
A DiAMetR for handling out-of-support task distribution shifts

To handle out-of-support task distribution shifts, we parameterized new task distribution as latent
space distributions qϕ(z) and measure the divergence between train and test task distribution via KL
divergence in latent space D(ptrain(z)||qϕ(z)) in Section 5. Using this parameterization, equation 3
becomes

max
θ

min
ϕ

Ez∼qϕ(z)

[
Eπϵmeta,θ,P

[
1

k

k∑

i=1

T∑

t=1

rω(s
(i)
t , a

(i)
t , z)

]]
when rewards differ

max
θ

min
ϕ

Ez∼qϕ(z)

[
Eπϵmeta,θ,pω(·,·,z)

[
1

k

k∑

i=1

T∑

t=1

r
(i)
t

]]
when dynamics differ

DKL(ptrain(z)||qϕ(z)) ≤ ϵ (10)

This objective function is solved in Algorithm 1 for different values of ϵ. To imagine out-of-support
distributionally shifted task (i.e. reward or dynamics) distributions, DiAMetR leverages structured
VAE which we describe in subsequent subsections.

A.1 Structured VAE for modeling reward distributions

Figure 8: Using a vanilla VAE, in lieu of a
structured VAE, to model task distribution
hurts DiAMetR’s performance on test-task
distributions.

We leverage the sparsity in reward functions (i.e. 0/1 re-
wards) in the environments used and describe a structured
VAE to model rω(s, a, z) with p(z) = N (0, I) and KL-
divergence for D(·||·). Let h = (

∑T
t=1 rtst)/(

∑T
t=1 rt)

be the mean of states achieving a +1 reward in trajectory
h. The encoder z ∼ qψ(z|h) encodes h into a latent vector
z. The reward model rω(s, a, z) consists of 2 components:

(i) latent decoder ĥ = rhω(z) which reconstructs h and (ii)

reward predictor rrew
ω (s, ĥ) = exp(−∥M ⊙ (s− ĥ)∥22/σ2)

which predicts reward for a state given the decoded la-
tent vector. M is a masking function and σ is a learned
parameter. The training objective becomes

min
ω,ψ

Eh∼D

[
Ez∼qψ(z|h)

[
∥∥h− rhω(z)

∥∥2
2
+

T∑

t=1

∥∥rrew
ω (st, r

h
ω(z))− rt

∥∥2
]
+DKL(qψ(z|h)||p(z))

]

(11)
The structure in the VAE helps in extrapolating reward functions when z ∼ qϕ(z). This can be further
verified by reduction in DiAMetR’s performance on test-task distributions when using vanilla VAE
(see Figure 8).

A.2 Structured VAE for modelling dynamics distributions

We describe our structured VAE architecture for modelling dynamics distribution pω(s, a, z) with
p(z) = N (0, I) and KL-divergence for D(·||·). It handles out-of-support shifted test task distributions
where only dynamics vary across tasks. We leverage the fact that dynamics differ by an additive
term. The encoder z ∼ qϕ(z|(st, at)Tt=1) encodes the state action trajectory to a latent vector z.
The dynamics model takes the form pω(s, a, z) = Wωz + pdyn

ω (s, a) where Wω is a parameter. The
training objective becomes:

min
ω,ψ

E(st,at)Tt=1∼D

[
Ez∼qψ(z|(st,at)Tt=1)

[
T−1∑

t=1

∥∥pdyn
ω (st, at) +Wωz − st+1

∥∥2
]
+DKL(qψ(z|(st, at)Tt=1)||p(z))

]

(12)

The structure in the VAE helps in extrapolating dynamics when z ∼ qϕ(z).

15

Algorithm 3 (Detailed) DiAMetR:Meta-training phase
1: Given: ptrain(T), Return: {πϵimeta,θ}

M
i=1

2: πϵ1meta,θ , DReplay-Buffer ← Solve equation 1 with off-policy RL2

3: Reward distribution rω / Dynamic distribution pω , prior ptrain(z)← Solve eq 8 using DReplay-Buffer
4: for ϵ in {ϵ2, . . . , ϵM} do
5: Initialize qϕ, πϵmeta,θ and λ ≥ 0.
6: for iteration n = 1, 2, ... do
7: Meta-policy: Update πϵmeta,θ using off-policy RL2 [31]

θ := θ + α∇θET ∼ptrain(T)[Eπϵmeta,θ,T [
nwT

k
∑ntr
i=1 wTi

k∑
i=1

T∑
t=1

r
(i)
t]]

θ := θ + α∇θEz∼qϕ(z)[Eπϵmeta,θ,P [
1

k

k∑
i=1

T∑
t=1

rω(s
(i)
t , a

(i)
t , z)]]

θ := θ + α∇θEz∼qϕ(z)[Eπϵmeta,θ,pω(·,·,z)[
1

k

k∑
i=1

T∑
t=1

r
(i)
t]]

8: Adversarial task distribution: Update qϕ using Reinforce [39]

ϕ := ϕ− α∇ϕ(ET ∼ptrain(T)[Eπϵmeta,θ,T [
nwT

k
∑ntr
i=1 wTi

k∑
i=1

T∑
t=1

r
(i)
t]] + λDKL(ptrain(T)∥qϕ(T))

ϕ := ϕ− α∇ϕ(Ez∼qϕ(z)[Eπϵmeta,θ,P [
1

k

k∑
i=1

T∑
t=1

rω(s
(i)
t , a

(i)
t , z)]] + λDKL(ptrain(z)∥qϕ(z))

ϕ := ϕ− α∇ϕ(Ez∼qϕ(z)[Eπϵmeta,θ,pω(·,·,z)[
1

k

k∑
i=1

T∑
t=1

r
(i)
t]] + λDKL(ptrain(z)∥qϕ(z))

9: Lagrange constraint multiplier: Update λ to enforce DKL(ptrain∥qϕ) < ϵ,

λ :=λ≥0 λ+ α(DKL(ptrain(T)∥qϕ(T))− ϵ)

λ :=λ≥0 λ+ α(DKL(ptrain(z)∥qϕ(z))− ϵ) λ :=λ≥0 λ+ α(DKL(ptrain(z)∥qϕ(z))− ϵ)

10: end for
11: end for

B DiAMetR for handling in-support task distribution shifts

To handle in-support task distribution shifts, we parameterized new task distribution as re-weighted
(empirical) training task distribution qϕ(T) ∝ wT ptrain(T) (where ϕ = {wTi}ntr

i=1) in Section 5.
Using this parameterization, equation 3 becomes

max
θ

min
ϕ

ET ∼ptrain(T)

[
Eπϵmeta,θ,P

[
nwT∑ntr
i=1 wTi

1

k

k∑

i=1

T∑

t=1

r
(i)
t

]]

DKL(ptrain(T)||qϕ(T)) ≤ ϵ (13)

This objective function is solved in Algorithm 1 for different values of ϵ. For in-support task
distribution shifts, shifts in dynamics distribution and reward distribution don’t require separate
treatment.

C Test time Meta Policy Selection

As discussed in Section 4, to adapt to test time task distribution shifts, we train a family of meta-
policies Π = {πϵimeta} to be robust to varying degrees of distribution shifts. We then choose the
appropriate meta-policy during test-time based on the inferred task distribution shift. In this section,
we frame the test-time selection of meta-policy from the family Π as a stochastic multi-arm bandit
problem. Every iteration involves pulling an arm i which corresponds to executing πϵimeta for 1 meta-
episode (k environment episodes) on a task T ∼ ptest(T). Let Ri be the expected return for pulling

16

arm i

Ri = Eπϵimeta,T ∼ptest(T)

[
1

k

k∑

i=1

T∑

t=1

r
(i)
t

]
(14)

Let R∗ = maxi∈{1,...,M} Ri and πϵmeta be the corresponding meta-policy. The goal of the stochastic
bandit problem is to pull arms i1, . . . , iN ∈ {1, . . . ,M} such that the test-time regret RN is
minimized

Rtest
N = NR∗ −

N∑

t=1

Rit (15)

with constraint that it can depend only on the information available prior to iteration t. We choose
Thompson sampling, a zero-regret bandit algorithm, to solve this problem. In principle, Thompson
sampling should learn to choose πϵmeta after N iterations.

D Environment Description

We describe the environments used in the paper:

• {Point,Wheeled,Ant}-navigation: The rewards for each task correspond to reaching an
unobserved target location sT . The agent (i.e. Wheeled, Ant) must explore the environment to find
the unobserved target location (Wheeled driving a differential drive robot, Ant controlling a four
legged robotic quadruped). It receives a reward of 1 once it gets within a small δ distance of the
target st, as in [14].

• Dense Ant-navigation: The rewards for each task correspond to reaching an unobserved target
location sT . The Ant (a four legged robotic quadruped) must explore the environment to find the
unobserved target location. It receives a reward of −∥agentx,y − sT ∥ where agentx,y is the (x,y)
position of the Ant.

• Wind navigation: The rewards for each task correspond to reaching an unobserved target
location st. While sT is fixed across tasks (i.e. at (1/

√
2, 1/

√
2)), the agent (a linear system robot)

much navigate in the presence of wind (i.e. a noise vector wT) that varies across tasks. It receives
a reward of 1 once it gets within a small δ distance of the target sT .

• Object localization: Each task corresponds to using the gripper to localize an object kept at
an unobserved target location st. The Fetch robot must move its gripper around and explore the
environment to find the object. Once the gripper touches the object kept at target location st, it
receives a reward of 1.

• Block push: Each task corresponds to moving the block to an unobserved target location st. The
robot arm must move the block around and explore the environment to find the unobserved target
location. Once the block gets within a small δ distance of the target st, it receives a reward of 1, as
in [14].

Furthermore, Table 1 describes the state space S , action space A, episodic horizon H , frameskip for
each environment and k (i.e. number of environment episodes in 1 meta episode). Table 2 provides
parameters for train and test task distributions for different meta-RL tasks used in the paper.

Name State space S Action space A Episodic Horizon H Frameskip k

Point-navigation Box(2,) Box(2,) 60 1 2
Wind-navigation Box(2,) Box(2,) 25 1 1
Wheeled-navigation Box(12,) Box(2,) 60 10 2
Ant-navigation Box(29,) Box(8,) 200 5 2
Dense Ant-navigation Box(29,) Box(8,) 200 5 2
Object localization Box(17,) Box(6,) 50 10 2
Block Push Box(10,) Box(4,) 60 10 2

Table 1: Environment Description

17

Environment Task type Task parameter distribu-
tion ptrain(T) {pitest(T)}Ki=1

Point, Wheeled,
Ant-navigation

reward change,
out-of-support

shift

sT = (∆cos θ,∆sin θ)

∆ ∼ U(∆min,∆max)

θ ∼ U(0, 2π)
∆ ∼ U(0, 0.5)

∆ ∼ U(0, 0.5),U(0.5, 0.55)
U(0.55, 0.6),U(0.6, 0.65)

U(0.65, 0.7)

Point, Wheeled,
Ant-navigation

reward change,
in-support shift

sT = (∆cos θ,∆sin θ)

∆ ∼ U(∆min,∆max)

θ ∼ U(0, 2π)
∆ ∼ Exp(λ = 5)

∆ ∼ U(0, 0.5),U(0.5, 0.55)
U(0.55, 0.6),U(0.6, 0.65)

U(0.65, 0.7)

Dense
Ant-navigation

reward change,
in-support shift

sT = (∆cos θ,∆sin θ)

∆ ∼ U(∆min,∆max)

θ ∼ U(0, 2π)
∆ ∼ Exp(λ = 5)

∆ ∼ U(0, 0.5),U(0.5, 0.55)
U(0.55, 0.6),U(0.6, 0.65)

U(0.65, 0.7)

Wind
-navigation

dynamics change,
out-of-support

shift

wT = (∆cos θ,∆sin θ)

∆ ∼ U(∆min,∆max)

θ ∼ U(0, 2π)
∆ ∼ U(0, 0.05)

∆ ∼ U(0, 0.05),U(0.05, 0.06)
U(0.06, 0.07),U(0.07, 0.08)

U(0.08, 0.09)

Wind
-navigation

dynamics change,
in-support shift

wT = (∆cos θ,∆sin θ)

∆ ∼ U(∆min,∆max)

θ ∼ U(0, 2π)
∆ ∼ Exp(λ = 40)

∆ ∼ U(0, 0.05),U(0.05, 0.06)
U(0.06, 0.07),U(0.07, 0.08)

U(0.08, 0.09)

Object
localization

reward change,
out-of-support

shift

sT = (∆cos θ,∆sin θ)

∆ ∼ U(∆min,∆max)

θ ∼ U(0, 2π)
∆ ∼ U(0, 0.1)

∆ ∼ U(0, 0.1),U(0.1, 0.12)
U(0.12, 0.14),U(0.14, 0.16)
U(0.16, 0.18),U(0.18, 0.2)

Object
localization

reward change,
in-support shift

sT = (∆cos θ,∆sin θ)

∆ ∼ U(∆min,∆max)

θ ∼ U(0, 2π)
∆ ∼ Exp(λ = 20)

∆ ∼ U(0, 0.1),U(0.1, 0.12)
U(0.12, 0.14),U(0.14, 0.16)

U(0.16, 0.18)

Block-push
reward change,
out-of-support

shift

sT = (∆cos θ,∆sin θ)

∆ ∼ U(∆min,∆max)

θ ∼ U(0, π/2)
∆ ∼ U(0, 0.5)

∆ ∼ U(0, 0.5),U(0.5, 0.6)
U(0.6, 0.7),U(0.7, 0.8)
U(0.8, 0.9),U(0.9, 1.0)

Block-push
reward change,
in-support shift

sT = (∆cos θ,∆sin θ)

∆ ∼ U(∆min,∆max)

θ ∼ U(0, π/2)
∆ ∼ Exp(λ = 4)

∆ ∼ U(0, 0.5),U(0.5, 0.6)
U(0.6, 0.7),U(0.7, 0.8)
U(0.8, 0.9),U(0.9, 1.0)

Table 2: Parameters for train and test task distribution for {Point,Wheeled, Ant}-navigation,
Dense Ant-navigation, Wind-navigation, Object localization and Block-push. While tasks in
Wind-navigation vary in dynamics, tasks in other environments vary in reward function. The shifted test
task distributions can be either in-support or out-of-support of the training task distribution. All these task
distributions are determined by distributions of underlying task parameters (say target location sT or wind
velocity wT), which either determine the reward function or the dynamics function.

E Experimental Evaluation on Wheeled and Point Robot Navigation

In Section 6, we evaluated DiAMetR on Wind-navigation, Ant-navigation, Fetch-reach and
Block-push. We continue the experimental evaluation of DiAMetR in this section and compare it to
RL2, VariBAD, and HyperX on train task distribution and different test task distributions of Point
navigation and Wheeled navigation [14]. We see that DiAMetR either matches or outperforms
the baselines on train task distribution and outperforms the baselines on test task distributions.
Furthermore, adaptively selecting an uncertainty set during test time allows for better test time
distribution adaptation when compared to selecting an uncertainty set beforehand or selecting a large
uncertainty set.

F Evaluations on dense reward environments with in-support distribution
shifts

We test the applicability of DiAMetR on an environment with dense rewards. We use a variant of
Ant navigation, namely Dense Ant-navigation for this evaluation. Furthermore, the shifted
test task distributions are in-support of the training task distribution (see Table 2 for a detailed
description of these task distributions). Figure 10 shows that DiAMetR still outperforms existing
meta RL algorithms (RL2, VariBAD, HyperX) on shifted test task distributions. However, the
gap between DiAMetR and other meta RL algorithms is less than in sparse reward environments.

18

Figure 9: We evaluate DiAMetR and meta RL algorithms (RL2, VariBAD and HyperX) on different in-
support and out-of-support shifted test task distribution of Point navigation and Wheeled navigation.
DiAMetR either matches or outperforms RL2, VariBAD and HyperX on these task distributions. Furthermore,
adaptively selecting an uncertainty set of DiAMetR policy (Adapt) during test time allows it to better adapt to
test time distribution shift than choosing an uncertainty set beforehand (Mid). Choosing a large uncertainty set
of DiAMetR policy (Conservative) leads to a conservative behavior and hurts its performance when test time
distribution shift is low. The first point p1 on the horizontal axis indicates the task parameter (∆) distribution
U(0, p1) and the subsequent points pi indicate task parameter (∆) distribution U(pi−1, pi). Here, task parameter
is target location sT . Table 2 details the task distributions used in this evaluation.

Figure 10: We evaluate DiAMetR and meta RL algorithms (RL2, VariBAD and HyperX) on different in-
support shifted test task distributions of Dense Ant-navigation. DiAMetR either matches or outperforms
RL2, VariBAD and HyperX on these test task distributions. Furthermore, selecting a single uncertainty set
(that is neither too small nor too large) is sufficient in Dense Ant-navigation as DiAMetR(Adapt) and
DiAMetR(Mid) have similar performances (within standard error). The first point p1 on the horizontal axis
indicates the task target distance (∆) distribution U(0, p1) and the subsequent points pi indicate task target
distance (∆) distribution U(pi−1, pi).

Furthermore, Figure 10 shows that selecting a single uncertainty set (that is neither too small nor
too large) is sufficient in Dense Ant-navigation as DiAMetR(Adapt) and DiAMetR(Mid) have
similar performances (within standard error).

G Meta-policy Selection and Adaptation during Meta-test

In this section, we show that DiAMetR is able adapt to various test task distributions across different
environments by selecting an appropriate meta-policy based on the inferred test-time distribution
shift and then quickly adapting the meta-policy to new tasks drawn from the same test-distribution.
The performance of meta-RL baselines (RL2, variBAD, HyperX) remains more or less the same after
test-time finetuning showing that 10 iteration (with 25 rollouts per iteration) isn’t enough for the
meta-RL baselines to adapt to a new task distribution. For comparison, these meta-RL baselines take
1500 iterations (with 25 meta-episodes per iteration) during training to learn a meta-policy for train
task distribution.

19

(a) ∆ ∼ U(0.5, 0.55) (b) ∆ ∼ U(0.55, 0.6) (c) ∆ ∼ U(0.6, 0.65) (d) ∆ ∼ U(0.65, 0.7)

Figure 11: We compare test time adaptation of DiAMetR with test time finetuning of RL2 on point robot
navigation for various test task distributions. We run the adaptation procedure for 10 iterations collecting 25
rollouts per iteration.

(a) ∆ ∼ U(0.5, 0.55) (b) ∆ ∼ U(0.55, 0.6) (c) ∆ ∼ U(0.6, 0.65) (d) ∆ ∼ U(0.65, 0.7)

Figure 12: We compare test time adaptation of DiAMetR with test time finetuning of RL2 on wheeled navigation
for various test task distributions. We run the adaptation procedure for 10 iterations collecting 25 rollouts per
iteration.

(a) ∆ ∼ U(0.5, 0.55) (b) ∆ ∼ U(0.55, 0.6) (c) ∆ ∼ U(0.6, 0.65) (d) ∆ ∼ U(0.65, 0.7)

Figure 13: We compare test time adaptation of DiAMetR with test time finetuning of RL2 on ant navigation
for various test task distributions. We run the adaptation procedure for 10 iterations collecting 25 rollouts per
iteration.

20

(a) ∆ ∼ U(0.1, 0.12) (b) ∆ ∼ U(0.12, 0.14) (c) ∆ ∼ U(0.14, 0.16)

(d) ∆ ∼ U(0.16, 0.18) (e) ∆ ∼ U(0.18, 0.20)

Figure 14: We compare test time adaptation of DiAMetR with test time finetuning of RL2 on object localization
for various test task distributions. We run the adaptation procedure for 10 iterations collecting 25 rollouts per
iteration.

(a) ∆ ∼ U(0.5, 0.6) (b) ∆ ∼ U(0.6, 0.7) (c) ∆ ∼ U(0.7, 0.8)

(d) ∆ ∼ U(0.8, 0.9) (e) ∆ ∼ U(0.9, 1.0)

Figure 15: We compare test time adaptation of DiAMetR with test time finetuning of RL2 on block push for
various test task distributions. We run the adaptation procedure for 10 iterations collecting 25 rollouts per
iteration.

H Ablation studies

Can meta RL achieve robustness to task distribution shifts with improved meta-exploration?
To test if improved meta-exploration can help meta-RL algorithm achieve robustness to test-time task
distribution shifts, we test HyperX [50] on test-task distributions in different environments. HyperX
leverages curiosity-driven exploration to visit novel states for improved meta-exploration during
meta-training. Despite improved meta-exploration, HyperX fails to adapt to test-time task distribution
shifts (see Figure 5 and Figure 9 for results on results on different environments). This is because
HyperX aims to minimize regret on train-task distribution and doesn’t leverage the visited novel states
to learn new behaviors helpful in adapting to test-time task distribution shifts. Furthermore, we note
that the contributions of HyperX is complementary to our contributions as improved meta-exploration
would help us better learn robust meta-policies.

21

Figure 16: Both SAC trained from scratch (SAC scratch) and SAC pre-trained on training task distribution (SAC
finetune) take more than a million timesteps to solve test tasks. In comparison, DiAMetR takes 30k timesteps to
select the right meta-policy which then solves new tasks from test distribution in k − 1 environment episodes
(i.e. 60 timesteps given k = 2 and horizon H = 60).

Can RL quickly solve test time tasks? To test if RL can quickly solve test-time tasks, we train
Soft Actor Critic (SAC) [15] on 5 tasks sampled from a particular test task distribution. To make the
comparison fair, we include a baseline that pre-trains SAC on train-task distribution. Figure 16 shows
results on Point-navigation. We see that both SAC trained from scratch and SAC pre-trained
on training task distribution take more than a million timesteps to solve test tasks. In comparison,
DiAMetR takes 30k timesteps to select the right meta-policy which then solves new tasks from test
distribution in k− 1 environment episodes (i.e. 60 timesteps given k = 2 and horizon H = 60). This
shows that meta-RL formulation is required for quick-adaptation to test tasks.

I Learning meta-policies with different support

Figure 17: We investigate if learning meta-policies with different support (DiAMetR(Adapt-RS)) is better
than learning meta-policies with overlapping support (DiAMetR(Adapt)). We evaluate it on two different
families of shifted task distributions. While the left figure shows evaluations on shifted task distributions with
different support (i.e. U(0, 0.5), U(0.5, 0.55), U(0.55, 0.6), U(0.6, 0.65), U(0.65, 0.7)), the right figure shows
evaluations on shifted task distributions with overlapping support (i.e. U(0, 0.55), U(0.0, 0.6), U(0.0, 0.65),
U(0.0, 0.7)). While DiAMetR(Adapt-RS) performs the best on shifted task distributions with different support,
DiAMetR(Adapt) performs the best on shifted task distributions with overlapping support. Hence, whether
meta-policies should have overlapping support depends on the nature of shifted test task distributions.

We can alternatively try to learn multiple meta-policies, each with small and different (but slightly
overlapping) support. In this way, there won’t be any conservativeness tradeoff. To analyze this
further, we focus on point navigation domain (with train target distance distribution as ∆ ∼ U(0, 0.5))
and experiment with out-of-support test task distribution.

Let’s say we are learning the ith meta-policy (corresponding to ϵi). Let qi−1
ϕ (z) = N (µi−1, σi−1) be

the learned adversarial task distribution for (i− 1)th meta-policy (corresponding to ϵi−1). To learn
meta-policies with small and different support, we make 2 changes to Algorithm 1:

1. In step 7, we do a rejection sampling z ∼ qϕ(z) with the condition that log qi−1
ϕ (z) ≤ β

(where β is a hyperparameter. We found β = −45 to work well).
2. In step 8 and 9, we add another constraint that DKL(ptrain(z)||qϕ(z)) ≥ ϵi−1 (in addition

to DKL(ptrain(z)||qϕ(z)) ≤ ϵi). This leads to learning of two weighting factors λ1 and
λ2 (instead of just λ) that tries to ensure DKL(ptrain(z)||qϕ(z)) ∈ (ϵi−1, ϵi). We call this
modified algorithm as DiAMetR (Adapt-RS) (where RS comes from rejection sampling).

The performance of this variant depends heavily on the form of the test task distribution. We first test it
on task target distance distributions U(0, 0.5),U(0.5, 0.55),U(0.55, 0.6),U(0.6, 0.65),U(0.65, 0.7)
(essentially testing on rings of disjoint support around the training distribution). We see that

22

DiAMetR(Adapt-RS) maintains a consistent success rate of ∼ 1 across various target task dis-
tributions and outperforms DiAMetR(Adapt) and RL2. This is because each meta-policy has overall
smaller (hence are less conservative) and mostly different support and for this type of test distribution,
this scheme can be very effective.

However, when we test it on task target distance distributions
U(0, 0.5),U(0, 0.55),U(0.0, 0.6),U(0.0, 0.65),U(0.0, 0.7) (essentially testing on discs which
mostly include the training distribution), we see that DiAMetR(Adapt-RS) performs same as RL2

and mostly relies on the base RL2 (i.e. ϵ = 0) for its performance.

Whether meta-policies should have overlapping support will depend on the nature of shifted test task
distributions. If supports of test task distributions overlap, then it’s better to have meta-policies with
overlapping support. Otherwise, it’s more efficient to have meta-policies with different support.

J Meta-policy Selection with CEM during Meta-test

We explore using Cross-entropy method (CEM) [4] for meta-policy selection during meta-test phase,
as an alternative to Thompson’s sampling. Algorithm 4 details the use of the CEM algorithm for
meta-policy selection. For this evaluation, we use point navigation environment where tasks vary
in reward functions and test task distribution is out-of-support of training task distribution. Table 2
provides detailed information about these train and test task distributions. Figure 18 shows that CEM
has similar performance as Thompson’s sampling.

Algorithm 4 DiAMetR: Meta-test phase with CEM
1: Given: ptest(T), Π = {πϵimeta,θ}

M
i=1

2: Sample π ∼ Π (with uniform probability) to collect 25 meta-episodes
3: Calculate (µϵ, σϵ) using 10 (of 25) (i.e. top 40%) meta-episodes with highest returns
4: for iter t = 2, 3, ..., 10 do
5: for meta-episode n = 1, 2, .., 25 do
6: Sample ϵ ∼ N (µϵ, σϵ)
7: Choose ϵi closest to ϵ
8: Run πϵimeta,θ for meta-episode
9: end for

10: Calculate (µϵ, σϵ) using 10 (of 25) (i.e. top 40%) meta-episodes with highest returns
11: end for

(a) ∆ ∼ U(0.5, 0.55) (b) ∆ ∼ U(0.55, 0.6) (c) ∆ ∼ U(0.6, 0.65) (d) ∆ ∼ U(0.65, 0.7)

Figure 18: We compare use of Thompson’s sampling (DiAMetR(Adapt)) and Cross-entropy method (Di-
AMetR(Adapt, CEM)) for test time adaptation of DiAMetR on point robot navigation for various test task
distributions. While they have similar performance, they are both better than test-time finetuning of RL2. We
run the adaptation procedure for 10 iterations collecting 25 rollouts per iteration.

K Proof of Proposition 4.1

In this section, we prove the proposition in the main text about the excess regret of an ϵ2-robust
policy under and ϵ1-perturbation (restated below).

23

Proposition 4.1. Let ϵi = min{ϵi + β, 1− |S0|
|S| }. There exists q(T) satisfying DTV (ptrain, q) ≤ ϵ1

where an ϵ2-robust meta policy incurs excess regret over the optimal ϵ1-robust meta-policy:

Eq(T)[Regret(π
ϵ2
meta, T)− Regret(πϵ1meta, T)] ≥

(
c(ϵ1, ϵ2) +

1

c(ϵ1, ϵ2)
− 2

)
(5)

√
ϵ1(1− ϵ1)|S0|(|S| − S0|) (6)

The scale of regret depends on c(ϵ1, ϵ2) =
√

ϵ2
−1−1

ϵ1−1−1
, a measure of the mismatch between ϵ1 and ϵ2.

Summary of proof: The proof proceeds in three stages: 1) deriving a form for the optimal meta-policy
for a fixed task distribution 2) proving that the optimal ϵ-robust meta-policy takes form:

πϵmeta(s) ∝





√
1−ϵ
|S0| s ∈ S0√

ϵ
|S|−|S0| s /∈ S0

and finally 3) showing that under the task distribution p(Tg) = (1 − ϵ1)Uniform(S0) +
ϵ1Uniform(S\S0), the gap in regret takes the form in the proposition.

Proof. For convenience, denote S1 = S\S0 and Regret(πmeta, q(T)) = Eq[Regret(π, T)]. Further-
more, since the performance of a meta-policy depends only on its final-timestep visitation distribution
(and any such distribution is attainable), we directly refer to π(g) as the visited goal distribution of
the meta-policy πmeta. Recall that the regret of πmeta on task Tg is given by 1

π(g) .

We begin with the following lemma that demonstrates the optimal policy for a fixed task distribution.

Lemma K.1. The optimal meta-policy π∗
q = argminπ Regret(π, q(Tg)) for a given task distribution

q(Tg) is given by

π∗
q (g) =

1∫ √
q(g′) dg′

√
q(g) (16)

The proof of the lemma is similar to the argument in Gupta et al. [13], Lee et al. [20]:

π∗
q = argmin

π(g)

Regret(π, q(Tg)) = argmin
π(g)

ETg∼q[
1

π(g)
] (17)

Letting Z =
∫
g

√
q(g), we can rewrite the optimization problem as minimizing an f -divergence

(with f(x) = 1
x)

=

∫
1

π(g)
q(g) dg (18)

= Z2

∫ √
q(g)/Z

π(g)

√
q(g)/Z dg (19)

= Z2Df (π∥
√
q(g)/Z) (20)

This is minimized when both are equal, i.e. when π∗
q (g) =

√
q/Z, concluding the proof.

Lemma K.2. The optimal ϵ-robust meta-policy π∗ϵ = argminR(π, ptrain, ϵ) takes form

πϵ(g) ∝





√
1−ϵ
|S0| g ∈ S0√

ϵ
|S|−|S0| g /∈ S0

Define the distribution qϵ(Tg) = (1− ϵ)Uniform(S0)+ ϵUniform(S\S0) , which is an ϵ-perturbation
of ptrain under the TV metric. We note that there are two main cases: 1) if ϵ = 1− |S0|

|S| , then qϵ is
uniform over the entire state space, and otherwise 2) it corresponds to uniformly taking ϵ-mass from

24

S0 and uniformly distributing it across S1. Using the lemma, we can derive the optimal policy for qϵ,
which we denote πϵ:

πϵ = argmin
π(g)

Regret(π, qϵ(T)) =
1∫ √

qϵ(g′) dg′

√
q(g), (21)

Writing Zϵ =
∫ √

q(g′) dg′, we can write this explicitly as

=
1

Zϵ





√
1−ϵ
|S0| g ∈ S0√

ϵ
|S|−|S0| g /∈ S0

(22)

We now show that there exists no other distribution q′(T) with TV (ptrain, q
′) ≤ ϵ for which

Regret(πϵ, q′) ≥ Regret(πϵ, qϵ). We break this into the two cases for qϵ: if qϵ is uniform over all
goals, then πϵ visits all goals equally often, and so incurs the same regret on every task distribution.
The more interesting case is the second: consider any other task distribution q′(g), and let q′0, q

′
1 be

the probabilities of sampling goals in S0 and S1 respectively under q′: q′0 = Eg∼q′ [1(g ∈ S0)] and
q′1 = 1− q′0. The regret of πϵ on q′ is given by

Regret(πϵ, q′(T)) = Eg∼q′ [
1

1
Zϵ

√
q(g)

] (23)

= Zϵ(q
′
0

√
|S0|
1− ϵ

+ q′1

√
|S| − |S0|

ϵ
) (24)

By construction of ϵ, we have that
√

|S|−|S0|
ϵ ≥

√
|S0|
1−ϵ , and so this expression is maximized for the

largest value of q′1. Under a ϵ-perturbation in the TV metric, the maximal value of q1 is given by
β + ϵ = ϵ :

≤ Zϵ((1− ϵ)

√
|S0|
1− ϵ

+ ϵ

√
|S| − |S0|

ϵ
) (25)

This is exactly the regret under our chosen task proposal distribution qϵ(T) (which has q1 = ϵ)

= Regret(πϵ, qϵ(T)). (26)

These two steps can be combined to demonstrate that πϵ is a solution to the robust objective.
Specifically, we have that

R(πϵ, ptrain, ϵ) = max
q′:TV (ptrain,q′)≤ϵ

Regret(πϵ, q
′) = Regret(πϵ, q

ϵ)

(27)

so, for any other meta-policy πmeta, we have

R(π, ptrain, ϵ) = max
q′:TV (ptrain,q′)≤ϵ

Regret(π, q′) ≥ Regret(π, qϵ) ≥ Regret(πϵ, qϵ) = R(πϵ, ptrain, ϵ)

(28)

This concludes the proof of the lemma.

Finally, to complete the proof of the original proposition, we write down (and simplify) the gap in
regret between πϵ1 and πϵ2 for the task distribution qϵ1 (as described above). We begin by writing
down the regret of πϵ1 :

Regret(πϵ1 , qϵ1(T)) = Zϵ1((1− ϵ1)

√
|S0|
1− ϵ1

+ ϵ1

√
|S1|
ϵ1

) (29)

= (
√
|S0|(1− ϵ1) +

√
|S1|(ϵ1))((1− ϵ1)

√
|S0|
1− ϵ1

+ ϵ1

√
|S1|
ϵ1

) (30)

= (1− ϵ1)|S0|+ ϵ1|S1|+ 2
√
ϵ1(1− ϵ1)|S0||S1| (31)

25

Next, we write the regret of πϵ2

Regret(πϵ2 , qϵ1(T)) = Zϵ2((1− ϵ1)

√
|S0|
1− ϵ2

+ ϵ1

√
|S1|
ϵ2

) (32)

= (
√
|S0|(1− ϵ2) +

√
|S1|(ϵ2))((1− ϵ1)

√
|S0|
1− ϵ2

+ ϵ1

√
|S1|
ϵ2

) (33)

= (1− ϵ1)|S0|+ ϵ1|S1|+ ϵ1

√
|S0||S1|

(1− ϵ2)

ϵ2
+ (1− ϵ1)

√
|S0||S1|

(ϵ2)

1− ϵ2
(34)

= (1− ϵ1)|S0|+ ϵ1|S1|+ ϵ1

√
|S0||S1|

(1− ϵ2)

ϵ2
+ (1− ϵ1)

√
|S0||S1|

(ϵ2)

1− ϵ2
(35)

= (1− ϵ1)|S0|+ ϵ1|S1|+
√

|S0|S1|ϵ1(1− ϵ1)

(√
ϵ1

(1− ϵ1)

(1− ϵ2)

ϵ2
+

√
(1− ϵ1)

ϵ1

ϵ2
(1− ϵ2)

)

(36)

Now writing c(ϵ1, ϵ2) =
√

ϵ2−1−1
ϵ1−1−1

=
√

1−ϵ2
ϵ2

ϵ1
1−ϵ1

= (1− ϵ1)|S0|+ ϵ1|S1|+
√

|S0|S1|ϵ1(1− ϵ1)

(
c(ϵ1, ϵ2) +

1

c(ϵ1, ϵ2)

)

(37)

= Regret(πϵ1 , qϵ1(T)) +
√
|S0|S1|ϵ1(1− ϵ1)

(
c(ϵ1, ϵ2) +

1

c(ϵ1, ϵ2)
− 2

)

(38)

This concludes the proof of the proposition.

L Hyperparameters Used

Table 3 describes the hyperparameters used for the structured VAE for learning reward function
distribution

latent z dimension (for reward and dynamics distribution) 16
p(z) (for reward and dynamics distribution) N (0, I)
qψ(z|h) (for reward distribution) MLP(hidden-layers=[256, 256, 256])
rhω(z) MLP(hidden-layers=[256, 256, 256])
qψ(z|(st, at)Tt=1) (for dynamics distribution) GRU(hidden-layers=[256, 256, 256])
pdyn
ω (s, a) MLP(hidden-layers=[256, 256, 256])

Train trajectories (from train task replay buffer) 1e6/(Episodic Horizon H)
Train Epochs 100
initial log σ −5
{ϵi}Mi=1 (out-of-support test task distributions) {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
{ϵi}Mi=1 (in-support test task distributions) {0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}
ntr (num tasks in empirical ptrain(T)) 200

Table 3: Hyperparameters for structured VAE

We use off-policy RL2 [31] as our base meta-learning algorithm. We borrow the implementa-
tion from https://github.com/twni2016/pomdp-baselines. We use the hyperparameters from the
config file https://github.com/twni2016/pomdp-baselines/blob/main/configs/meta/ant_dir/rnn.yml
but found 1500 num-iters was sufficient for convergence of the meta-RL algorithm.
Furthermore, we use 200 num-updates-per-iter. Our codebase can be found at
https://drive.google.com/drive/folders/1KTjst_n0PlR0O7Ez3-WVj0jbgnl1ELD3?usp=sharing.

26

We parameterize qϕ(z) as a normal distribution N (µ, σ) with ϕ = (µ, σ) as parameters. We use
REINFORCE with trust region constraints (i.e. Proximal Policy Optimization [37]) for optimizing
qϕ(z). We borrow our PPO implementation from the package https://github.com/ikostrikov/pytorch-
a2c-ppo-acktr-gail and default hyperparameters from https://github.com/ikostrikov/pytorch-a2c-ppo-
acktr-gail/blob/master/a2c_ppo_acktr/arguments.py. Table 4 describes the hyperparameters for PPO
that we changed.

num-processes 1
ppo-epoch 10
num-iters 3
num-env-trajectories-per-iter 100

Table 4: Hyperparameters for PPO for training qϕ per every meta-RL iteration

We use off-policy VariBAD [6] implementation from the package https://github.com/twni2016/pomdp-
baselines/tree/main/BOReL with their default hyperparameters. We use HyperX [50] implementation
from the package https://github.com/lmzintgraf/hyperx with their default hyperparameters. To make
the comparisons fair, we ensure that the policy and the Q-function in VariBAD and HyperX have
same architecture as that in off-policy RL2 [31].

M Visualizing meta-policies chosen by Thompson’s sampling

In this section, we visualize the behavior of different meta-policies (robust to varying levels of
distribution shift) towards end of their training. We additionally plot the meta-policies chosen by
Thompson’s sampling during meta-test phase for different task distribution shifts. We choose Ant
navigation task for this evaluation with training task target distance distribution as U(0, 0.5) and
test task distributions being out-of-support of training task distribution (see Table 2 for detailed
description of these distributions).

To visualize the behavior of different meta-policies, we extract the x− y position of Ant from the
states visited by these meta-policies in their last million environment steps (out of their total 15.2
million environment steps). We pass these x− y positions through a gaussian kernel and generate
visitation heatmaps of the Ant’s x− y position, as shown in Figure 20. Figure 19 plots the ϵ values
corresponding to meta-policies chosen by Thompson’s sampling during meta-test for different test
task distributions.

Figure 19: ϵ values corresponding to meta-policies chosen by Thompson’s sampling during meta-test for different
test task distributions of Ant navigation. The first point rtrain on the horizontal axis indicates the training
target distance ∆ distribution U(0, rtrain) and the subsequent points ritest indicate the shifted test target distance
∆ distribution U(ri−1

test , ritest).

N Cost of learning multiple meta-policies during meta-train phase

Training a population of meta-policies mainly requires more memory (both RAM and GPU) as the
meta-policies are trained in parallel. It is true that granularity of epsilon affects the performance of

27

(a) ϵ = 0.0 (b) ϵ = 0.1 (c) ϵ = 0.2 (d) ϵ = 0.3

(e) ϵ = 0.4 (f) ϵ = 0.5 (g) ϵ = 0.6 (h) ϵ = 0.7

(i) ϵ = 0.8

Figure 20: We visualize the Ant’s x − y position visitation heatmaps for different meta-policies towards the
end of their training (i.e., in their last 1 million environment steps, out of 15.2 million environment steps of
training). Here, ϵ indicates the level of robustness of the meta-policy πϵθ . The red circle visualizes the training
task distribution for Ant navigation.

DiAMeTR (as argued in section 4.3). If we increase the number of trained meta-policies, even though
DiAMetR’s final performance on various shifted test task distribution would improve, it would take
more time/samples for test-time adaptation. While choosing the number of trained meta-policies,
we need to balance between final asymptotic performance and time/samples taken for test-time
adaptation. The main benefit of learning a distribution of such meta-policies is that it amortizes over
many different shifted test time distributions and the meta-policies do not need to be relearned for
each of these.

Author Contributions

Anurag Ajay helped in the technical formulation of distributionally adaptive meta RL, implemented
the DiaMetR algorithm, ran experiments and played the primary role in paper writing.

Abhishek Gupta conceived the framework of distributionally adaptive meta RL, ran preliminary
proof-of-concept experiments, helped with paper writing and played an advisory role to Anurag.

Dibya Ghosh analyzed the framework of distributionally adaptive meta RL (Section 4.3), wrote all
the related proofs, participated in research discussions and helped with paper writing.

Sergey Levine provided feedback on the work and paper writing, and participated in research
discussions.

Pulkit Agrawal was involved in research discussions, influenced the choice of experimental domains,
provided feedback on writing, positioning of the work and overall advising.

28

