al., 1977), the stable sample set Xs is selected as:

Xs = {x | x ≥ Q1 −
3

2
IQR and x ≤ Q3 +

3

2
IQR} (2)

To smooth the adaptation process, we modify the above equation slightly and select the samples
Ht

θ(x) as:

Ht
θ(x) = {h | h ≥ Q1 −

3

2
f(t)IQR and h ≤ Q3 +

3

2
f(t)IQR}

h = [hu1 ,hu2 ],hu1 = ϕu1(x
u1),hu2 = ϕu2(x

u2)
(3)

where t is the current iteration, θ is the parameter of the model, f(t) is the smoothing function, [, ]
is the concatenation operation and h is the representation of the sample. For simplicity, we use the
linear smoothing and set f(t) = t/iter where iter is the total iteration. We use the representations
instead of the raw inputs because the representations are informative dense vectors that contain less
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Figure 3: (a) Performance of different adaptation settings on strong OOD samples. (b) t-SNE visu-
alizations (Van der Maaten & Hinton, 2008) of features during adaptation. (c) Performance using
different quantiles multimodal and unimodal entropy. Results are obtained on Kinetics50-C.

noise and unrelated information than the raw inputs. At iteration t, we use the selected data Ht
θ(x)

for adaptation. In Figure 3(b), we visualize the sample identification process using the source model.
From the figure, we can observe that at first several iterations, most weak OOD samples are selected.
With the increase of t, the data for adaptation is also increasing, including more and more strong
OOD samples. This smoothing process enables gradual adaptation to the strong OOD samples and
various types of distribution shifts, avoiding the abrupt distribution gaps which could destroy the
prior knowledge of the source model. Additionally, h is a vector. Therefore, in practice, we select
h for adaptation if β + (1− β)f(t) percent of the values in h satisfy Equation 3 for stability.

3.2.2 UNIMODAL ASSISTANCE

IQR smoothing aims to help the model preserve the prior knowledge in the source model and grad-
ually adapt to the strong OOD samples and various types of distribution shifts. However, this pro-
cess can not distinguish the high-quality samples that benefit the entropy minimization. Therefore,
we introduce a novel sample identification method for multimodal data. As suggested in previous
work (Niu et al., 2022; 2023; Chen et al., 2024), low-entropy samples will benefit the entropy mini-
mization while high-entropy samples, due its uncertainty, will adversely affect the process. However,
in the context of multimodal data, apart from multimodal entropy, there is unimodal entropy we can
utilize to help the adaptation. As shown in Figure 3(c), we conduct experiments using unimodal en-
tropy and multimodal entropy. We can easily observe that the multimodal low-entropy samples will
yield much better performance than high-entropy samples. However, for audio and video modality,
the samples of (20, 40] interval yield better results than samples of [0, 20]. This indicates that for
unimodal entropy, lower entropy does not necessarily correlate with better performance. When only
one modality exhibits low entropy, it indicates that the sample does not rely on multimodal data for
accurate prediction, implying it has low informative value for multimodal optimization. Conversely,
a unimodal sample with slightly higher entropy shows a dependence on multimodal data for accurate
prediction, indicating that it contains rich multimodal information.

Inspired by the above observations, we propose a sample identification method with unimodal as-
sistance to select low-entropy samples with rich multimodal information. Specifically, our method
employs the following identification criteria:

Sθ(x) = {x | Entθ(x) ≤ γm and (Entθ(xu1) + µEntθ(xu2)) ≥ γu} (4)

where γm and γu are the pre-defined threshold for multimodal and unimodal entropy and µ is a trade-
off between modalities. By limiting the multimodal entropy, we can select low-entropy samples with
high certainty and fewer noises. Meanwhile, by limiting the unimodal entropy, we can ensure the
samples selected contain rich multimodal information, excluding low-informative samples.

3.3 MUTUAL INFORMATION SHARING

A recent study (Yang et al., 2024) reveals a challenge in multimodal TTA, known as reliability bias,
which refers to the information discrepancies across different modalities. During the adaptation
process, this discrepancy often leads to imbalanced utilization of each modality (Guo et al., 2024a).
In strong OOD situations, missing modality cases could occur or multiple modalities could be cor-
rupted. Therefore, the imbalanced phenomenon could be enlarged. How to balance the adaptation
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Algorithm 1 SuMi

1: Input: Source model Mθ = (ϕu1 , ϕu2 ,F), target dataset Dtarget = {xi}Nt
i=1, adaptation

iterations T and a series of hyperparameters.
2: for t = 1 to T do
3: x = (xu1 ,xu2)

Sample←− Dtarget;
4: Calculate the representations h = [hu1 ,hu2 ],hu1 = ϕu1

(xu1),hu2 = ϕu2
(xu2);

5: Calculate Q1 and Q3: Q1 = quantile(h, 0.25), Q3 = quantile(h, 0.75);
6: Calculate IQR: IQR = Q3 −Q1;
7: Select samplesHt

θ(x) using Equation 3;
8: Calculate entropy of multimodal outputs and unimodal outputs;
9: Select samples Sθ(x) fromHt

θ(x) using Equation 4;
10: Calculate the entropy in Sθ(x);
11: if t < t0 then
12: Calculate mutual information sharing loss using Equation 6;
13: end if
14: Calculate the loss L(x) using Equation 8;
15: Update the affine parameters of the modelMθ;
16: end for

across different modalities under strong OOD domains (especially missing modality cases) is very
important. To address this problem, we propose a simple yet effective method, mutual information
sharing, to align information between different modalities. Concretely, for modality ui, we can
obtain its probabilistic distribution as pui

θ (xui) = softmax(F(ϕui
(xui))). For simplicity, we will

use pui to represent pui

θ (xui) in the following context. We define the complementary probabilistic
distribution of pui as

pui′ = (

M∑
j=1

puj − pui)/(M − 1) (5)

where M is the number of modalities. For two modalities, pu1′ = pu2 and pu2′ = pu1 . To
improve the alignment between different modalities, we can minimize the KL divergence (Kullback
& Leibler, 1951) between the probabilistic distribution pui and its complementary distribution pui′.
However, if one modality is severely corrupted, minimizing the KL divergence might influence the
clean modality. Therefore, we add multimodal distribution pm = softmax(Mθ(x)) to improve the
robustness and stability. Therefore, we can represent the mutual information sharing loss as:

Lmis(x) = DKL(p
u1 ∥ 1

2
(pu1′ + pm)) +DKL(p

u2 ∥ 1

2
(pu2′ + pm))

=

C∑
i=1

pu1
i log

2pu1
i

pu1′
i + pmi

+

C∑
i=1

pu2
i log

2pu2
i

pu2′
i + pmi

(6)

where C is the number of classes and pi is the i-th value of p. Mutual information sharing can
help the model connect and align the information between different modalities. Through mutual
information sharing, when there are corrupted modalities including missing modalities, information
from other modalities could be utilized to enhance the predictions.

3.4 OVERALL OPTIMIZATION

Following previous TTA methods (Niu et al., 2022; Lee et al., 2024), we add a weighting term
to emphasize the contributions of samples during adaptation. Specifically, the weighting term is
calculated as

αθ(x) =
1

exp[Entθ(x)− Ent0]
(7)

where Ent0 is a pre-defined normalization factor (Niu et al., 2022). In summary, we can denote the
overall loss function as:

L(x) = αθ(x)1{x∈Ht
θ(x),x∈Sθ(x)}(Entθ(x) + λLmis(x)) (8)
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Table 1: Accuracy comparison with SOTA methods on Kinetics50-C with corrupted video modality
(severity level 5). We report avg±std over five random seeds. Bold: best results. Underline: second
best results.

Noise Blur Weather Digital
Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 47.7 48.8 47.4 67.4 61.0 71.1 66.1 60.7 62.1 45.5 75.9 51.9 65.1 67.8 63.7 60.2
• Tent 48.3±0.4 49.3±0.7 48.4±0.5 67.8±0.3 62.2±0.5 71.9±0.3 67.8±0.5 63.1±0.5 63.5±0.5 23.0±1.0 75.9±0.4 50.1±0.2 67.8±0.3 70.5±0.1 67.1±0.3 59.8
• EATA 49.0±0.2 50.3±0.1 49.2±0.1 67.9±0.1 63.9±0.4 71.6±0.3 67.9±0.3 63.4±0.2 64.4±0.1 47.0±0.3 76.1±0.1 52.2±0.3 67.6±0.2 70.3±0.2 67.9±0.2 61.9
• SAR 48.6±0.3 49.8±0.6 48.7±0.6 67.9±0.2 62.7±0.4 71.8±0.3 67.9±0.5 63.4±0.4 64.2±0.3 24.0±0.9 75.9±0.4 51.1±0.3 68.0±0.4 70.6±0.2 67.2±0.2 60.1
• SoTTA 48.3±0.3 49.8±0.2 48.5±0.4 67.9±0.2 62.5±0.3 71.9±0.3 67.8±0.6 63.2±0.5 64.0±0.2 27.6±1.1 75.7±0.3 51.3±0.4 67.8±0.3 70.4±0.2 67.5±0.4 60.3
• DeYO 48.6±0.3 49.8±0.6 48.7±0.6 68.0±0.3 63.0±0.4 71.9±0.3 68.1±0.5 63.5±0.4 64.4±0.4 21.4±1.0 75.9±0.4 50.6±0.2 68.6±0.4 70.8±0.2 67.5±0.3 60.0
• CEMA 48.4±0.3 49.4±0.5 48.6±0.6 67.8±0.2 62.7±0.4 71.7±0.3 67.8±0.5 63.4±0.4 64.2±0.3 22.8±0.8 75.7±0.4 50.7±0.3 67.9±0.5 70.5±0.2 67.3±0.3 59.9
• READ 49.9±0.5 50.8±0.5 49.8±0.7 67.9±0.5 65.1±0.2 72.2±0.2 69.2±0.6 64.8±0.5 66.7±0.3 56.8±0.6 76.2±0.3 54.8±0.4 68.9±0.5 70.7±0.2 68.9±0.2 63.5
• SuMi 50.1±0.4 50.7±0.3 50.4±0.3 68.2±0.3 65.6±0.3 72.2±0.2 69.7±0.4 65.7±0.3 67.0±0.2 56.5±0.5 77.1±0.2 55.2±0.4 69.3±0.2 71.2±0.2 68.9±0.2 63.9

Table 2: Accuracy comparison with SOTA methods on Kinetics50-C with corrupted audio modality
and strong OOD scenarios (severity level 5).

Noise Weather Strong OOD
Gauss. Traff. Crowd Rain Thund. Wind Avg. Both Vmiss Amiss Mix Avg.

Source 74.9 65.4 67.9 70.0 68.5 70.7 69.6 30.8 27.9 44.5 16.9 30.0
• Tent 74.8±0.5 68.2±0.5 70.3 ±0.3 71.1±0.4 66.7±0.5 71.7±0.1 70.5 13.1±0.4 9.2±0.5 21.3±0.4 1.2±0.5 11.2
• EATA 74.9±0.1 68.0±0.2 70.0±0.3 71.2±0.3 70.0±0.3 71.3±0.1 70.9 32.3±0.2 28.6±0.3 45.3±0.2 14.9±0.3 30.3
• SAR 74.8±0.5 68.4±0.4 70.3±0.3 71.2±0.4 68.9±0.4 71.9±0.1 70.9 13.6±0.4 10.3±0.4 23.5±0.4 3.8±0.5 12.8
• SoTTA 74.8±0.5 68.4±0.4 70.1±0.3 71.1±0.3 69.2±0.3 71.8±0.2 70.9 14.1±0.4 9.8±0.5 24.1±0.3 1.9±0.5 12.5
• DeYO 74.8±0.5 68.6±0.4 70.3±0.4 71.3±0.5 70.4±0.3 72.0±0.1 71.2 14.9±0.4 12.1±0.3 27.6±0.4 2.1±0.5 14.2
• CEMA 74.8±0.4 67.8±0.4 69.5±0.4 71.1±0.4 70.5±0.3 71.6±0.3 70.9 16.9±0.4 13.4±0.4 30.3±0.3 1.8±0.6 15.6
• READ 74.9±0.5 69.1±0.4 70.3±0.2 71.4±0.4 72.8±0.5 71.3±0.3 71.6 31.1±0.3 27.5±0.5 44.3±0.3 13.7±0.3 29.1
• SuMi 75.1±0.3 68.9±0.3 70.6±0.3 71.6±0.3 72.8±0.4 72.1±0.2 71.9 34.8±0.3 31.8±0.3 48.6±0.2 18.4±0.4 33.4

Table 3: Accuracy comparison with SOTA methods on VGGSound-C with corrupted video modality
(severity level 5).

Noise Blur Weather Digital
Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Source 53.0 52.9 53.0 57.2 57.3 58.6 57.5 56.3 56.5 55.4 59.2 53.7 57.2 56.4 57.3 56.1
• Tent 53.0±0.1 53.2±0.1 52.9±0.1 56.3±0.1 56.3±0.1 57.6±0.1 56.8±0.1 55.4±0.1 56.0±0.1 56.2±0.1 58.3±0.1 53.5±0.1 57.3±0.1 56.7±0.1 56.8±0.1 55.8
• EATA 53.5±0.1 53.7±0.1 53.5±0.1 57.1±0.1 57.1±0.0 58.2±0.1 57.7±0.1 56.0±0.1 56.6±0.1 56.7±0.1 59.4±0.1 54.3±0.1 58.1±0.2 57.3±0.0 57.5±0.1 56.5
• SAR 52.9±0.1 53.1±0.1 52.9±0.1 56.3±0.1 56.2±0.2 57.4±0.1 56.7±0.1 55.4±0.1 56.0±0.1 56.2±0.1 58.2±0.1 53.5±0.1 57.4±0.1 56.7±0.1 56.8±0.1 55.7
• SoTTA 52.9±0.1 53.2±0.1 52.9±0.1 56.6±0.1 56.8±0.2 57.9±0.2 57.1±0.1 55.7±0.1 56.1±0.1 56.3±0.1 59.4±0.1 53.8±0.2 57.6±0.1 56.2±0.1 56.7±0.1 55.9
• DeYO 53.0±0.1 53.1±0.1 53.0±0.1 56.5±0.1 56.5±0.1 57.7±0.1 56.9±0.1 55.4±0.1 56.0±0.1 56.3±0.2 58.5±0.1 53.6±0.1 57.6±0.1 57.0±0.0 57.0±0.1 55.9
• CEMA 52.8±0.1 52.9±0.2 52.9±0.1 56.5±0.1 56.4±0.1 57.6±0.1 56.8±0.2 55.4±0.1 56.2±0.1 56.2±0.1 58.4±0.1 53.5±0.1 57.8±0.1 56.8±0.0 56.9±0.1 55.8
• READ 52.9±0.1 52.8±0.2 52.8±0.1 57.2±0.2 57.3±0.2 58.8±0.2 58.1±0.2 56.4±0.1 57.5±0.2 57.4±0.1 59.3±0.1 54.4±0.2 57.8±0.1 56.6±0.1 57.2±0.2 56.4
• SuMi 54.0±0.1 54.3±0.1 53.8±0.1 58.2±0.2 58.4±0.1 59.4±0.2 58.7±0.1 57.5±0.1 58.2±0.1 57.6±0.1 59.4±0.1 54.8±0.1 59.0±0.1 57.5±0.1 58.2±0.1 57.3

where 1{·}(·) is an indicator function and λ is a trade-off between the two losses. One point worth
emphasizing is that for strong OOD adaptation, we only add the mutual information sharing loss
Lmis in the first t0 iterations during the adaptation process. The reason is that with the increase
of iteration, the IQR smoothing will include more and more strong OOD samples where multiple
modalities are corrupted which could damage the information sharing and the performance of the
model. For weak OOD adaptation, we add mutual information sharing loss for all the iterations.
Overall, Algorithm 1 presents the outline of our method.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We use two widely used multimodal datasets, Kinetics50 (Kay et al., 2017) and VG-
GSound (Chen et al., 2020) for evaluation. Following previous work (Hendrycks & Dietterich,
2019; Yang et al., 2024), we introduce 15 different types of corruptions and 6 types for audio to
simulate the distribution shifts in real-world applications. Each type of corruption has five levels
of severity. For strong OOD samples, we introduce four different types: Both (both modalities are
corrupted), Vmiss (video modality is missing), Amiss (audio modality is missing), and Mix (one
modality is missing and the other is corrupted). Details of datasets and the corruptions are presented
in Appendix A. As a result, we can obtain the corrupted datasets Kinetics50-C and VGGSound-C.

Implementation Details. For the source model, we use the pre-trained CAV-MAE (Gong et al.,
2023b) following Yang et al. (2024). We use Adam optimizer with a learning rate of 1e-4/1e-5 and

7
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Table 4: Accuracy comparison with SOTA methods on VGGsound-C with corrupted audio modality
and strong OOD scenarios (severity level 5). We report avg±std over five random seeds. Bold: best
results. Underline: second best results.

Noise Weather Strong OOD
Gauss. Traff. Crowd Rain Thund. Wind Avg. Both Vmiss Amiss Mix Avg.

Source 37.2 21.2 16.9 21.8 27.4 25.6 25.0 9.4 28.0 18.9 6.0 15.6
• Tent 6.0±0.3 1.6±0.1 1.1±0.0 1.7±0.0 3.2±0.2 2.3±0.1 2.6 0.8±0.1 18.3±0.2 1.0±0.0 0.1±0.0 5.1
• EATA 41.2±0.1 25.0±0.5 28.8±0.6 32.3±0.4 34.5±0.2 33.2±0.2 32.5 15.2±0.4 29.2±0.2 19.6±0.3 5.8±0.1 17.4
• SAR 10.9±0.7 2.1±0.2 1.0±0.0 2.0±0.0 3.2±0.2 2.3±0.1 3.6 1.1±0.0 19.8±0.1 1.5±0.0 0.3±0.0 5.7
• SoTTA 13.8±0.6 10.1±0.3 8.4±0.2 4.2±0.2 6.4±0.2 3.4±0.1 7.7 2.4±0.1 20.4±0.1 4.4±0.1 1.1±0.0 7.1
• DeYO 7.0±0.5 1.5±0.1 2.2±0.1 3.5±0.2 6.8±0.2 4.2±0.1 4.2 0.6±0.0 20.8±0.2 2.8±0.1 0.4±0.0 6.2
• CEMA 6.8±0.3 1.9±0.1 2.0±0.1 2.9±0.2 4.4±0.2 3.9±0.1 3.7 0.9±0.0 19.9±0.1 1.9±0.1 0.1±0.0 5.7
• READ 27.1±0.6 22.1±0.4 19.0±0.2 21.6±0.9 23.6±1.4 21.0±0.5 22.4 10.1±0.1 27.9±0.2 15.3±0.4 4.5±0.1 14.5
• SuMi 41.9±0.3 26.3±0.2 27.9±0.2 31.6±0.3 37.1±0.2 34.1±0.1 33.2 18.4±0.2 31.8±0.2 21.7±0.2 6.7±0.1 19.7
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Figure 4: Comparison with SOTA methods on corrupted data of different severity levels. weak:
average accuracy of 21 different types of weak OOD distribution shifts. strong: average accuracy of
4 different types of strong OOD distribution shifts.
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Figure 5: Comparison with SOTA methods on mixed corrupted data with ten different ratios of
strong OOD samples. (a) and (b): severity level 5. (c) and (d): mixed severity.

batch size of 16/64 for Kinetics50-C and VGGSound-C, respectively. The multimodal threshold γm
in Equation 4 and the normalization factor Ent0 in Equation 7 are set to 0.4×lnC following Niu et al.
(2022) by default where C is the number of task classes. The unimodal threshold γu in Equation 4
is set to e−1 by default. The smoothing coefficient β is set to 0.6/0.9, the weighting term λ is set
to 5.0 and the unimodal assistance µ is set to 1.0 by default for Kinetics50-C and VGGSound-C.
For strong OOD adaptation, we set the mutual information sharing term t0 as iter/2. Following
previous work (Niu et al., 2023; Gong et al., 2023a; Chen et al., 2024; Guo et al., 2024b), we update
the affine parameters of normalization layers.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

We compare our method with Tent (Wang et al., 2021), EATA (Niu et al., 2022), SAR (Niu et al.,
2023), SoTTA (Gong et al., 2023a), CEMA (Chen et al., 2024), DeYO (Lee et al., 2024) and
READ (Yang et al., 2024).

Single Domain Results. We report the accuracy of 21 different types of weak OOD corruptions
and 4 different types of strong OOD corruptions at severity level 5 on Kinetics50 and VGGSound in
Table 1, 2, 3 and 4. For weak OOD samples, SuMi outperforms existing SOTA methods on most of
the distribution shifts and achieves consistent good performances. For strong OOD samples, most
of the existing SOTA methods perform even worse than the source model. On both datasets, only
EATA performs better than the source model slightly. On the most noisy distribution “Mix” where
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Figure 6: Comparison with SOTA methods on mixed severity level on Kinetics50-C.

one of the modality is missing and the other is corrupted, EATA also has a performance degrada-
tion, performing worse than the source model. In comparison, SuMi outperforms other methods
consistently and significantly on all the four distribution scenarios, indicating its effectiveness and
superiority in dealing with the complex noise patterns in multimodal data. Furthermore, we com-
pare SuMi with SOTA methods at different severity levels and present the results in Figure 4. From
the figure, we can observe that at different severity levels, most of the methods can work well on
weak OOD samples while fail on strong OOD samples. However, SuMi can still perform well and
achieve the best results on corrupted datasets at all the four severity levels, which demonstrates its
generalization ability.

Mixed Domain Results. In Figure 5, we present the results of different methods on datasets with
ten different portions of strong OOD samples. Figure 5(a) and 5(b) presents the results at severity
level 5. We can observe that all the methods can perform well when the ratio of strong OOD samples
is low. However, with the ratio increasing, the performance of most of the methods degrade rapidly,
performing worse than the source model. The reason is that the huge distribution gap between
the source domain and strong OOD domain destroy the prior knowledge of the source model, thus
leading to a degradation of the model. In comparison, SuMi smooths the process by interquartile
range smoothing and outperforms the SOTA methods consistently. From Figure 5(c) and 5(d) where
mixed severity level cases are added, we can reach the same conclusion. Moreover, in Figure 6
and 10, we present the results on corrupted data with mixed severity level samples on both datasets.
From the table, we can observe that on mixed severity level, SuMi can still achieve consistent im-
provements, outperforming other SOTA methods in most of the distribution shifts. Additionally, on
strong OOD distribution shifts, other methods always fail while SuMi can still perform well. These
results indicate the effectiveness of SuMi.

4.3 ABLATION STUDY

Contributions of different components. In Table 5, we present the results of our ablation exper-
iments. We can observe that IQR smoothing brings the most improvements to the model. This is
because IQR smoothing can bridge the gap between the source domain and strong domain, avoid-
ing the abrupt distribution shifts which could destroy the prior knowledge from the source model.
Unimodal assistance aims to select low-entropy samples with rich multimodal information for opti-
mization and can also enhance the performance of the model. With these strategies combined, the
performance of the model is further enhanced.

Exploration of unimodal assistance. In Equation 4 and Figure 2, we divide the samples into
four areas. We can consider the four areas as Area 1 (low-entropy samples with rich mul-
timodal information), Area 2 (high-entropy samples with rich multimodal information), Area
3 (low-entropy samples with little multimodal information) and Area 4 (high-entropy sam-
ples with little multimodal information). We present the performance of these four areas on
Kinetics50-C in Table 6. From the table, we can observe that selecting low-entropy sam-
ples for optimization will yield better results. Based on low-entropy samples, rich multimodal
information will further help to optimize the multimodal models and achieve better results.
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Table 5: Ablation study of different components in SuMi on corrupted data with 50% of strong
OOD samples at different severity levels. IQR, UA and MIS represents IQR smoothing, unimodal
assistance and mutual information sharing, respectively.

Kinetics50-C VGGSound-C

IQR UA MIS severity 3 severity 5 mixed severity severity 3 severity 5 mixed severity

37.1 31.7 36.4 25.7 23.5 25.3
✓ 52.1 45.1 51.9 33.8 30.4 33.1

✓ 49.4 39.4 46.2 31.1 27.4 31.2
✓ 47.4 38.1 45.6 29.8 26.1 28.4

✓ ✓ 58.0 51.2 57.4 36.9 34.3 36.5
✓ ✓ 56.0 49.7 56.7 34.2 32.1 34.0

✓ ✓ 54.3 44.6 51.3 33.4 29.8 32.1
✓ ✓ ✓ 59.3 52.0 59.1 38.4 35.1 38.3
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Figure 7: Ablation experiments of hyperparameters on the two datasets.

Table 6: Performance of
samples in different areas
on Kinetics50-C.

Ratios Acc

Area 1 13.1% 39.4
Area 2 78.5% 27.6
Area 3 5.3% 32.1
Area 4 3.1% 24.3

Additionally, we explore the trade-off coefficient µ in Equation 4 and
present the results on both datasets in Figure 7(a). From the figure,
we can observe that with the increase of µ, the performance improves
on Kinetics50-C and drops on VGGSound-C. This is because Kinet-
ics50 is a video modality dominant dataset and VGGSound is an au-
dio modality dominant dataset. From the results, we know that adding
more weight to the dominant modality will yield poorer performance
because unimodal assistance aims to select samples with rich multi-
modal information. Therefore, adding weight to the weak modality
will help to utilize the multimodal features. Besides, the performances
with different µ are stable, indicating the stability of the strategy.

Exploration of λ. To explore the mutual information sharing, we select several λ in Equation 8 and
present the results on both datasets in Figure 7(b). We can observe that increasing the weight term λ
will improve the performance slightly. Besides, the results in the table demonstrate the stability of
mutual information sharing across varying values of λ.

5 CONCLUSION

In this paper, we propose a new practical and challenging task named multimodal wild TTA. To
address this problem, we propose sample identification with interquartile range smoothing and uni-
modal assistance, and mutual information sharing (SuMi). SuMi bridges the gap between the source
domain and strong OOD domain by smoothing the adaptation using interquartile range. Besides,
SuMi leverages unimodal features to select low-entropy samples with rich multimodal information
for optimization. Finally, mutual information sharing is proposed to further align the information
and reduce the discrepancies across different modalities. We conduct extensive experiments on two
widely used multimodal datasets where SuMi outperforms existing TTA methods significantly and
consistently, indicating its effectiveness. Ablation experiments are then conducted to validate the
contributions of each component.
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A Modern Introduction to Probability and Statistics: Understanding why and how. Springer
Science & Business Media, 2006.

Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju Lee. SoTTA: Robust
test-time adaptation on noisy data streams. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023a.

Yuan Gong, Andrew Rouditchenko, Alexander H. Liu, David Harwath, Leonid Karlinsky, Hilde
Kuehne, and James R. Glass. Contrastive audio-visual masked autoencoder. In The Eleventh
International Conference on Learning Representations, 2023b. URL https://openreview.
net/forum?id=QPtMRyk5rb.

Zirun Guo, Tao Jin, Jingyuan Chen, and Zhou Zhao. Classifier-guided gradient modulation for
enhanced multimodal learning. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024a.

Zirun Guo, Tao Jin, Wenlong Xu, Wang Lin, and Yangyang Wu. Bridging the gap for test-time
multimodal sentiment analysis. arXiv preprint arXiv:2412.07121, 2024b.

Zirun Guo, Tao Jin, and Zhou Zhao. Multimodal prompt learning with missing modalities for
sentiment analysis and emotion recognition. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 1726–1736, Bangkok, Thailand, August 2024c. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.94. URL https:
//aclanthology.org/2024.acl-long.94.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HJz6tiCqYm.

Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Apostol Natsev, Mustafa Suleyman, and An-
drew Zisserman. The kinetics human action video dataset. ArXiv, abs/1705.06950, 2017.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86, 1951.

Jonghyun Lee, Dahuin Jung, Saehyung Lee, Junsung Park, Juhyeon Shin, Uiwon Hwang, and Sun-
groh Yoon. Entropy is not enough for test-time adaptation: From the perspective of disentangled
factors. In The Twelfth International Conference on Learning Representations, 2024.

Wang Lin, Jingyuan Chen, Jiaxin Shi, Zirun Guo, Yichen Zhu, Zehan Wang, Tao Jin, Zhou Zhao, Fei
Wu, YAN Shuicheng, et al. Action imitation in common action space for customized action image
synthesis. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

11

https://openreview.net/forum?id=vePdNU3u6n
https://openreview.net/forum?id=QPtMRyk5rb
https://openreview.net/forum?id=QPtMRyk5rb
https://aclanthology.org/2024.acl-long.94
https://aclanthology.org/2024.acl-long.94
https://openreview.net/forum?id=HJz6tiCqYm


Published as a conference paper at ICLR 2025

Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
dre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 21808–21820. Curran Associates, Inc., 2021.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. In International conference on
machine learning, pp. 16888–16905. PMLR, 2022.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui
Tan. Towards stable test-time adaptation in dynamic wild world. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=g2YraF75Tj.

Hyejin Park, Jeongyeon Hwang, Sunung Mun, Sangdon Park, and Jungseul Ok. Medbn: Robust
test-time adaptation against malicious test samples. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5997–6007, 2024.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=di52zR8xgf.

Inkyu Shin, Yi-Hsuan Tsai, Bingbing Zhuang, Samuel Schulter, Buyu Liu, Sparsh Garg, In So
Kweon, and Kuk-Jin Yoon. Mm-tta: multi-modal test-time adaptation for 3d semantic segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 16928–16937, 2022.

Yu Sun, Xiaolong Wang, Liu Zhuang, John Miller, Moritz Hardt, and Alexei A. Efros. Test-time
training with self-supervision for generalization under distribution shifts. In ICML, 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

John Wilder Tukey et al. Exploratory data analysis, volume 2. Springer, 1977.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In International Conference on Learning Repre-
sentations, 2021. URL https://openreview.net/forum?id=uXl3bZLkr3c.

Xin Wang, Devinder Kumar, Nicolas Thome, Matthieu Cord, and Frédéric Precioso. Recipe recog-
nition with large multimodal food dataset. In 2015 IEEE International Conference on Multimedia
and Expo Workshops (ICMEW), pp. 1–6, 2015. doi: 10.1109/ICMEW.2015.7169757.

Weicai Yan, Ye Wang, Wang Lin, Zirun Guo, Zhou Zhao, and Tao Jin. Low-rank prompt interaction
for continual vision-language retrieval. In Proceedings of the 32nd ACM International Conference
on Multimedia, pp. 8257–8266, 2024.

Mouxing Yang, Yunfan Li, Changqing Zhang, Peng Hu, and Xi Peng. Test-time adaptation against
multi-modal reliability bias. In The Twelfth International Conference on Learning Representa-
tions, 2024.

Wenmeng Yu, Hua Xu, Fanyang Meng, Yilin Zhu, Yixiao Ma, Jiele Wu, Jiyun Zou, and Kaicheng
Yang. CH-SIMS: A Chinese multimodal sentiment analysis dataset with fine-grained annotation
of modality. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3718–3727,
Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.
343. URL https://aclanthology.org/2020.acl-main.343.

12

https://openreview.net/forum?id=g2YraF75Tj
https://openreview.net/forum?id=g2YraF75Tj
https://openreview.net/forum?id=di52zR8xgf
https://openreview.net/forum?id=uXl3bZLkr3c
https://aclanthology.org/2020.acl-main.343


Published as a conference paper at ICLR 2025

Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15922–15932, 2023.

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-Philippe Morency. Multimodal sentiment in-
tensity analysis in videos: Facial gestures and verbal messages. IEEE Intelligent Systems, 31(6):
82–88, 2016. doi: 10.1109/MIS.2016.94.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4396–4415,
2023a. doi: 10.1109/TPAMI.2022.3195549.

Zhi Zhou, Lan-Zhe Guo, Lin-Han Jia, Dingchu Zhang, and Yu-Feng Li. Ods: Test-time adaptation
in the presence of open-world data shift. In International Conference on Machine Learning, pp.
42574–42588. PMLR, 2023b.

Jinjing Zhu, Haotian Bai, and Lin Wang. Patch-mix transformer for unsupervised domain adapta-
tion: A game perspective. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3561–3571, 2023.

13



Published as a conference paper at ICLR 2025

Original Brightness Contrast Defocus Blur

Elastic Fog Frost Gaussian

Glass Impulse JPEG Motion

Pixel Shot Snow Zoom

Figure 8: Fifteen different types of noises in videos.

A DETAILS OF DATASETS

Kinetics50 (Kay et al., 2017). The Kinetics dataset is a large-scale and high-quality dataset for
human action recognition in videos. The dataset consists of around 500,000 video clips covering
600 human action classes with at least 600 video clips for each action class. Each video clip lasts
around 10 seconds and is labeled with a single action class. The videos are collected from YouTube.
Following Yang et al. (2024), we use a subset of Kinetics which consists of 50 classes, 29,204
training pairs and 2,466 test pairs.

VGGSound (Chen et al., 2020). VGGSound is a large-scale audio-visual correspondent dataset
consisting of short clips of audio sounds, extracted from videos uploaded to YouTube. All videos
are captured ”in the wild” with audio-visual correspondence in the sense that the sound source is
visually evident. Each video in this dataset has a fixed duration of 10 seconds.

To evaluate the performance under different distribution shifts, we introduce a total of 25 different
types of distribution shifts. These distribution shifts can be divided into two groups: weak OOD
distribution shifts and strong OOD distribution shifts.

For weak distribution shifts, we divide them into video corruptions and audio corruptions. Following
previous work (Hendrycks & Dietterich, 2019), we introduce 15 different types of video corruptions
as shown in Figure 8. They include “Gaussian Noise” (Gauss.), “Shot Noise” (Shot), “Impulse
Noise” (Impul.), “Defocus Blur” (Defoc.), “Glass Blur” (Glass), “Motion Blur” (Motion), “Zoom
Blur” (Zoom), “Snow” (Snow), “Frost” (Frost), “Fog” (Fog), “Brightness” (Brit.), “Contrastive”
(Contr.), “Elastic” (Elastic), “Pixelate” (Pixel) and “JPEG” (JPEG). Following Yang et al. (2024),
we introduce six types of audio corruptions as shown in Figure 9. They include “Gaussian Noise”
(Gauss.), “Paris Traffic Noise” (Traff.), “Crowd Noise” (Crowd), “Rainy Noise” (Rain), “Thunder
Noise” (Thund.) and “Windy Noise” (Wind).

For strong distribution shifts, in this paper, we introduce four types of corruptions. They include
“Both Modality Corruptions” (Both), “Audio Missing” (Amiss), “Video Missing” (Vmiss) and
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Figure 9: Six different types of noises in audio.
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Figure 10: Comparison with SOTA methods on mixed severity level on VGGSound-C.

“Missing and Corruption” (Mix). Both represents the both modalities are corrupted. Mix represents
that one of the modality is missing and the other is corrupted. For missing modality, we substitute
any missing modalities with zero vectors. This allows us to maintain the input dimensions required
by the network while enabling it to process the available data effectively.

B DETAILS OF METHOD AND IMPLEMENTATION

IQR can effectively capture the central tendency and variability of the data. For IQR calculation,
we can use different metrics for data ranking such as magnitude (Euclidean Norm) and specific
dimension comparison. However, there are some drawbacks of these metrics. For example, large
components in the vectors will disproportionately affect the magnitude. Specific dimension com-
parison ignores other dimensions which may be important and does not represent the overall vector
well. To combine multiple dimensions, we calculate the min and max of all the h element by element
to obtain hmin and hmax. Then, we obtain the Q1 and Q3 through linear interpolation. Addition-
ally, we follow previous work (Yang et al., 2024) and add a negative entropy loss term to balance
the prediction.
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Figure 11: Performance comparisons on CMU-MOSI.
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Figure 12: Performance comparisons on UPMC-Food 101.

C MORE EXPERIMENTAL RESULTS

C.1 GENERALIZATION ABILITY OF SUMI

To further validate the generalization ability and robustness of SuMi, we conduct experiments on
two additional datasets. The first dataset is CMU-MOSI (Zadeh et al., 2016). MOSI encompasses
three modalities (text, image, and audio), enabling us to evaluate the performance of SuMi across
a dataset with more than two modalities. The other dataet is UPMC-Food101 (Wang et al., 2015),
which is a image-text dataset for food classification.

We introduce four types of corruptions for text modality. Specifically, we introduce random dele-
tion of word or character (RD), random insertion of word or character (RI), word shuffling (WS)
and sentence permutation (SP). Random deletion of word or character randomly removes words or
characters from sentences to simulate noise in the data. Random insertion inserts random words or
characters into sentences, which can disrupt the original meaning. Word shuffling randomly shuffle
words within a sentence to change the sentence structure while retaining some semantic meaning.
Sentence permutation changes the order of sentences in a paragraph to simulate context shifts. For
strong OOD on MOSI, we use Corrn to denote that n modalities are corrupted, missn to denote n
modalities are missing and corr+miss to denote both missing modalities and corruption modalities
are present.

We use the stacked transformer blocks trained on MOSI dataset. Then, we fine-tune the model on
corrupted MOSI. For Food 101, we use the CLIP image encoder and text encoder as the modality-
specific encoders followed by a fusion classification head. Then we train the model on Food 101 and
adapt the model on the corrupted Food 101. The results are presented in Figure 11 and Figure 12.
We can observe that in dataset with more modalities and in the common vision-language task, SuMi
can also outperform existing methods, demonstrating its effectiveness.
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Table 7: Results on real-world distribution shifts.

Method MOSI→ SIMS SIMS→MOSI

ACC F1 ACC F1

Source 39.2 39.1 40.1 45.5
EATA 40.5 41.2 40.4 45.7
READ 42.0 42.5 40.9 46.9
SuMi 44.2 44.7 41.6 47.8
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Figure 13: Ablation experiments on β and t0 on Kinetics50-C.

C.2 REAL-WORLD DISTRIBUTION SHIFTS

To evaluate the robustness of SuMi in addressing real-world distribution shift, we follow the setting
of Guo et al. (2024b) and conduct experiments on two datasets: CMU-MOSI (Zadeh et al., 2016)
and CH-SIMS (Yu et al., 2020). Specifically, CMU-MOSI and CH-SIMS are multimodal sentiment
analysis datasets which include three modalities. They contain different topics of conversations,
different speakers, and different recording environments which can all be seen as real-world distri-
bution shifts. In pratice, we consider the task as a binary classification task and use the cross entropy
loss. We use stacked Transformer blocks as the backbone and pre-train the model on CMU-MOSI
and CH-SIMS as the source model for the setting MOSI→ SIMS and SIMS→MOSI, respectively.
Table 7 presents the results. We can observe that in real-world distribution shifts, SuMi can still
outperform existing methods, showing its robustness.

C.3 MORE ABLATION EXPERIMENTS

Exploration of β in IQR smoothing. In interquartile range smoothing, we set β for more stable
selection. Here, we select different values of β and present the results in Figure 13(a). From the
figure, we can observe that the performances across varying β are stable.

Exploration of t0 in mutual information sharing. For strong OOD adaptation, we add mutual
information sharing in the first t0 iterations to avoid the impact of strong OOD samples which could
damage the mutual information sharing. We select several different t0 to conduct experiments and
present the results on Kinetics50-C in Figure 13(b). From the figure, we can observe that the per-
formances are all better than the model without mutual information sharing which indicates the
effectiveness of mutual information sharing strategy. Besides, with the increase of t0, the perfor-
mance improves before dropping when t0 = 3iter

4 . This shows that with the adaptation process, the
strong OOD samples also increase which could bring many noises and damage the mutual informa-
tion sharing. Moreover, the performances across varying t0 are stable, demonstrating the stability of
our method.

Exploration of smoothing process. In Equation 3, we opt for a simple linear smoothing process
for clarity. Here, we provide a deeper analysis of the smoothing process. In addition to the linear
smoothing, we provide the results of the logarithmic and exponential functions. Specifically, for
logarithmic function, we use f(t) = log( (e−1)t

iter + 1) and for exponential function we use f(t) =
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Table 8: Performance with different smoothing functions on Kinetics50-C.

f(t) Linear Exponential Logarithmic

Acc 59.1 59.5 58.7

exp ( t ln 2
iter ) − 1. We present the results in Table 8. From the table, we can observe that using

f(t) = exp ( t ln 2
iter ) − 1 function can improve the performance of the model slightly. From the

properties of the exponential function, it can be seen that the function grows slowly when the variable
t is small and quickly when the variable is large. For logarithmic function, it grows quickly when
the variable t is small and slowly when the variable is large. This indicates that slowing down the
smoothing process in the initial phase helps the model’s performance. Additionally, we can observe
that the function will not affect the performance drastically, indicating the effectiveness of smoothing
process itself.
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