
A Environments556

In our experiments, we use offline datasets from D4RL [1] for environments from OpenAI gym’s557

[61] MuJoCo continuous control tasks [62]. We look at three locomotion agents shown in Figure 2:558

HalfCheetah, Hopper, and Walker2d, which are all tasked with moving forward as fast as possible.559

For each agent, we look at three types of datasets:560

1. Medium: Approximately 1 million transitions collected from a partially trained SAC agent561

2. Mixed: Approximately 100000 transitions collected from the entire replay buffer of a SAC562

agent throughout training563

3. Medium-expert: Approximately 2 million transitions consisting of half medium samples564

(collected from a partially trained SAC agent) and half expert samples, which are collected565

from a fully trained SAC agent.566

We don’t evaluate on random datasets, which are collected with a random policy for two reasons.567

First, the actions in these datasets are completely random and behavioral priors are not expected to be568

helpful since the behaviors are random. Instead we are more interested in evaluating performance569

on offline datasets with some, even if minimal, structure. Second, we argue that completely random570

data is a somewhat contrived benchmark. Datasets used to solve real-world problems in robotics,571

such as autonomous vehicle navigation, locomotion, and manipulation are likely to have some sort of572

structure.573

B Baselines574

We compare against several leading model-based and model-free offline RL baselines on the D4RL575

dataset.576

1. MOPO: MOPO [21] is an uncertainty-based offline MBRL algorithm. MOPO uses MBPO577

[31], an off-policy Dyna-style RL algorithm where a replay buffer is populated with synthetic578

samples from a learned dynamics model and used to train an Soft Actor Critic (SAC) [39]579

agent. MOPO build on MBPO by penalizing the reward experienced by an agent with a580

penalty proportional to the prediction uncertainty of the dynamics model. MABE is also581

built on top of MBPO and thus MOPO is the most directly competing baseline.582

2. MOReL: MOReL [20] is also an uncertainty-based offline MBRL algorithm. The primary583

difference between MOReL and MOPO is that MOReL uses an on-policy algorithm, TRPO584

[63], as its backbone. Otherwise, MOPO and MOReL are similar - both penalize the reward585

with a term proportional to the forward model uncertainty. The performance differences586

between MOPO and MOReL on D4RL are mainly due to the performance of the backbone587

algorithm, SAC and TRPO respectively. SAC outperforms TRPO on the mujoco Chee-588

tah environment while TRPO outperforms TRPO in the Hopper environment, and these589

differences are also evident in the offline RL results for MOPO and MOReL.590

3. CQL: Conservative Q-Learning (CQL) [17] is a leading offline model-free baselines. CQL591

learns Q-functions so that the expected value of a policy under the learned Q-function is a592

lower-bound of the true policy value. CQL modifies the standard Bellman error with a term593

that minimizes the Q-function under the policy distribution while maximizing it under the594

offline data distribution. CQL does not leverage behavioral priors.595

4. BRAC-v: BRAC-v is another leading model-free RL algorithm that utilizes behavioral596

priors to learn a conservative policy. BRAC-v is the model-free algorithm most similar to597

MABE. Like MABE, BRAC-v learns a behavioral prior by fitting a Gaussian distribution to598

the offline data and regularizing a Gaussian evaluation policy with respect to the behavioral599

data. Unlike MABE, BRAC-v does not weigh the behavioral prior with the advantage and600

instead treats all data points equally regardless of the reward achieved.601

Additionally, we include comparisons to naive behavior cloning and offline SAC.602

15



Dataset Type Environment Target Divergence �

medium halfcheetah 100
medium hopper 0.75
medium walker2d 1
mixed halfcheetah 40
mixed hopper 5
mixed walker2d 20
medium-replay halfcheetah 0.1
medium-replay hopper 0.1
medium-replay walker2d 0.1

Table 3: Table of target divergences used in MABE per environment

C Experiment Details603

C.1 Advantage-Weighted Behavioral Prior604

First, to learn the advantages for each datapoint in dataset, we fit a Q-function to the offline dataset.605

We train until the loss no longer increases any further, then use this Q-function to assign Q-values606

to each datapoint. We normalize these Q-values by dividing each value by the maximum Q-value607

assigned to any datapoint.608

We train our behavioral prior using a negative log likelihood loss. We weight the loss from each609

datapoint by the exponentiated normalized Q-values obtained from our learned Q-function. Dur-610

ing training, we do a 90-10 train-validation split and stop training when the validation loss stops611

decreasing.612

One note is that for halfcheetah medium-expert, we found that a more simple weighing scheme led613

to better results. Rather than fitting a Q-function, we weighed datapoints by the final total reward614

of their trajectory instead. For all other environments, we found that weighing by the Q-function615

worked better or approximately the same.616

C.2 Hyperparameters617

Because we built off of MOPO [21], we use the same MOPO-specific hyperparameters for the618

MOPO hyperparameters of the rollout length h and penalty coefficient �. We refer you to the MOPO619

Appendix for these values. We additionally use the MOPO architecture and training method for our620

dynamics model ensemble. For the dynamics model, we train an ensemble of 7 dynamics models and621

choose the 5 best models based on their prediction error to use while training our offline SAC agent.622

For our policy network, we learn a Gaussian two-head network with 2 hidden layers with 256 hidden623

units, and two separate linear output layers outputting the mean and log standard deviation of the624

next action. For our Q networks, we use an architecture of 3 feed-forward layers of 256 hidden units625

each. Our behavioral prior has the same architecture as our policy network.626

Our main hyperparameter for our method is the target KL divergence �. For our hyperparameter627

search, we defaulted on a low target divergence for the medium-expert datasets (� = 0.1), and we628

performed a grid search for the medium and medium-replay environments, because we found that the629

different agents required different target divergences based on their dataset composition. The full list630

of target divergences used can be found in Table C.2631

D Compute Resources and Assets Used632

Compute Resources Experiments for our main suite of results were run on GPUs using a machine633

with eight Quadro RTX 6000. However, only one GPU is required for four concurrent experiments,634

so our main experiments used approximately 1080 GPU hours (including all seeds).635

Assets Used In this work we used the D4RL Offline RL Benchmark for evaluation [1] which has636

an Apache License 2.0. We build our code off of logic from MOPO [21], which is distributed under637

a MIT License. We built our final codebase off of a PyTorch replication codebase of MBPO [64].638

From this codebase, we ported over MOPO logic. Additionally, we train our dynamics models in the639

16

https://github.com/jxu43/replication-mbpo


MOPO official codebase for fair comparison against MOPO. For our baselines, we copy MOPO, BC,640

SAC, and BRAC-v baselines from [21], MOReL baselines from [20], and CQL baselines from [17].641

17


	Introduction
	Preliminaries
	Model-Based Offline RL with Adaptive Behavioral Regularization
	Results
	Related Work
	Broader Impacts and Limitations
	Environments
	Baselines
	Experiment Details
	Advantage-Weighted Behavioral Prior
	Hyperparameters

	Compute Resources and Assets Used

