
Supplementary Material1

A Additional Related Work2

Soft Robot Arm Modeling. While the pose of any point on a traditional, rigid-link robot can be3

fully defined by its link lengths and joint angles, the kinematics of soft robots are more complex4

due to their elasticity and continuum nature [1]. While Finite Element Methods (FEM) provide5

high-accuracy models of soft robots, their computational cost and high dimensionality make them6

difficult to use in control methods [2]. Instead, researchers opt for more tractable approximations7

for practical implementation [1]. The most common modeling approximation is the Piecewise Con-8

stant Curvature (PCC) model, a kinematic model in which the robot is approximated as a series of9

constant-curvature arcs. Other works use models that offer a middle ground in computational com-10

plexity. Katzschmann et al. [3] introduce an augmented rigid body formulation that models a soft11

robot as a rigid-bodied robot with parallel elastic actuation, which enables a dynamic model that12

respects PCC assumptions. Naughton et al. [2] draws from Cosserat rod theory to model soft arms13

as continuum elements that can bend, twist, shear, and stretch.14

Another approach to dynamics modeling is through data-driven modeling methods. Bruder et al. [4]15

model a soft robot using the Koopman Operator, in which a projected linear state space model is fit16

with collected data. Jitosho et al. [5] create a soft robot simulator that models soft growing robots17

as N -link pendulums with linear springs and dampers between links, and prismatic joints to model18

lengthening and retracting, and these parameters are fit with collected data. Bern et al. [6] train a19

neural network to find a mapping from motor angles to quasi-static tip position. Centurelli et al. [7]20

model soft robot forward dynamics with a Long Short-Term Memory (LSTM) network to find a21

mapping from an actuation vector to a tip position.22

Soft Robot Arm Control. Many previous works leverage traditional, physics-based methods to23

control soft robot arms. Santina [8] achieves closed-loop stabilization with feedback linearization24

on a simulated soft inverted pendulum. Weerakoon and Chopra [9] use an energy-based controller25

for a soft robot swing-up task and then use a linear-quadratic regulator controller for stabilizing the26

soft robot in the upright position. Bruder et al. [4] use model predictive control with a Koopman27

model to perform tip trajectory tracking for a soft robot. Grube et al. [10] perform soft robot arm28

trajectory following with a kinematic controller and a dynamic controller, and they find that the29

dynamic controller achieves higher accuracy and robustness than the kinematic controller but also30

requires more computational resources.31

Another method for soft robot arm control is training a neural network with large amounts of data.32

Bern et al. [6] train a neural network to approximate the forward dynamics of a soft robot arm, and33

then perform quasi-static trajectory following by using gradient-based optimization with this learned34

model. Thuruthel et al. [11] train a recurrent neural network to model the forward dynamics of a soft35

robot and then use the learned model and trajectory optimization to create open-loop trajectories.36

Next, they test these open-loop trajectories on the real robot and use this data to train a neural37

network in a supervised fashion to be used as a closed-loop predictive controller. Qiuxuan et al. [12]38

fit a soft robot dynamics model with a multi-layer perceptron and then train a control policy with39

deep Q-learning.40

Reinforcement Learning for Controlling Physical Robots. An alternative paradigm for training41

robot control policies using reinforcement learning involves learning from both simulation and real-42

world data. Bousmalis et al. [13] first train a control policy in simulation and then fine-tune the policy43

on a real robot. Rusu et al. [14] use real-world data to train a generator network that transforms44

simulated images into real images so that the policy can learn from more realistic observations.45

While this paradigm can reduce the sim-to-real gap, we do not use this approach for our problem46

because collecting large amounts of real-world data would be time-intensive and result in significant47

degradation to the hardware.48

1



There is a growing interest in applying reinforcement learning to soft robot arm control, with ex-49

isting works primarily focusing on trajectory following at relatively slow speeds [2, 7, 11, 15, 16].50

Naughton et al. [2] focus on additional tasks that require maneuvering between structured obsta-51

cles. Similarly, we achieve tasks that require reasoning about objects in the robot’s environment.52

Our work differs from previous implementations of RL for soft robot arms because we focus on53

achieving tasks that require high-speed motion and do not need a predefined motion plan.54

B System Identification Method, Results, and Verification55

We use measurements from the physical hardware to compute mass and inertia values for our robot56

model. Our physical soft robot arm contains internal hardware inside the tip, but otherwise is a57

hollow, inflated beam. Based on this, we approximate the most distal link as a solid cylinder since it58

contains internal hardware, and we approximate the proximal links as cylindrical shells. We measure59

the mass of the full robot arm and of the internal hardware, and use this to compute the weight of60

the distal cylinder and each of the four cylindrical shells (0.1 kg and 0.05 kg respectively). With the61

measured masses and the measured cylinder radius (0.038 m), we can compute the inertia for each62

geometry accordingly.63

We fit K, D, and b using data from a fixed-base experiment (no use of the cart’s linear actuator).64

In this experiment, we send a sequence of fPAM pressure commands and measure the resulting65

sequence of pressure values (p1:N ) as well as the resulting robot trajectory (θ1:N ). From these66

values, we can compute velocities (θ̇1:N ) and accelerations (θ̈1:N ) via 4th-order finite differencing.67

Using these values, we compute the joint torques τ k at timestep k via inverse dynamics [17]:68

τ k = M(θk)θ̈k +C(θk, θ̇k)θ̇k + g(θk), (2)

where M, C, and g, are functions that compute the mass matrix, Coriolis terms, and torques due to69

gravity, respectively.70

To fit model parameters K, D, and b, we pre-compute (τ 1:N ) using Eq. 2, then we fit model71

parameters using least squares on our definition of joint torques in Eq. 1:72

min
K,D,b

N∑
k=1

∥ −Kθk −Dθ̇k + bpk − τ k∥2. (3)

a)

b) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0

5

10

15

20

fP
A

M
pr

es
su

re
(k

P
ag

)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

−0.2

0

0.2

To
rq

ue
at

B
as

e
P

in
Jo

in
t(

N
m

) Data Model

Figure 9: Results of the system identification fitting procedure. a) Input control signal into the system b) Comparison of joint torques computed
from experiment data (red) versus our model with fitted parameters (blue). The RMS error is 0.02 Nm, which is small compared to the torque
values in the plot.

Fig. 9 shows the results of the system identification procedure. Fig. 9a shows the sequence of fPAM73

commands sent to the physical robot. It includes a slow sweep of pressures to capture quasi-static74

behavior, a square wave to capture the step-response, and a series of high-frequency sine waves to75

2



capture swinging dynamics. The fPAM commands were sent at 60 Hz for roughly 28 s, resulting76

in about 1600 timesteps of measurements. Fig. 9b shows the results of the least squares fitting. We77

overlay the joint torques derived from measured data (Eq. 2) versus the one computed using esti-78

mated parameters (Eq. 1). The RMS error is 0.02 Nm, which is small compared to the actual torque79

values (-0.28 to 0.25 Nm), showing good agreement between our model and the measurements.80

The numerical values for stiffness, damping, and our control mapping are below:81

diag(K) = (0.8385, 1.5400, 1.5109, 1.2887, 0.4347) Nm/rad
diag(C) = (0.0178, 0.0304, 0.0528, 0.0367, 0.0223) Nm*s/rad

b = (0.0247, 0.0616, 0.0779, 0.0498, 0.0268) Nm/psi

To demonstrate that our dynamic model captures our soft robot arm’s behaviors, we compare the tip82

trajectories of the real robot with a simulation that uses our fit model. The fPAM command sequence83

sent to each system is a sinusoid with a frequency not used in the system identification procedure.84

Fig. 10 shows the comparison of tip position over time. The tip y-coordinate ranges from -10 to85

7 cm with an RMS error of 2 cm. The tip z-coordinate ranges from 51 to 52 cm with an RMS error86

of 0.3 cm. The average distance between the simulated and real robot tip positions across all time87

steps is 2 cm. We find that this model fidelity is sufficient for the tasks demonstrated in our work.88

a)

b)

c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

10

20

fP
A

M
pr

es
su

re
(k

P
ag

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

−0.1

0

0.1

Ti
p

y-
co

or
di

na
te

(m
)

Data Model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.51

0.52

0.53

Time (s)

Ti
p

z-
co

or
di

na
te

(m
)

Data Model

Figure 10: Evaluation of fit model. a) Input control signal into the system that is different than the original system identification experiment.
b) Comparison of tip y-coordinate between experiment data versus a simulation with the fit model. The RMS error is 2 cm. c) Comparison of
tip z-coordinate between experiment data versus a simulation with the fit model. The RMS error is 0.3 cm.

C RL Framework Details89

Problem Definition for Reinforcement Learning. We formulate the soft robot arm control task as90

a reinforcement learning problem. This is commonly modeled as a Markov Decision Process (MDP)91

given by (S,A,P,R), where S is the state space, A is the action space, P : S × A × S → R is92

the transition function, and R : S × A × S → R is the reward function. P(st+1|st, at) gives the93

probability of the agent transitioning from state st to st+1 when it takes the action at. R(st, at, st+1)94

gives the reward rt the agent receives when it transitions from state st to st+1 when it takes the action95

at. The agent’s goal is to maximize the return Rt =
∑∞

k=t γ
k−trk, which is the total discounted96

reward from timestep t onwards, where γ ∈ [0, 1] is the discount factor that defines how much the97

agent favors near-term rewards over far-term rewards.98

This formulation assumes a fully observable MDP, but in many real-world robotics control prob-99

lems, the full state of the robot cannot be captured. These problems can be modeled as a Partially-100

3



Observable Markov Decision Process (POMDP), where the agent receives observations from an ob-101

servation modelO(ot|st, at). In this setting, the agent cannot observe the full state at each timestep.102

Common solutions to this problem include stacking a history of observations [18] or compressing103

the history into a hidden state through the use of recurrent neural networks [19, 20]. These solutions104

have the added benefit of access to additional temporal information.105

Architecture and Algorithm. Our control policy consists of a multi-layer perception (MLP) fol-106

lowed by a Long Short-Term Memory (LSTM) layer. The MLP has 3 layers (256, 128, and 64107

hidden units) connected with Exponential Linear Unit (ELU) layers. The output of this MLP is108

concatenated with the original input, which is then fed into an LSTM layer with 256 hidden units109

followed by a Layer Normalization layer. The policy is fed normalized observations (subtract the110

mean and divide by the standard deviation of each dimension). It outputs actions in [−1.0, 1.0],111

which are then scaled to be in the appropriate range for each action dimension. We train the policy112

with the Proximal Policy Optimization (PPO) algorithm [21], using a highly-optimized GPU imple-113

mentation called rl games [22], which uses vectorized observations and actions for faster training.114

D Domain Randomization Details115

We implement domain randomization by applying additive Gaussian noise of N(0, σobs) for all116

elements of the observation o and additive Gaussian noise of N(0, σact) for all elements of the117

action a, where σobs ∈ R and σact ∈ R are the observation and action noise parameters. We also118

apply uniform scaling of U(1− ϵdyn, 1 + ϵdyn) to all elements of the dynamics parameters K,D,b.119

Note that the observation noise and action noise are applied to the normalized observation and the120

unscaled action (actions in the range [−1.0, 1.0]). This ensures that the scale of the noise relative to121

the original value is consistent, so all components are affected similarly.122

E Experimental Setup123

To demonstrate our RL framework on physical hardware, we design and build an experimental124

setup featuring a soft, inflated-beam robot with a mobile base (Fig. 1). The central component is a125

computer running the control policy. It sends pressure commands to the soft robot, sends velocity126

commands to the linear actuator, and receives state measurements from a motion capture system.127

Despite not having a GPU, policy inference takes under 10 ms running on this computer, which128

enables real-time planning and control.129

Inflated-Beam Robot. The total length and weight of the soft robot arm is 44 cm and 0.12 kg,130

respectively. The main body has a radius of 3.8 cm. As described by Naclerio and Hawkes [23],131

the beams forming the main body and the fPAM are constructed by forming tubes with bias-cut,132

woven fabric. The bias-cut orients the fabric fibers such that the tubes become shorter and wider133

when pressurized. This results in the shortening during pressurization. We use two pressure regu-134

lators (Festo VPPI) to control the pressure in the main body and fPAM, and each regulator also has135

a built-in pressure sensor. The main body is held at a constant pressure (0.4 kPag), and the fPAM136

is commanded to varying pressures (-0.7 to 20 kPag). The lower body pressure reduces opposition137

to fPAM actuation while having enough pressure to maintain its cylindrical shape. The fPAM com-138

mand bounds were determined empirically with the following principles: (1) the minimum pressure139

must show the fPAM visibly deflated (2) the maximum pressure must cause maximum contraction140

of the fPAM (3) the range of pressure commands should be small to increase tracking performance141

of the pressure regulator. Our central computer sends pressure commands and receives pressure142

measurements via serial communication with a microcontroller (Teensy 3.6).143

Mobile Base. We utilize a cart on a belt-driven linear actuator (Igus ZLW-1040B) that acts as a144

mobile base for our soft robot arm. The base of the soft robot arm is directly attached to the cart,145

which slides along the actuator rails within a 0.6 m range. We use the linear actuator’s “Velocity146

Mode”, which requires setting an acceleration value followed by sending velocity targets over time.147

4



Our central computer communicates with the linear actuator over Transmission Control Protocol148

(TCP).149

Motion Capture Sensing. To simplify the hardware and sensing scheme for our robot, we use a mo-150

tion capture system (OptiTrack with Flex 13 cameras) to measure the robot’s current configuration.151

We place five sets of markers equally spaced along the soft robot arm, and a sixth set on the sliding152

cart. For each set of markers, the motion capture system provides the position and orientation in the153

global frame. We also use motion capture to measure task-specific observations otask.154

Simulation and Policy Learning Details. We simulate the soft robot arm using Isaac Gym [24],155

a high-performance simulator that leverages GPU parallelization to simulate thousands of robots156

simultaneously. Using one NVIDIA RTX 3090 GPU, our simulation runs at 18,000 FPS (each157

frame is one action step with a control timestep of 33 ms) by running 4,096 environments in parallel.158

The simulation timestep and control frequency are two important parameters to determine. Our real,159

physical system runs at a 30 Hz control frequency (most of this time is spent communicating with the160

sensors to measure the current state), so we run the control policy at 30 Hz in simulation accordingly.161

However, simulation often requires smaller timesteps to ensure numerical stability. We found that162

simulating the vine robot at 1200 Hz (0.833 ms timestep) is sufficiently stable.163

For modeling the fPAM pressure, we found that the filtering parameter α was different for inflation164

(ap > p) and deflation (ap < p). Thus, we use αinflate = 0.86 and αdeflate = 0.81 for modeling165

inflation and deflation, respectively. For modeling the cart dynamics, we use kv̇ = 0.3, kv = 30,166

and an action delay of 1 control timestep (33 ms). For domain randomization, we use σobs = 0.001,167

σact = 0.001, and ϵdyn = 0.001.168

We train all learned policies with a learning rate of 3e-4, a discount factor γ of 0.99, and a PPO169

clipping interval ϵclip of 0.2. We also normalize the observations, values, and advantages, and we170

train the policy with 4 epochs per policy update. Using a horizon length of 16 (number of timesteps171

between updates for each robot, with all robots running in parallel), 4096 simulated robots, and172

a maximum of 500 update iterations, the approximate number of training timesteps is 32M steps173

(16 × 4096 × 500). Training takes about 40-80 minutes on an NVIDIA RTX 3090 GPU, which is174

substantially less time than Elastica’s ∼11 hour RL training [2].175

F Trajectory Optimization Planning and Control Method176

We use trajectory optimization to determine a reference trajectory (control trajectory u1:N−1 and177

resulting state trajectory x1:N ) that brings the tip of the soft robot arm to the goal position within178

a fixed time horizon N . We define the state vector x := (ycart, ẏcart, θ1, θ̇1, . . . , θ5, θ̇5) and control179

input u := (Fcart, ap) where Fcart is the force applied to the cart and ap is the fPAM pressure. We180

solve the following optimization problem to compute the reference trajectories.181

min
x1:N ,u1:N−1

N∑
k=1

∥∥xk − x̄k
∥∥2
Qk +

N−1∑
k=1

∥∥uk
∥∥2
Rk

s.t. xk+1 = f(xk,uk), k = 1, . . . , N − 1,

umin ≤ uk ≤ umax, k = 1, . . . , N − 1,

ycart-min ≤ ykcart ≤ ycart-max, k = 1, . . . , N − 1,

ẏcart-min ≤ ẏkcart ≤ ẏcart-max, k = 1, . . . , N − 1,

g(xN ) = 0

(4)

where ykcart and ẏkcart are the first and second elements of xk respectively. The objective function is182

a quadratic cost on deviation from a nominal state trajectory x̄1:N with weight matrices Q1:N and183

a quadratic cost on control effort with weight matrices R1:N−1. The first constraint is for dynamic184

feasibility, the second is for control limits, the third is for cart position and velocity limits, and the185

5



fourth is for the tip position to reach the goal position at the final timestep. We set each x̄k of the186

nominal trajectory to be a pose that bends to the left (with zero velocity) since all goal positions187

require bending to the left. Because we use a multi-link rigid body approximation as our dynamic188

model, we have a broader array of options for our simulator and optimizer choice. For this work,189

we chose Dojo [25] for its numerical stability (since we have stiff equations of motion and would190

like to take larger time steps), and we used its associated trajectory optimization package which191

implements iterative Linear Quadratic Regulator with Augmented Lagrangian methods.192

The numerical values for Qk and Rk for k = 1, . . . , N − 1 are:193

diag(Qk) = (10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1)

diag(Rk) = (1, 1)

The numerical values for QN are:194

diag(QN ) = (100, 10, 100, 10, 100, 10, 100, 10, 100, 10, 100, 10)

Solving the trajectory optimization problem took between 1-13 minutes, depending on the target195

position. Re-planning in real-time, (e.g. with model predictive control), was not possible due to the196

optimization solve time, so instead we used a simple but fast tracking controller that adds a feedback197

term to the reference action trajectory based on deviation from the reference tip trajectory:198

akcart-vel = akcart-vel ref + ky(y
k
tip ref − yktip) (5a)

akp = akp ref + kz(z
k
tip ref − zktip). (5b)

Reference action trajectories a1:N−1
cart-vel ref as well as a1:N−1

p ref and reference tip trajectories yktip ref and199

zktip ref are extracted from the optimal solution for x1:N−1 and u1:N−1. The current tip position200

(yktip, z
k
tip) is measured with motion capture, and ky and kz are controller gains. The adjusted201

actions are clamped to be within the action limits for the cart and fPAM and then sent to the physical202

hardware. During trajectory optimization, we use conservative constraints on cart velocity and fPAM203

pressure so that the tracking controller has margin to exceed the reference control before needing to204

be clamped within actuator limits. We empirically chose gains that improved performance for one205

of the more difficult target positions, and then used this for all other experiment runs. The gains206

used were ky = 0.1 and kz = 5.0.207

As with our policy trained with RL, we require careful but simple strategies to achieve sim-to-real208

transfer. First, the trajectory constraints allow us to respect state and control limits (i.e. cart position,209

velocity, and acceleration as well as fPAM pressure). We note that we indirectly enforce constraints210

on cart acceleration by constraining Fcart. Second, the use of a tracking controller allows us to211

overcome minor model errors, similar to how domain randomization during policy training produces212

robustness to model errors. Finally, we did not model actuator dynamics when solving the reference213

trajectory for simplicity, but this caused a delay between the reference and actual tip trajectory that214

could not be overcome by the tracking controller alone. We address this by extending the state and215

control reference trajectories for a few extra timesteps and filling the new elements with xN and216

uN−1, respectively. We hypothesize that this adjustment handles the sim-to-real gap introduced by217

actuator latency and response times.218

G Comparison to PID Control for Free Space Target Reaching Task219

We compare our learned policy to a proportional-integral-derivative (PID) controller on the free220

space target reaching task. This serves as a baseline controller that does not reason about leveraging221

swinging, and we show that it is largely unsuccessful in this task.222

We use two separate PID controllers to achieve tip-position control. We use cart actuation to drive223

the y-coordinate error towards zero, and we use fPAM actuation to drive the z-coordinate error224

towards zero. We acknowledge that the fPAM actuation also affects the tip y-coordinate, but find225

6



that the y-coordinate PID controller is able to account for this disturbance. Below are the equations226

used to compute the PID control commands (actions) for cart velocity and fPAM pressure:227

acart-vel = −Kp,yey −Kd,y ėy −Ki,y

∫
eydt

ap = −Kp,zez −Kd,z ėz −Ki,z

∫
ezdt

where ey = ytip − ytarget and ez = ztip − ztarget are the y-error and z-error of the tip po-228

sition, respectively. K∗ are the PID controller gains. We took a manual approach to tuning229

our PID gains that is similar to the Ziegler-Nichols method. Our final gains were Kp,y = 1230

and Kp,z = 20. We found that derivative and integral gains had little effect on overall per-231

formance, and that increasing these gains led to instability, so we ultimately set these to zero.232

−0.25 0 0.25

0.4

0.6

0.8

1

Y (m)

Z
(m

)

RL

−0.25 0 0.25

Y (m)

PID

0

1

2

3

Time (s)

Figure 11: Comparison of learned policy (RL) vs. PID control (PID) for
reaching a target tip position in free space. The black circle is centered
at the target position with a radius of 4 cm. The RL control policy is able
to perform high-speed swinging behavior to reach the target position.
The PID control is unable to track the target position because it greedily
approaches the target position directly.

233

We run this PID controller for the same 54 tar-234

get positions discussed in Sec. 4, and the robot235

achieves a success rate of 17% across the 54236

target positions. With this control method, the237

robot is not able to reach any of the target po-238

sitions with a z-coordinate of 0.6 m or greater;239

the maximum tip z-coordinate reached across240

all PID control experiments was 0.56 m. The241

PID controller limits the robot’s workspace be-242

cause it aims to greedily reduce tip position243

error and does not incorporate any reasoning244

about swinging, significantly reducing its abil-245

ity to reach higher target positions. We illus-246

trate this in Fig. 11. Using our learned policy, the robot is able to reach the target tip position by247

building up momentum over multiple swings to increase its tip height. In contrast, using the PID248

controller, the robot is unable to reach the target tip position, as it simply moves directly towards the249

target and fails to bring the tip high enough. This demonstrates that the free space target reaching250

task is not possible without well-timed actuation that leverages swinging motion.251

7



References252

[1] I. Robert J. Webster and B. A. Jones. Design and kinematic modeling of constant curvature253

continuum robots: A review. The International Journal of Robotics Research, 29(13):1661–254

1683, 2010.255

[2] N. Naughton, J. Sun, A. Tekinalp, T. Parthasarathy, G. Chowdhary, and M. Gazzola. Elastica:256

A compliant mechanics environment for soft robotic control. IEEE Robotics and Automation257

Letters, 6(2):3389–3396, 2021.258

[3] R. K. Katzschmann, C. D. Santina, Y. Toshimitsu, A. Bicchi, and D. Rus. Dynamic motion259

control of multi-segment soft robots using piecewise constant curvature matched with an aug-260

mented rigid body model. In IEEE International Conference on Soft Robotics, pages 454–461,261

2019.262

[4] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan. Modeling and control of soft robots263

using the koopman operator and model predictive control. Robotics: Science and Systems,264

2019.265

[5] R. Jitosho, N. Agharese, A. M. Okamura, and Z. Manchester. A dynamics simulator for soft266

growing robots. In IEEE International Conference on Robotics and Automation, pages 11775–267

11781, 2021.268

[6] J. M. Bern, Y. Schnider, P. Banzet, N. Kumar, and S. Coros. Soft robot control with a learned269

differentiable model. In IEEE International Conference on Soft Robotics, pages 417–423,270

2020.271

[7] A. Centurelli, L. Arleo, A. Rizzo, S. Tolu, C. Laschi, and E. Falotico. Closed-loop dynamic272

control of a soft manipulator using deep reinforcement learning. IEEE Robotics and Automa-273

tion Letters, 7(2):4741–4748, 2022.274

[8] C. D. Santina. The soft inverted pendulum with affine curvature. In IEEE Conference on275

Decision and Control, pages 4135–4142, 2020.276

[9] L. Weerakoon and N. Chopra. Swing up control of a soft inverted pendulum with revolute277

base. In IEEE Conference on Decision and Control, pages 685–690, 2021.278

[10] M. Grube, J. C. Wieck, and R. Seifried. Comparison of modern control methods for soft robots.279

Sensors, 22(23):9464, 2022.280

[11] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi. Model-based reinforcement learning for281

closed-loop dynamic control of soft robotic manipulators. IEEE Transactions on Robotics, 35282

(1):124–134, 2019.283

[12] W. Qiuxuan, Y. Gu, Y. Li, B. Zhang, S. Chepinskiy, J. Wang, A. Zhilenkov, A. Krasnov, and284

S. Chernyi. Position control of cable-driven robotic soft arm based on deep reinforcement285

learning. Information, 11(6):310, 2020.286

[13] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz,287

P. Pastor, K. Konolige, S. Levine, and V. Vanhoucke. Using simulation and domain adaptation288

to improve efficiency of deep robotic grasping. In IEEE International Conference on Robotics289

and Automation, pages 4243–4250, 2018.290

[14] A. A. Rusu, M. Večerı́k, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell. Sim-to-real robot291

learning from pixels with progressive nets. In Conference on Robot Learning, volume 78 of292

Proceedings of Machine Learning Research, pages 262–270, 2017.293

[15] S. Satheeshbabu, N. K. Uppalapati, T. Fu, and G. Krishnan. Continuous control of a soft294

continuum arm using deep reinforcement learning. In IEEE International Conference on Soft295

Robotics, pages 497–503, 2020.296

8



[16] N. K. Uppalapati, B. Walt, A. J. Havens, A. Mahdian, G. Chowdhary, and G. Krishnan. A297

berry picking robot with a hybrid soft-rigid arm: Design and task space control. In Robotics:298

Science and Systems, page 95, 2020.299

[17] K. M. Lynch and F. C. Park. Modern Robotics: Mechanics, Planning, and Control. Cambridge300

University Press, USA, 1st edition, 2017. ISBN 1107156300.301

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.302

Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.303

[19] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,304

R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang,305

L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen,306

V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff,307

Y. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. P. Lillicrap,308

K. Kavukcuoglu, D. Hassabis, C. Apps, and D. Silver. Grandmaster level in StarCraft II using309

multi-agent reinforcement learning. Nature, pages 1–5, 2019.310

[20] P. Zhu, X. Li, P. Poupart, and G. Miao. On improving deep reinforcement learning for pomdps.311

arXiv preprint arXiv:1704.07978, 2017.312

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization313

algorithms. arXiv preprint arXiv:1707.06347, 2017.314

[22] D. Makoviichuk and V. Makoviychuk. rl-games: A high-performance framework for rein-315

forcement learning. https://github.com/Denys88/rl_games, 2022.316

[23] N. D. Naclerio and E. W. Hawkes. Simple, Low-Hysteresis, Foldable, Fabric Pneumatic Arti-317

ficial Muscle. IEEE Robotics and Automation Letters, 5(2):3406–3413, 2020.318

[24] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,319

A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simula-320

tion for robot learning. arXiv preprint arXiv:2108.10470, 2021.321

[25] T. Howell, S. Cleac’h, J. Kolter, M. Schwager, and Z. Manchester. Dojo: A differentiable322

physics engine for robotics. arXiv preprint arXiv:2203.00806, 2022.323

9

https://github.com/Denys88/rl_games

	Additional Related Work
	System Identification Method, Results, and Verification
	RL Framework Details
	Domain Randomization Details
	Experimental Setup
	Trajectory Optimization Planning and Control Method
	Comparison to PID Control for Free Space Target Reaching Task

