
Supplement to “Monomial Matrix Group Equivariant
Neural Functional Networks”

Table of Contents

A Construction of Monomial Matrix Group Equivariant Layers 16
A.1 ReLU activation . 19
A.2 Sin or Tanh activation . 20

B Construction of Monomial Matrix Group Invariant Layers 21
B.1 ReLU activation . 21
B.2 Sin or Tanh activation . 22

C Proofs of Theoretical Results 23
C.1 Proof of Proposition 3.4 . 23
C.2 Proof of Proposition 4.4 . 24

D Additional experimental details 27
D.1 Runtime and Memory Consumption . 27
D.2 Comparison of Monomial-NFNs and GNN-based NFNs 27
D.3 Predicting generalization from weights . 28
D.4 Classifying implicit neural representations of images 29
D.5 Weight space style editing . 30
D.6 Ablation Regarding Design Choices . 31

A Construction of Monomial Matrix Group Equivariant Layers
In this appendix, we present how we constructed Monomial Matrix Group Equivariant Layers. We
adopt the idea of notation in [71] to derive the formula of linear functional layers. For two weight
spaces U and U

0 with the same number of layers L as well as the same number of channels at i-th
layer ni:

U = W ⇥ B where: (22)
W = RwL⇥nL⇥nL�1 ⇥ . . .⇥ Rw2⇥n2⇥n1 ⇥ Rw1⇥n1⇥n0 ,

B = RbL⇥nL⇥1
⇥ . . .⇥ Rb2⇥n2⇥1

⇥ Rb1⇥n1⇥1;

and

U
0 = W

0
⇥ B

0 where: (23)

W
0 = Rw0

L⇥nL⇥nL�1 ⇥ . . .⇥ Rw0
2⇥n2⇥n1 ⇥ Rw0

1⇥n1⇥n0 ,

B
0 = Rb0L⇥nL⇥1

⇥ . . .⇥ Rb02⇥n2⇥1
⇥ Rb01⇥n1⇥1;

our equivariant layer E : U ! U
0 will has the form as follows:

E : (W, b) = U 7�! U 0 = (W 0, b0) where: (24)

W 0(i)
jk :=

LX

s=1

nsX

p=1

ns�1X

q=1

pijkspqW
(s)
pq +

LX

s=1

nsX

p=1

qijksp b(s)p + tijk (25)

b0(i)j :=
LX

s=1

nsX

p=1

ns�1X

q=1

rijspqW
(s)
pq +

LX

s=1

nsX

p=1

sijspb
(s)
p + tij (26)

Here, the map E is parameterized by hyperparameter ✓ = (p, q, s, r, t) with dimensions of each
component as follows:

• pijkspq 2 Rw0
i⇥ws represents the contribution of W (s)

pq to W 0(i)
jk ,

16

• qijksp 2 Rw0
i⇥bs represents the contribution of b(s)p to W 0(i)

jk ,

• tijk 2 Rw0
i is the bias of the layer for W 0(i)

jk ;

• rijspq 2 Rb0i⇥ws represents the contribution of W (s)
pq to b0(i)j ,

• sijsp 2 Rb0i⇥bs represents the contribution of b(s)p to b0(i)j ,

• tij 2 Rb0i is the bias of the layer for b0(i)j .

We want to see how an element of the group GU acts on input and output of layer E. Let

g =
⇣
g(L), . . . , g(0)

⌘
2 GnL ⇥ . . .⇥ Gn0 = GU , (27)

where

g(i) = D(i)
· P⇡i = diag

⇣
d(i)1 , . . . , d(i)ni

⌘
· P⇡i 2 Gni . (28)

Recall the definition of the group action gU = (gW, gb) where:

(gW)(i) :=
⇣
g(i)
⌘
·W (i)

·

⇣
g(i�1)

⌘�1
and (gb)(i) :=

⇣
g(i)
⌘
· b(i), (29)

or in term of entries:

(gW)(i)jk :=
d(i)j

d(i�1)
k

·W (i)

⇡�1
i (j)⇡�1

i�1(k)
and (gb)(i)j := d(i)j · b(i)

⇡�1
i (j)

. (30)

gE(U) = gU 0 = (gW 0, gb0) is computed as follows:

(gW 0)(i)jk =
d(i)j

d(i�1)
k

·W 0(i)
⇡�1
i (j)⇡�1

i�1(k)
(31)

=
d(i)j

d(i�1)
k

·

LX

s=1

nsX

p=1

ns�1X

q=1

p
i⇡�1

i (j)⇡�1
i�1(k)

spq W (s)
pq + (32)

LX

s=1

nsX

p=1

q
i⇡�1

i (j)⇡�1
i�1(k)

sp b(s)p + ti⇡
�1
i (j)⇡�1

i�1(k)

!
(33)

(gb0)(i)j = d(i)j · b0(i)
⇡�1
i (j)

(34)

= d(i)j ·

LX

s=1

nsX

p=1

ns�1X

q=1

s
i⇡�1

i (j)
spq W (s)

pq + (35)

LX

s=1

nsX

p=1

r
i⇡�1

i (j)
sp b(s)p + ti⇡

�1
i (j)

!
. (36)

E(gU) = (gU)0 = ((gW)0, (gU)0) is computed as follows:

17

(gU)0(i)jk =
LX

s=1

nsX

p=1

ns�1X

q=1

pijkspq ·
d(s)p

d(s�1)
q

·W (s)

⇡�1
s (p)⇡�1

s�1(q)
+

LX

s=1

nsX

p=1

qijksp · d(s)p · b(s)
⇡�1
s (p)

+ tijk (37)

=
LX

s=1

nsX

p=1

ns�1X

q=1

pijks⇡s(p)⇡s�1(q)
·

d(s)⇡s(p)

d(s�1)
⇡s�1(q)

·W (s)
pq +

LX

s=1

nsX

p=1

qijks⇡s(p)
· d(s)⇡s(p)

· b(s)p + tijk

(38)

(gb)0(i)j =
LX

s=1

nsX

p=1

ns�1X

q=1

rijspq ·
d(s)p

d(s�1)
q

·W (s)

⇡�1
s (p)⇡�1

s�1(q)
+

LX

s=1

nsX

p=1

sijsp · d
(s)
p · b(s)

⇡�1
s (p)

+ tij (39)

=
LX

s=1

nsX

p=1

ns�1X

q=1

rijs⇡s(p)⇡s�1(q)
·

d(s)⇡s(p)

d(s�1)
⇡s�1(q)

·W (s)
pq +

LX

s=1

nsX

p=1

sijs⇡s(p)
· d(s)⇡s(p)

· b(s)p + tij .

(40)

We need E is G-equivariant under the action of subgroups of GU as in Theorem 4.4. From the above
computation, if gE(U) = E(gU), the hyperparameter ✓ = (p, q, r, s, t) have to satisfy the system of
constraints as follows:

d(i)j

d(i�1)
k

· p
i⇡�1

i (j)⇡�1
i�1(k)

spq = pijks⇡s(p)⇡s�1(q)
·

d(s)⇡s(p)

d(s�1)
⇡s�1(q)

(41)

d(i)j

d(i�1)
k

· q
i⇡�1

i (j)⇡�1
i�1(k)

sp = qs⇡s(p) · d
(s)
⇡s(p)

(42)

d(i)j · r
i⇡�1

i (j)
spq = rijs⇡s(p)⇡s�1(q)

·

d(s)⇡s(p)

d(s�1)
⇡s�1(q)

(43)

d(i)j · s
i⇡�1

i (j)
sp = sijs⇡s(p)

· d(s)⇡s(p)
(44)

d(i)j

d(i�1)
k

· ti⇡
�1
i (j)⇡�1

i�1(k) = tijk (45)

d(i)j · ti⇡
�1
i (j) = tij . (46)

for all possible tuples ((i, j, k), (s, p, q)) and all g 2 G. Since the two subgroups G considered in
Theorem 4.4 satisfy that: G \ Pi is trivial (for i = 0 or i = L) or the whole Pi (for 0 < i < L),
so we can simplify the above system of constraints by moving all the permutation ⇡’s to LHS, then
replacing ⇡�1 by ⇡. The system, denoted as (*), now is written as follows:

d(i)j

d(i�1)
k

· pi⇡i(j)⇡i�1(k)
s⇡s(p)⇡s�1(q)

= pijkspq ·
d(s)p

d(s�1)
q

(*1)

d(i)j

d(i�1)
k

· qi⇡i(j)⇡i�1(k)
s⇡s(p)

= qijksp · d(s)p (*2)

d(i)j · ri⇡i(j)
s⇡s(p)⇡s�1(q)

= rijspq ·
d(s)p

d(s�1)
q

(*3)

d(i)j · si⇡i(j)
s⇡s(p)

= sijsp · d
(s)
p (*4)

d(i)j

d(i�1)
k

· ti⇡
�1
i (j)⇡�1

i�1(k) = tijk (*5)

d(i)j · ti⇡
�1
i (j) = tij (*6)

We treat each case of activation separately.

18

Table 5: Hyperparameter of Equivariant Layers with ReLU activation. Left presents all possible case
of tuple ((i, j, k), (s, p, q)), and Right presents the parameter at the corresponding position. Here, we
have three types of notations: 0 means the parameter equal to 0; equations with ⇡’s in LHS means
the equation holds for all possible ⇡; and a single term with no further information means the term
can be arbitrary.

Tuple ((i, j, k), (s, p, q)) Hyperparameter (p, q, r, s)

i and s j and p k and q pijkspq qijksp pijspq pijsp

i = s = 1 j 6= p 0 0 0 0

j = p p1⇡(j)k1⇡(j)q = p1jk1jq q1⇡(j)k1⇡(j) = q1jk1j r1⇡(j)1⇡(j)q = r1j1jq s1⇡(j)1⇡(j) = s1j1j

i = s = L k 6= q 0 0 0 sLj
Lp

k = q pLj⇡(k)
Lp⇡(k) = pLjk

Ljq 0 0 sLj
Lp

1 < i = s < L j 6= p 0 0 0 0

j = p k 6= q 0 0 0 si⇡(j)i⇡(j) = sijij

k = q pi⇡(j)⇡
0(k)

i⇡(j)⇡0(k) = pijkijk 0 0 si⇡(j)i⇡(j) = sijij

i 6= s 0 0 0 0

Table 6: Construction of equivariant functional layer with ReLU activation. Note that all parameters
have to satisfy the conditions presented in Table 5.

Layer Equivariant layer E : (W, b) 7�! (W 0, b0)

W 0(i)
jk b0(i)j

i = 1
Pn0

q=1 p
1jk
1jqW

(1)
jq + q1jk1j b(1)j

Pn0

q=1 r
1j
1jqW

(1)
jq + s1j1jb

(1)
j

1 < i < L pijkijkW
(i)
jk sijijb

(i)
j

i = L
PnL

p=1 p
Ljk
LpkW

(L)
pk

PnL

p=1 s
Lj
Lpb

(L)
p + tLj

A.1 ReLU activation

Recall that, in this case:

G := {idGnL
}⇥ G

>0
nL�1

⇥ . . .⇥ G
>0
n1

⇥ {idGn0
}. (47)

So the system of constraints (*) holds for:

1. all possible tuples ((i, j, k), (s, p, q)),

2. all ⇡i 2 Pi for 0 < i < L, all d(i)j > 0 for 0 < i < L, 1 6 j 6 ni,

3. ⇡i = idGni
and d(i)j = 1 for i = 0 or i = L.

By treat each case of tuples ((i, j, k), (s, p, q)), we solve Eq. *1, Eq. *2, Eq. *3, Eq. *4 in the system
(*) for hyperparameter (p, q, r, s) as in Table 5. For tijk and tij , by Eq. *5, Eq. *6, we have tijk = 0
for all (i, j, k), tij = 0 if i < L, and tLj is arbitrary for all 1 6 j 6 nL. In conclusion, the formula
of equivariant layers E in case of activation ReLU is presented as in Table 6.
Example A.1. Let us consider a two-hidden-layers MLP with activation � = ReLU. Assume
that n0 = n1 = n2 = n3 = 2, i.e., all layers have two neurons. This MLP defines a function
f : R2 ! R2 given by

f(x) = W (3)�
⇣
W (2)�

⇣
W (1)x+ b(1)

⌘
+ b(2)

⌘
+ b(3),

19

where W (i) =

W (i)

11 W (i)
12

W (i)
21 W (i)

22

!
is a 2⇥ 2 matrix and b(i) =

"
b(i)1

b(i)2

#
for each i = 1, 2, 3. In this case,

the weight space U consists of the tuples

U = (W (1),W (2),W (3), b(1), b(2), b(3))

and it has dimension 18.
According to Eq. (27), an equivariant layer E over U has the form

E(U) =
⇣
W 0(1),W 0(2),W 0(3), b0(1), b0(2), b0(3)

⌘
,

where
W 0(1)

jk = p1jk1j1
W (1)

j11
+ p1jk1j2

W (1)
j22

+ q1jk1j b(1)j , b0(1)j = r1jj1W
(1)
j11

+ r1jj2W
(1)
j22

+ s1j1jb
(1)
j ,

W 0(2)
jk = p2jk2j W (2)

jk , b0(2)j = s2j2jb
(2)
j ,

W 0(3)
jk = p3jk3k1

W (3)
3k + p3jk3k2

W (3)
2k , b0(3)j = s3j3j1b

(3)
1 + s3j3j2b

(3)
2 + r3j .

These equations can be written in a friendly matrix form as follows.

2

66666664

W 0(1)
11

W 0(1)
12

W 0(1)
21

W 0(1)
22

b0(1)1

b0(1)2

3

77777775

=

2

666664

p111111 p111112 0 0 q111111 0
p112111 p112112 0 0 q112111 0
0 0 p121121 p121122 0 q121112
0 0 p122121 p122122 0 q122112

r111111 r111112 0 0 s111111 0
0 0 r121121 r122122 0 s112112

3

777775

2

66666664

W (1)
11

W (1)
12

W (1)
21

W (1)
22

b(1)1

b(1)2

3

77777775

,

2

66666664

W 0(2)
11

W 0(2)
12

W 0(2)
21

W 0(2)
22

b0(2)1

b0(2)2

3

77777775

=

2

666664

p211211 0 0 0 0 0
0 p212212 0 0 0 0
0 0 p221221 0 0 0
0 0 0 p222222 0 0
0 0 0 0 s211211 0
0 0 0 0 0 s222222

3

777775

2

66666664

W (2)
11

W (2)
12

W (2)
21

W (2)
22

b(2)1

b(2)2

3

77777775

,

2

66666664

W 0(3)
11

W 0(3)
12

W 0(3)
21

W 0(3)
22

b0(3)1

b0(3)2

3

77777775

=

2

666664

p311311 0 p311321 0 0 0
0 p312312 0 p322322 0 0

p321312 0 p321321 0 0 0
0 p322312 0 p322322 0 0
0 0 0 0 s311311 s312312
0 0 0 0 s321321 s322322

3

777775

2

66666664

W (3)
11

W (3)
12

W (3)
21

W (3)
22

b(3)1

b(3)2

3

77777775

+

2

666664

0
0
0
0
r31
r32

3

777775
.

A.2 Sin or Tanh activation

Recall that, in this case:
G := {idGnL

}⇥ G
±1
nL�1

⇥ . . .⇥ G
±1
n1

⇥ {idGn0
}. (48)

So the system of constraints (*) holds for:

1. all possible tuples ((i, j, k), (s, p, q)),

2. all ⇡i 2 Pi for 0 < i < L, all d(i)j 2 {±1} for 0 < i < L, 1 6 j 6 ni,

3. ⇡i = idGni
and d(i)j = 1 for i = 0 or i = L.

We assume L > 3, the case L 6 2 can be solved similarly. By treat each case of tuples
((i, j, k), (s, p, q)), we solve Eq. *1, Eq. *2, Eq. *3, Eq. *4 in the system (*) for hyperparame-
ter (p, q, r, s) as in Table 7. For tijk and tij , by Eq. *5, Eq. *6, we have tijk = 0 for all (i, j, k),
tij = 0 if i < L, and tLj is arbitrary for all 1 6 j 6 nL. In conclusion, the formula of equivariant
layers E in case of sin or Tanh activation is presented as in Table 8.

20

Table 7: Hyperparameter of Equivariant Layers with sin or Tanh activation. Left presents all possible
case of tuple ((i, j, k), (s, p, q)), and Right presents the parameter at the corresponding position.
Here, we have three types of notations: 0 means the parameter equal to 0; equations with ⇡’s in LHS
means the equation holds for all possible ⇡; and a single term with no further information means the
term can be arbitrary.

Tuple ((i, j, k), (s, p, q)) Hyperparameter (p, q, r, s)

i and s j and p k and q pijkspq qijksp rijspq sijsp

i = s = 1 j 6= p 0 0 0 0

j = p p1⇡(j)k1⇡(j)q = p1jk1jq q1⇡(j)k1⇡(j) = q1jk1j r1⇡(j)1⇡(j)q = r1j1jq s1⇡(j)1⇡(j) = s1j1j

i = s = L k 6= q 0 0 0 sLj
Lp

k = q pLj⇡(k)
Lp⇡(k) = pLjk

Ljq 0 0 sLj
Lp

1 < i = s < L j 6= p 0 0 0 0

j = p k 6= q 0 0 0 si⇡(j)i⇡(j) = sijij

k = q pi⇡(j)⇡
0(k)

i⇡(j)⇡0(k) = pijkijk 0 0 si⇡(j)i⇡(j) = sijij

(i, s) = (L� 1, L) j = q 0 0 r(L�1)⇡(j)
Lp⇡(j) = r(L�1)j

Lpj 0

(i, s) = (L,L� 1) k = p 0 qLj⇡(k)
(L�1)⇡(k) = qLjk

(L�1)k 0 0

otherwise 0 0 0 0

Table 8: Construction of equivariant functional layer with sin or Tanh activation. Note that all
parameters have to satisfy the conditions presented in Table 5.

Layer Equivariant layer E : (W, b) 7�! (W 0, b0)

W 0(i)
jk b0(i)j

i = 1
Pn0

q=1 p
1jk
1jqW

(1)
jq + q1jk1j b(1)j

Pn0

q=1 r
1j
1jqW

(1)
jq + s1j1jb

(1)
j

1 < i < L� 1 pijkijkW
(i)
jk sijijb

(i)
j

i = L� 1 p(L�1)jk
(L�1)jkW

(L�1)
jk

PnL

p=1 r
(L�1)j
Lpj W (L)

pj + s(L�1)j
(L�1)jb

(L�1)
j

i = L
PnL

p=1 p
Ljk
LpkW

(L)
pk + qLjk

(L�1)kb
(L�1)
k

PnL

p=1 s
Lj
Lpb

(L)
p + tLj

B Construction of Monomial Matrix Group Invariant Layers
In this appendix, we present how we constructed Monomial Matrix Group Invariant Layers. Let U be
a weight spaces with the number of layers L as well as the number of channels at i-th layer ni. We
want to construct G-invariant layers I : U ! Rd for some d > 0. We treat each case of activations
separately.

B.1 ReLU activation

Recall that, in this case:

G := {idGnL
}⇥ G

±1
nL�1

⇥ . . .⇥ G
±1
n1

⇥ {idGn0
}. (49)

Since G
>0
⇤ is the semidirect product of �>0

⇤ and P⇤ with �>0
⇤ is the normal subgroup, we will treat

these two actions consecutively, �>0
⇤ first then P⇤. We denote these layers by I�>0 and IP . Note

that, since I�>0 comes before IP , I�>0 is required to be �>0
⇤ -invariant and P⇤-equivariant, and IP

is required to be P⇤-invariant.

�>0
⇤ -invariance and P⇤-equivariance. To capture �>0

⇤ -invariance, we recall the notion of pos-
itively homogeneous of degree zero maps. For n > 0, a map ↵ from Rn is called positively

21

Table 9: Constraints of ↵ component in invariant functional layer with ReLU, sin,Tanh activations.

Layer I�>0 : (W, b) 7�! (W 0, b0)

↵(i)
jk : W (i)

jk) 7�! W 0(i)
jk ↵(i)

j : b(i)j 7�! b0(i)j

i = 1 ↵(i)
⇡(j)k = ↵(i)

jk ↵(i)
⇡(j) = ↵(i)

j

1 < i < L ↵(i)
⇡(j)⇡0(k) = ↵(i)

jk ↵(i)
⇡(j) = ↵(i)

j

i = L ↵(i)
j⇡(k) = ↵(i)

jk ↵(i)
j

homogeneous of degree zero if

↵(�x1, . . . ,�xn) = ↵(x1, . . . , xn). (50)

for all � > 0 and (x1, . . . , xn) 2 Rn. We construct I�>0 : U ! U by taking collections of positively
homogeneous of degree zero functions {↵(i)

jk : Rwi ! Rwi} and {↵(i)
j : Rbi ! Rbi}, each one

corresponds to weight and bias of U . The maps I�>0 : U ! U that (W, b) 7! (W 0, b0) is defined by
simply applying these functions on each weight and bias entries as follows:

W 0(i)
jk = ↵(i)

jk (W
(i)
jk) and b0(i)j = ↵(i)

j (b(i)j). (51)

I�>0 is �>0
⇤ -invariant by homogeneity of the ↵ functions. To make it become P⇤-equivariant, some

↵ functions have to be shared arross any axis that have permutation symmetry, presented in Table 9.

Candidates of function ↵. We simply choose positively homogeneous of degree zero function
↵ : Rn ! Rn by taking ↵(0) = 0 and:

↵(x1, . . . , xn) = �

✓
x2
1

x2
1 + . . .+ x2

n

, . . . ,
x2
n

x2
1 + . . .+ x2

n

◆
. (52)

where � : Rn ! Rn is an arbitrary function. The function � can be fixed or parameterized to make ↵
to be fixed or learnable.

P⇤-invariance. To capture P⇤-invariance, we simply take summing or averaging the weight and
bias across any axis that have permutation symmetry as in [71]. In concrete, some d > 0, we have
IP : U ! Rd is computed as follows:

IP(U) =
⇣
W (1)

?, : ,W
(L)
: ,? ,W

(2)
?,? , . . . ,W

(L�1)
?,? ; v(L), v(1)? , . . . , v(L�1)

?

⌘
. (53)

Here, ? denotes summation or averaging over the rows or columns of the weight and bias.

G�invariance. Now we simply compose IP � I�>0 to get an G-invariant map. We use an MLP to
complete constructing an G-invariant layer with output dimension d as desired:

I = MLP � IP � I�>0 . (54)

B.2 Sin or Tanh activation

Recall that, in this case:

G := {idGnL
}⇥ G

±1
nL�1

⇥ . . .⇥ G
±1
n1

⇥ {idGn0
}. (55)

Since G
±1
⇤ is the semidirect product of �±1

⇤ and P⇤ with �±1
⇤ is the normal subgroup, we will treat

these two actions consecutively, �±1
⇤ first then P⇤. We denote these layers by I�±1 and IP . Note

that, since I�±1 comes before IP , I�±1 is required to be �±1
⇤ -invariant and P⇤-equivariant, and IP

is required to be P⇤-invariant.

22

�±1
⇤ -invariance and P⇤-equivariance. To capture �±1

⇤ -invariance, we use even functions, i.e.
↵(x) = ↵(�x) for all x. We construct I�±1 : U ! U by taking collections of even functions
{↵(i)

jk : Rwi ! Rwi} and {↵(i)
j : Rbi ! Rbi}, each one corresponds to weight and bias of U . The

maps I�±1 : U ! U that (W, b) 7! (W 0, b0) is defined by simply applying these functions on each
weight and bias entries as follows:

W 0(i)
jk = ↵(i)

jk (W
(i)
jk) and b0(i)j = ↵(i)

j (b(i)j). (56)

I�±1 is �±1
⇤ -invariant by design. To make it become P⇤-equivariant, some ↵ functions have to be

shared arross any axis that have permutation symmetry, presented in Table 9.

Candidates of function ↵. We simply choose even function ↵ : Rn ! Rn by:
↵(x1, . . . , xn) = � (|x1|, . . . , |xn|) . (57)

where � : Rn ! Rn is an arbitrary function. The function � can be fixed or parameterized to make ↵
to be fixed or learnable.

P⇤-invariance. To capture P⇤-invariance, we simply take summing or averaging the weight and
bias across any axis that have permutation symmetry as in [71]. In concrete, some d > 0, we have
IP : U ! Rd is computed as follows:

IP(U) =
⇣
W (1)

?, : ,W
(L)
: ,? ,W

(2)
?,? , . . . ,W

(L�1)
?,? ; v(L), v(1)? , . . . , v(L�1)

?

⌘
. (58)

Here, ? denotes summation or averaging over the rows or columns of the weight and bias.

G�invariance. Now we simply compose IP � I�±1 to get an G-invariant map. We use an MLP to
complete constructing an G-invariant layer with output dimension d as desired:

I = MLP � IP � I�±1 . (59)

C Proofs of Theoretical Results
C.1 Proof of Proposition 3.4

Proof. We simply denote the activation ReLU or sin or tanh by �. Let A 2 GL(n) that satisfies:
�(A · x) = A · �(x),

for all x 2 Rn. This means:

�

0

B@

2

64
a11 . . . a1n

...
. . .

...
an1 . . . ann

3

75 ·

2

64
x1
...
xn

3

75

1

CA =

2

64
a11 . . . a1n

...
. . .

...
an1 . . . ann

3

75 · �

0

B@

2

64
x1
...
xn

3

75

1

CA ,

for all x1, . . . , xn 2 R. We rewrite this equation as:

�

0

B@

2

64
a11x1 + a12x2 + . . .+ a1nxn

...
an1x1 + an2x2 + . . .+ annxn

3

75

1

CA =

2

64
a11 . . . a1n

...
. . .

...
an1 . . . ann

3

75 ·

2

64
�(x1)

...
�(xn)

3

75 ,

or equivalently:2

64
�(a11x1 + a12x2 + . . .+ a1nxn)

...
�(an1x1 + an2x2 + . . .+ annxn)

3

75 =

2

64
a11�(x1) + a12�(x2) + . . .+ a1n�(xn)

...
an1�(x1) + an2�(x2) + . . .+ ann�(xn)

3

75 .

Thus,

�

0

@
nX

j=1

aijxj

1

A =
nX

j=1

aij�(xj),

for all x1, . . . , xn 2 R and i = 1, . . . , n. We will consider the case i = 1, i.e.

�

0

@
nX

j=1

a1jxj

1

A =
nX

j=1

a1j�(xj), (60)

and treat the case i > 1 similarly. Now we consider the activation � case by case as follows.

23

(i) Case 1. � = ReLU. We have some observations:
1. Let x1 = 1, and x2 = . . . = xn = 0. Then from Eq. (60), we have:

�(a11) = a11,

which implies that a11 > 0. Similarly, we also have a12, . . . , a1n > 0.
2. Since A is an invertible matrix, the entries a11, . . . , a1n in the first row of A can not be

simultaneously equal to 0.
3. There is at most only one nonzero number among the entries a11, . . . , a1n. Indeed,

assume by the contrary that a11, a12 > 0. Let x3 = . . . = xn = 0, from Eq. (60), we
have:

�(a11x1 + a12x2) = a11�(x1) + a12�(x2).

Let x2 = �1, we have:
�(a11x1 � a12) = a11�(x1).

Now, let x1 > 0 be a sufficiently large number such that a11x1 � a12 > 0. (Note that
this number exists since a11 > 0). Then we have:

a11x1 � a12 = a11x1,

which implies a12 = 0, a contradiction.
It follows from these three observations that there is exactly one non-zero element among
the entries a11, . . . , a1n. In other words, matrix A has exactly one nonzero entry in the first
row. This applies for every row, so A has exactly one non-zero entry in each row. Since
A is invertible, each column of A has at least one non-zero entry. Thus A also has exactly
one non-zero entry in each column. Hence, A is in Gn. Moreover, all entries of A are
non-negative, so A is in G

>0
n .

It is straight forward to check that for all A in G
>0
n we have �(A · x) = A · �(x).

(ii) Case 2. � = Tanh or � = sin. We have some observations:
1. Let x2 = . . . = xn = 0. Then from Eq. (60), we have:

�(a11x1) = a11�(x1),

which implies a11 2 {�1, 0, 1}. Similarly, we have a12, . . . , a1n 2 {�1, 0, 1}.
2. Since A is an invertible matrix, the entries a11, . . . , a1n in the first row of A can not be

simultaneously equal to 0.
3. There is at most only one nonzero number among the entries a11, . . . , a1n. Indeed,

assume by the contrary that a11, a12 6= 0. Let x3 = . . . = xn = 0, from Eq. (60), we
have:

�(a11x1 + a12x2) = a11�(x1) + a12�(x2).

Note that a11, a12 2 {�1, 1}, so by consider all the cases, we will lead to a contradic-
tion.

It follows from the above three observations that there is exactly one non-zero element
among the entries a11, . . . , a1n. In other words, matrix A has exactly one nonzero entry in
the first row. This applies for every row, so A has exactly one non-zero entry in each row.
Note that, since A is invertible, each column of A has at least one non-zero entry. Therefore,
A also has exactly one non-zero entry in each column. Hence, A is in Gn. Moreover, all
entries of A are in {�1, 0, 1}, so A is in G

±1
n .

It is straight forward to check that for all A in G
±1
n we have �(A · x) = A · �(x).

The proposition is then proved completely.

C.2 Proof of Proposition 4.4

Proof. For both Fully Connected Neural Networks case and Convolutional Neural Networks case,
we consider a network f with three layers, with n0, n1, n2, n3 are number of channels at each layer,
and its weight space U . We will show the proof for part (i) where activation � is ReLU, and part
(ii) can be proved similarly. For part (i), we prove f to be G-invariant on its weight space U , for the
group G that is defined by:

G = {idGn3
}⇥ G

>0
n2

⇥ G
>0
n1

⇥ {idGn0
} < Gn3 ⇥ Gn2 ⇥ Gn1 ⇥ Gn0 = GU ;

24

Case 1. f is a Fully Connected Neural Network with three layers, with n0, n1, n2, n3 are number
of channels at each layer as in Eq. 5:

f(x ; U,�) = W (3)
· �
⇣
W (2)

· �
⇣
W (1)

· x+ b(1)
⌘
+ b(2)

⌘
+ b(3),

Case 2. f is a Convolutional Neural Network with three layers, with n0, n1, n2, n3 are number of
channels at each layer as in Eq. 8:

f(x ; U,�) = W (3)
⇤ �
⇣
W (2)

⇤ �
⇣
W (1)

⇤ x+ b(1)
⌘
+ b(2)

⌘
+ b(3)

We have some observations:

For case 1. For W 2 Rm⇥n,x 2 Rn and a > 0, we have:

a · �(W · x+ b) = � ((aW) · x+ (ab)) .

For case 2. For simplicity, we consider ⇤ as one-dimentional convolutional operator, and other
types of convolutions can be treated similarly. For W = (w1, . . . , wm) 2 Rm, b 2 R and x =
(x1, . . . , xn) 2 Rn, we have:

W ⇤ x+ b = y = (y1, . . . , yn�m+1) 2 Rn�m+1,

where:

yi =
mX

j=1

wjxi+j�1 + b.

So for a > 0, we have:
a · �(W ⇤ x+ b) = � ((aW) ⇤ x+ (ab)) .

With these two observations, we can see the proofs for both cases are similar to each other. We will
show the proof for case 2, when f is a convolutional neural network since it is not trivial as case 1.
Now we have U = (W, b) with:

W =
⇣
W (3),W (2),W (1)

⌘
,

b =
⇣
b(3), b(2), b(1)

⌘
.

Let g be an element of G:

g =
⇣
idGn3

, g(2), g(1), idGn0

⌘
,

where:

g(2) = D(2)
· P⇡2 = diag

⇣
d(2)1 , . . . , d(2)n2

⌘
· P⇡2 2 G

>0
n2

,

g(1) = D(1)
· P⇡1 = diag

⇣
d(1)1 , . . . , d(1)n1

⌘
· P⇡1 2 G

>0
n1

.

We compute gU :

gU = (gW, gb),

gW =
⇣
(gW)(3), (gW)(2), (gW)(1)

⌘
,

gb =
⇣
(gb)(3), (gb)(2), (gb)(1)

⌘
.

where:

25

(gW)(3)jk =
1

d(2)k

·W (3)

j⇡�1
2 (k)

,

(gW)(2)jk =
d(2)j

d(1)k

·W (2)

⇡�1
2 (j)⇡�1

1 (k)
,

(gW)(1)jk =
d(1)j

1
·W (1)

⇡�1
1 (j)k

,

and,

(gb)(3)j = b(3)j ,

(gb)(2)j = d(2)j · b(2)
⇡�1
2 (j)

,

(gb)(1)j = d(1)j · b(1)
⇡�1
1 (j)

.

Now we show that f(x ; U,�) = f(x ; gU,�) for all x = (x1, . . . , xn0) 2 Rn0 . For 1 6 i 6 n3,
we compute the i-th entry of f(x ; gU,�) as follows:

f(x ; gU,�)i

=
n2X

j2=1

(gW)(3)ij2
⇤ �

0

@
n1X

j1=1

(gW)(2)j2j1
⇤

�

0

@
n0X

j0=1

(gW)(1)j1j0
⇤ xj0 + (gb)(1)j1

1

A+ (gb)(2)j2

1

A+ (gb)(3)i

=
n2X

j2=1

1

d(2)j2

·W (3)

i⇡�1
2 (j2)

⇤ �

0

@
n1X

j1=1

d(2)j2

d(1)j1

·W (2)

⇡�1
2 (j2)⇡

�1
1 (j1)

⇤

�

0

@
n0X

j0=1

d(1)j1

1
·W (1)

⇡�1
1 (j1)j0

⇤ xj0 + d(1)j1
· b(1)

⇡�1
1 (j1)

1

A+ d(2)j2
· b(2)

⇡�1
2 (j2)

1

A+ b(3)i

=
n2X

j2=1

1

d(2)j2

·W (3)

i⇡�1
2 (j2)

⇤ �

0

@
n1X

j1=1

d(2)j2

d(1)j1

·W (2)

⇡�1
2 (j2)⇡

�1
1 (j1)

⇤

�

0

@d(1)j1
·

0

@
n0X

j0=1

W (1)

⇡�1
1 (j1)j0

⇤ xj0 + b(1)
⇡�1
1 (j1)

1

A

1

A+ d(2)j2
· b(2)

⇡�1
2 (j2)

1

A+ b(3)i

=
n2X

j2=1

1

d(2)j2

·W (3)

i⇡�1
2 (j2)

⇤ �

0

@
n1X

j1=1

d(2)j2

d(1)j1

·W (2)

⇡�1
2 (j2)⇡

�1
1 (j1)

⇤

d(1)j1
· �

0

@
n0X

j0=1

W (1)

⇡�1
1 (j1)j0

⇤ xj0 + b(1)
⇡�1
1 (j1)

1

A+ d(2)j2
· b(2)

⇡�1
2 (j2)

1

A+ b(3)i

=
n2X

j2=1

1

d(2)j2

·W (3)

i⇡�1
2 (j2)

⇤ �

0

@
n1X

j1=1

d(2)j2
·W (2)

⇡�1
2 (j2)⇡

�1
1 (j1)

⇤

�

0

@
n0X

j0=1

W (1)

⇡�1
1 (j1)j0

⇤ xj0 + b(1)
⇡�1
1 (j1)

1

A+ d(2)j2
· b(2)

⇡�1
2 (j2)

1

A+ b(3)i

26

=
n2X

j2=1

1

d(2)j2

·W (3)

i⇡�1
2 (j2)

⇤ �

0

@d(2)j2
·

0

@
n1X

j1=1

W (2)

⇡�1
2 (j2)⇡

�1
1 (j1)

⇤

�

0

@
n0X

j0=1

W (1)

⇡�1
1 (j1)j0

⇤ xj0 + b(1)
⇡�1
1 (j1)

1

A+ b(2)
⇡�1
2 (j2)

1

A

1

A+ b(3)i

=
n2X

j2=1

1

d(2)j2

·W (3)

i⇡�1
2 (j2)

· d(2)j2
⇤ �

0

@
n1X

j1=1

W (2)

⇡�1
2 (j2)⇡

�1
1 (j1)

⇤

�

0

@
n0X

j0=1

W (1)

⇡�1
1 (j1)j0

⇤ xj0 + b(1)
⇡�1
1 (j1)

1

A+ b(2)
⇡�1
2 (j2)

1

A+ b(3)i

=
n2X

j2=1

W (3)

i⇡�1
2 (j2)

⇤ �

0

@
n1X

j1=1

W (2)

⇡�1
2 (j2)⇡

�1
1 (j1)

⇤

�

0

@
n0X

j0=1

W (1)

⇡�1
1 (j1)j0

⇤ xj0 + b(1)
⇡�1
1 (j1)

1

A+ b(2)
⇡�1
2 (j2)

1

A+ b(3)i

=
n2X

j2=1

W (3)
ij2

⇤ �

0

@
n1X

j1=1

W (2)
j2j1

⇤ �

0

@
n0X

j0=1

W (1)
j1j0

⇤ xj0 + b(1)j1

1

A+ b(2)j2

1

A+ b(3)i

= f(x ; U,�)i.

End of proof.

D Additional experimental details
D.1 Runtime and Memory Consumption

We provide the runtime and memory consumption of Monomial-NFNs and the previous NFNs in
Tables 10 and 11 to compare the computational and memory costs in the task of predicting CNN
generalization (see Section 6.1). It is observable that our model runs faster and consumes significantly
less memory than NP/HNP in [71] and GNN-based method in [35]. This highlights the benefits of
parameter savings in Monomial-NFN.

Table 10: Runtime of models.
NP [71] HNP [71] GNN [35] Monomial-NFN (ours)

Tanh subset 35m34s 29m37s 4h25m17s 18m23s
ReLU subset 36m40s 30m06s 4h27m29s 23m47s

Table 11: Memory consumption.
NP [71] HNP [71] GNN [35] Monomial-NFN (ours)

Tanh subset 838MB 856MB 6390MB 582MB
ReLU subset 838MB 856MB 6390MB 560MB

D.2 Comparison of Monomial-NFNs and GNN-based NFNs

We provide experimental result to compare the efficiency of our model and a permutation equivariant
GNN-based NFN [35] in two scenarios below.

1. Training the model on augmented train data and testing with the augmented test data (see
Tables 12 and 13).
Here, we present the experimental results on the original dataset and the results on the
augmented dataset. The augmentation levels for the ReLU subset are 1, 2, 3, and 4,

27

corresponding to augmentation ranges of [1, 10], [1, 102], [1, 103], [1, 104]. The augmented
dataset for the Tanh subset corresponds to the augmentation range of [�1, 1]

Table 12: Predict CNN generalization on ReLU subset (augmented train data)
Original 1 2 3 4

GNN [35] 0.897 0.892 0.885 0.858 0.851
Monomial-NF (ours) 0.922 0.920 0.919 0.920 0.920

Table 13: Predict CNN generalization on Tanh subset (augmented train data)
Original Augmented

GNN [35] 0.893 0.902
Monomial-NFN (ours) 0.939 0.943

The results for GNN exhibit a similar trend as other baselines that do not incorporate the
scaling symmetry into their architectures. In contrast, our model has stable performance. A
notable observation is that the GNN model uses 5.5M parameters (4 times more than our
model), occupies 6000MB of memory, and takes 4 hours to train.

2. Training the model on original train data and testing with the augmented test data (see
Tables 14 and 15).

Table 14: Predict CNN generalization on ReLU subset (original train data)
Augment level 1 2 3 4

GNN [35] 0.794 0.679 0.586 0.562
Monomial-NF (ours) 0.920 0.919 0.920 0.920

Table 15: Predict CNN generalization on Tanh subset (original train data)
Augmented

GNN [35] 0.883
Monomial-NFN (ours) 0.940

In these more challenging scenario, GNN’s performance drops significantly, which highlights
the lack of scaling symmetry in the model. Our model maintains consistent performance,
matching the case in which we train with the augmented data.

D.3 Predicting generalization from weights

Dataset. The original ReLU subset of the CNN Zoo dataset includes 6050 instances for training
and 1513 instances for testing. For the Tanh dataset, it includes 5949 training and 1488 testing
instances. For the augmented data, we set the augmentation factor to 2, which means that we augment
the original data once, resulting in a new dataset of double the size. The complete size of all datasets
is presented in Table 16

Implementation details. Our model follows the same architecture as in [71], comprising three
equivariant Monomial-NFN layers with 16, 16, and 5 channels, respectively, each followed by ReLU
activation (ReLU dataset) or Tanh activation (Tanh dataset). The resulting weight space features
are input into an invariant Monomial-NFN layer with Monomial-NFN pooling (Equation 19) with
learnable parameters (ReLU case) or mean pooling (Tanh case). Specifically, the Monomial-NFN
pooling layer normalizes the weights across the hidden dimension and takes the average for rows
(first layer), columns (last layer), or both (other layers). The output of this invariant Monomial-NFN
layer is flattened and projected to R200 (ReLU case) or R1000 (Tanh case). This resulting vector is
then passed through an MLP with two hidden layers with ReLU activations. The output is linearly
projected to a scalar and then passed through a sigmoid function. We use the Binary Cross Entropy
(BCE) loss function and train the model for 50 epochs, with early stopping based on ⌧ on the
validation set, which takes 35 minutes to train on an A100 GPU. The hyperparameters for our model
are presented in Table 18.

28

Table 16: Datasets information for predicting generalization task.

Dataset Train size Val size

Original ReLU 6050 1513
Original Tanh 5949 1488

Augment ReLU 12100 3026
Augment Tanh 11898 2976

Table 17: Number of parameters of all models for prediciting generalization task.

Model ReLU dataset Tanh dataset

STATNN 1.06M 1.06M
NP 2.03M 2.03M

HNP 2.81M 2.81M
Monomial-NFN (ours) 0.25M 1.41M

Table 18: Hyperparameters for Monomial-NFN on prediciting generalization task.

ReLU Tanh

MLP hidden neurons 200 1000
Loss Binary cross-entropy Binary cross-entropy

Optimizer Adam Adam
Learning rate 0.001 0.001

Batch size 8 8
Epoch 50 50

Table 19: Dataset size for Classifying INRs task.

Train Validation Test

CIFAR-10 45000 5000 10000
MNIST size 45000 5000 10000

Fashion-MNIST 45000 5000 20000

For the baseline models, we follow the original implementations described in [71], using the official
code (available at: https://github.com/AllanYangZhou/nfn). For the HNP and NP models, there are
3 equivariant layers with 16, 16, and 5 channels, respectively. The features go through an average
pooling layer and 3 MLP layers with 1000 hidden neurons. The hyperparameters of our model and
the number of parameters for all models in this task can be found in Table 17.

D.4 Classifying implicit neural representations of images

Dataset. We utilize the original INRs dataset provided by [71], with no augmentation. The data is
obtained by implementing a single SIREN model for each image in each dataset: CIFAR-10, MNIST,
and Fashion-MNIST. The size of training, validation, and test samples for each dataset is provided in
Table 19.

Implementation details. In these experiments, our general architecture includes 2 Monomial-
NFN layers with sine activation, followed by 1 Monomial-NFN layer with absolute activation. The
choice of hidden dimension in the Monomial-NFN layer depends on each dataset and is described in
Table 20. The architecture then follows the same design as the NP and HNP models in [71], where a
Gaussian Fourier Transformation is applied to encode the input with sine and cosine components,
mapping from 1 dimension to 256 dimensions. If the base layer is NP, the features will go through
IOSinusoidalEncoding, a positional encoding designed for the NP layer, with a maximum frequency
of 10 and 6 frequency bands. After that, the features go through 3 HNP or NP layers with ReLU
activation functions. Then, an average pooling is applied, and the output is flattened, and the resulting
vector is passed through an MLP with two hidden layers, each containing 1000 units and ReLU
activations. Finally, the output is linearly projected to a scalar. For the MNIST dataset, there is an
additional Channel Dropout layer after the ReLU activation of each HNP layer and a Dropout layer
after the ReLU activation of each MLP layer, both with a dropout rate of 0.1. We use the Binary
Cross Entropy (BCE) loss function and train the model for 200,000 steps, which takes 1 hour and 35

29

https://github.com/AllanYangZhou/nfn

Table 20: Hyperparameters of Monomial-NFN for each dataset in Classify INRs task.

MNIST Fashion-MNIST CIFAR-10

Monomial-NFN hidden dimension 64 64 16
Base model HNP NP HNP

Base model hidden dimension 256 256 256
MLP hidden neurons 1000 500 1000

Dropout 0.1 0 0
Learning rate 0.000075 0.0001 0.0001

Batch size 32 32 32
Step 200000 200000 200000
Loss Binary cross-entropy Binary cross-entropy Binary cross-entropy

Table 21: Number of parameters of all models for classifying INRs task.

CIFAR-10 MNIST Fashion-MNIST

MLP 2M 2M 2M
NP 16M 15M 15M

HNP 42M 22M 22M
Monomial-NFN (ours) 16M 22M 20M

Table 22: Number of parameters of all models for Weight space style editing task.

Model Number of parameters

MLP 4.5M
NP 4.1M

HNP 12.8M
Monomial-NFN (ours) 4.1M

Table 23: Hyperparameters for Monomial-NFN on weight space style editing task.

Name Value

Monomial-NFN hidden dimension 16
NP dimension 128

Optimizer Adam
Learning rate 0.001

Batch size 32
Steps 50000

minutes on an A100 GPU. For the baseline models, we follow the same architecture in [71], with
minor modifications to the model hidden dimension, reducing it from 512 to 256 to avoid overfitting.
We use a hidden dimension of 256 for all baseline models and our base model. The number of
parameters of all models can be found in Table 21

D.5 Weight space style editing

Dataset. We use the same INRs dataset as used for classification task, which has the size of train,
validation and test set described in Table 19.

Implementation details. In these experiments, our general architecture includes 2 Monomial-NFN
layers with 16 hidden dimensions. The architecture then follows the same design as the NP model
in [71], where a Gaussian Fourier Transformation with a mapping size of 256 is applied. After that,
the features go through IOSinusoidalEncoding and then through 3 NP layers, each with 128 hidden
dimensions and ReLU activation. Finally, the output goes through an NP layer to project into a scalar
and a LearnedScale layer described in the Appendix of [71]. We use the Binary Cross Entropy (BCE)
loss function and train the model for 50,000 steps, which takes 35 minutes on an A100 GPU. For
the baseline models, we keep the same settings as the official implementation. Specifically, the HNP
or NP model will have 3 layers, each with 128 hidden dimensions, followed by a ReLU activation.
An NFN of the same type will be applied to map the output to 1 dimension and pass it through a
LearnedScale layer. The number of parameters of all models can be found in Table 22. The detailed
hyperparameters for our model can be found in Table 23.

30

Figure 2: Random qualitative samples of INR editing behavior on the Dilate (MNIST) and Contrast
(CIFAR-10) editing tasks.

D.6 Ablation Regarding Design Choices

We provide the ablation study on the choice of architecture for the task Predict CNN Generalization
on ReLU subset in Table 24. We denote:

• Monomial Equivariant Functional Layer (Ours): MNF
• Activation: ReLU
• Scaling Invariant and Permutation Equivariant Layer (Ours): Norm
• Hidden Neuron Permutation Invariant Layer (in [71]): HNP
• Permutation Invariant Layer: Avg
• Multilayer Perceptron: MLP

Table 24: Ablation study on design choices for the task Predict CNN generalization on ReLU subset
Original 1 2 3 4

(MNF–ReLU)⇥1 ! Norm ! (HNP–ReLU)⇥1 ! Avg ! MLP 0.917 0.916 0.917 0.917 0.917
(MNF–ReLU)⇥2 ! Norm ! (HNP–ReLU)⇥1 ! Avg ! MLP 0.918 0.917 0.917 0.917 0.918
(MNF–ReLU)⇥3 ! Norm ! (HNP–ReLU)⇥1 ! Avg ! MLP 0.920 0.919 0.918 0.920 0.920
(MNF–ReLU)⇥1 ! Norm ! Avg ! MLP 0.915 0.914 0.917 0.916 0.914
(MNF–ReLU)⇥2 ! Norm ! Avg ! MLP 0.918 0.919 0.918 0.917 0.918
(MNF–ReLU)⇥3 ! Norm ! Avg ! MLP 0.922 0.920 0.919 0.920 0.920

Among these designs, the architecture incorporating three layers of Monomial-NFN with ReLU
activation achieves the best performance.

31

	Introduction
	Related Work
	Monomial Matrices Perserved by a Nonlinear Activation
	Monomial Matrices and Monomial Matrix Group Actions
	Monomial Matrices Preserved by a Nonlinear Activation

	Weight Spaces and Monomial Matrix Group Actions on Weight Spaces
	Weight Spaces of FCNNs and CNNs
	Monomial Matrix Group Action on Weight Spaces

	Monomial Matrix Group Equivariant and Invariant NFNs
	Equivariant Layers
	Invariant Layers
	Monomial Matrix Group Equivariant Neural Functionals (Monomial-NFNs)

	Experimental Results
	Predicting CNN Generalization from Weights
	Classifying implicit neural representations of images
	Weight space style editing.

	Conclusion
	Construction of Monomial Matrix Group Equivariant Layers
	ReLU activation
	Sin or Tanh activation

	Construction of Monomial Matrix Group Invariant Layers
	ReLU activation
	Sin or Tanh activation

	Proofs of Theoretical Results
	Proof of Proposition 3.4
	Proof of Proposition 4.4

	Additional experimental details
	Runtime and Memory Consumption
	Comparison of Monomial-NFNs and GNN-based NFNs
	Predicting generalization from weights
	Classifying implicit neural representations of images
	Weight space style editing
	Ablation Regarding Design Choices

