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Overview
Recovery guarantee for a sparsity-free 
compressed sensing framework with great 
flexibility, e.g.
• Arbitrary cone 𝑇 as the structure set
• Dependent measurements allowed
• Model mismatch (𝐱 ∉ 𝑇) allowed
• Inexact optimization allowed

When applied to the generative priors setting,
• Requires less measurements than the best 

known result
• Exhibits denoising with more 

measurements
• Highlights dependence on the model 

parameters

Theorem
𝐲 = 𝐁𝐀𝐱 + 𝐰 is given, where
• 𝐁 ∈ ℝ𝑙×𝑚 is arbitrary
• 𝐀 ∈ ℝ𝑚×𝑛 has independent sub-g rows
• 𝐱 is close to the structure set 𝑇 ⊂ ℝ𝑛

• 𝐰 is fixed or random (indep. of 𝐀)

Let 𝑤 ⋅ denote the Gaussian complexity of a 
set, and define

• 𝑞 = 𝑤2 𝑇 − 𝑇 ∩ 𝕊𝑛−1

• 𝑅 𝐱′ = 𝐲 − 𝐁𝐀𝐱′ 2
2 [empirical risk]

• sr 𝐁 =  𝐁 𝐹
2 𝐁 2 [stable rank]

Provided that
• 𝑅  𝐱 ≤ min𝐱′∈𝑇 𝑅 𝐱′ + 𝜖2, for  𝐱 ∈ 𝑇
• sr 𝐁 ≥ 𝒪 𝑞

Then, with high probability,  𝐱 − 𝐱 2 ≲

𝑞
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Complexity of ran(𝐺)

Let 𝐺:ℝ𝑘 → ℝ𝑛 be a 𝑑-layer GNN with ReLU
activation function, given by

𝐺 𝐳 = 𝜎 𝐀𝑑𝜎 ⋯𝜎 𝐀2𝜎 𝐀1𝑧 ⋯ .

Then, 𝑇 = ran(𝐺) is a cone and

𝑤 𝑇 − 𝑇 ∩ 𝕊𝑛−1 ≲ 𝑘𝑑 log  𝑝′ 𝑘 ,

where 𝐀𝑖 ∈ ℝ𝑝𝑖×𝑝𝑖−1 and 𝑝′ =  𝑖=1
𝑑 𝑝𝑖

1/𝑑
.
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CS with Generative Priors
Given 𝑚 = 𝒪 𝑘𝑑 log  𝑝′ 𝑘 “effective” sub-
gaussian measurements, an approximate 
empirical risk minimizer robustly recovers 
signals close to ran 𝐺 , i.e.  𝐱 − 𝐱 2 ≲

𝑘𝑑 log  𝑝′ 𝑘

𝑚
𝐰 2 +

𝜖

𝑚
+ dist 𝐱, ran 𝐺

w.h.p. Cf. [Bora et al, ‘17].


