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1. Introduction
Forests are vital to global climate regulation and

carbon storage, yet deforestation continues at a rate
exceeding 10 million hectares per year [1]. Green-
house gas (GHG) emissions not only result from
but also contribute to deforestation, forming a self-
reinforcing feedback loop.
The Global Forest Watch (GFW) platform [1] pro-

vides high-resolution annual data on tree cover loss
and carbon emissions. Prior studies have leveraged
GFW to classify deforestation drivers [2], quantify
degradation [3], and analyze policy impacts [4]. Re-
cent work also includes machine learning models
such as random forests [5] and graph neural net-
works [6].
Despite this, limited attention has been paid

to systematically comparing tabular and sequence-
based models for forecasting forest loss, especially
given the short and structured nature of historical
forest datasets.
In this study, we investigate the relationship be-

tweenCO2 emissions and tree cover loss in the top 10
deforestation-prone countries using GFW data. We
benchmark several tabular and sequential models to
assess their suitability for this forecasting task.

2. Methods
We compare two modeling paradigms for fore-

casting annual forest loss from CO2 emissions: tab-
ular and sequence models.
Tabular models treat each country-year (x, y) in-

dependently, using current-year CO2 emissions as
input. We implement:

• Linear Regression

• Random Forest [7]

• GBDT [8]

• XGBoost [9]

Sequence models use rolling input sequences
{xt−k, ..., xt−1} to predict yt, capturing temporal pat-
terns. We use:

• RNN [10]

• LSTM [11]

All models are trained on country-level annual
data from 2001–2021 without strict train/test splits,
emphasizing comparative trends over generaliza-
tion.

3. Data
Weuse annual forest loss (ha) and CO2-equivalent

emissions (Mg) data from the Global Forest Watch
(GFW) platform1. Our analysis focuses on the top 10
countries by cumulative tree loss from 2001–2024.
Tabular input uses single-year features for static

models. Sequence input uses fixed-length windows
of prior years for RNN/LSTM.
Table 1 summarizes the variability in annual tree

cover loss across selected countries.

Table 1: Summary statistics of tree cover loss (ha),
2001–2024

Country (ISO) Mean Std

AUS 384,097 517,218
BOL 407,445 352,818
BRA 3,054,878 844,980
CAN 2,610,311 1,473,990
CHN 531,947 140,433
COD 878,014 418,622
IDN 1,331,796 461,416
MYS 396,398 124,188
RUS 3,701,295 1,454,337
USA 2,060,953 359,360

4. Results
4.1 Correlation Analysis
CO2 emissions and forest loss exhibit strong pos-

itive correlations in most countries, with R2 values
often exceeding 0.9 (e.g., CAN, COD, BOL), as shown
in Table 2. The U.S. shows a weaker relationship
(R2 = 0.31), indicating other potential influencing
factors.

4.2 Regression Fit Example
Figure 1 illustrates regression fits for RUS and

BRA, two countries with high cumulative forest loss.
Both show high alignment between emissions and
loss trends.

4.3 Model Performance Comparison
Table 3 and 4 present RMSE scores for tabular and

sequence models. Tree-based tabular models, es-
pecially XGBoost, consistently outperform RNN and
LSTM across all countries. Temporal models un-
derperform, likely due to short sequence length (24
years).

1https://www.globalforestwatch.org/
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Table 2: Per-country linear regression results: CO2

emissions as predictor of tree cover loss

Country (ISO) Correlation R2 P-value

AUS 0.9827 0.9658 0
BOL 0.9889 0.9779 0
BRA 0.9391 0.8819 0
CAN 0.9931 0.9863 0
CHN 0.9694 0.9398 0
COD 0.9986 0.9972 0
IDN 0.9730 0.9468 0
MYS 0.9513 0.9050 0
RUS 0.9383 0.8804 0
USA 0.5556 0.3087 0.0048

Fig. 1: Linear regressionfit for tree cover loss vs. CO2

emissions in Russia and Brazil

Table 3: RMSE (lower is better) for Tabular Models

Country Linear RF GBDT XGBoost

AUS 0.0419 0.0476 0.0028 0.0012
BOL 0.0307 0.0530 0.0012 0.0015
BRA 0.0798 0.0446 0.0045 0.0015
CAN 0.0229 0.0475 0.0012 0.0011
CHN 0.0664 0.0314 0.0046 0.0013
COD 0.0181 0.0155 0.0001 0.0010
IDN 0.0555 0.0268 0.0010 0.0011
MYS 0.0811 0.0368 0.0039 0.0013
RUS 0.0999 0.0391 0.0043 0.0012
USA 0.2145 0.0626 0.0073 0.0012

Table 4: RMSE for Sequence Models (RNN, LSTM)

Country RNN LSTM

AUS 0.1170 0.1333
BOL 0.0928 0.0891
BRA 0.1400 0.2440
CAN 0.1156 0.0878
CHN 0.1184 0.1280
COD 0.0906 0.1187
IDN 0.2007 0.1991
MYS 0.2223 0.1152
RUS 0.1273 0.2238
USA 0.1914 0.1736

Summary
Tabular models achieve consistently lower RMSE

than sequence models. XGBoost, in particular, bal-

ances predictive accuracy and robustness across
countries.

5. Conclusion
This study explored the predictive relationship

between greenhouse gas emissions and annual tree
cover loss usingGlobal ForestWatch (GFW) data. Fo-
cusing on the top 10 countries with the most signifi-
cant cumulative forest loss since 2001, we conducted
both correlation analysis and comparative forecast-
ing experiments using tabular and sequential mod-
eling paradigms.
Our findings indicate a strong linear correlation

between CO2 emissions and tree cover loss in most
countries, with R2 values exceeding 0.95 in several
cases (e.g., Canada, Congo, Bolivia). However, this
correlation is not universal: countries such as the
United States exhibited weaker associations, sug-
gesting additional socioeconomic or ecological fac-
tors at play.
In terms of model performance:

• Tree-based tabular models, especially Gradi-
ent Boosted Decision Trees (GBDT) and XG-
Boost, consistently achieved the lowest RMSE
values across countries. Thesemodelswerepar-
ticularly effective in capturing the non-linear re-
lationships between emissions and forest loss in
a static, year-level context.

• Sequential models like RNNs and LSTMs were
less effective overall. Despite their theoretical
advantage in modeling temporal dependencies,
their performance was often inferior to simpler
models. This is likely due to the limited se-
quence length (24 years) and small sample size
per country, which restrict the benefits of deep
learning-based sequence modeling.

• XGBoost emerged as the best-performing
model overall, combining low RMSE with
robust generalization across diverse national
contexts.

These results underscore a counterintuitive but
important insight: in environmental forecasting
tasks with relatively short temporal histories and
limited features, traditional tabular models can out-
perform more complex sequence models. This em-
phasizes the need to match modeling complexity to
the structure and scale of available data.

Future Work
Future research could integrate additional envi-

ronmental and socioeconomic variables (e.g., pre-
cipitation, land use, policy data) to improve predic-
tive accuracy. Modeling cross-country dependencies
using graph neural networksmay reveal regional de-
forestation dynamics. Uncertainty-aware methods
and causal inference frameworks could further en-
hance model interpretability and policy relevance.
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