Adaptation-Agnostic Meta-Training

Introduction

Many meta-learning algorithms can be formulated into an interleaved process, in the sense that task-specific predictors are learned during inner-task adaptation and meta-parameters are updated during meta-update. The normal meta-training strategy needs to differentiate through the inner-task adaptation procedure to optimize the meta-parameters. This leads to a constraint that the inner-task algorithms should be solved analytically. Under this constraint, only simple algorithms with analytical solutions can be applied as the inner-task algorithms, limiting the model expressiveness. To lift the limitation, we propose an adaptation-agnostic meta-training strategy. Following our proposed strategy, we can apply stronger algorithms (e.g., an ensemble of different types of algorithms) as the inner-task algorithm to achieve superior performance comparing with popular baselines.

Preliminary: A Unified View of Existing Meta-Learning Methods

We characterize that the existing meta-algorithms leverage a meta-training procedure as the gradient of the meta-parameters θ is computed through the inner-task adaptation. As the meta-algorithm updates the meta-parameters θ by minimizing the loss of the task-specific predictor $g_{\varphi_{T_i}}$ over the query set of each task. The update rule of θ is:

$$\theta = \theta - \nabla_{\theta} \mathcal{L}(\{\mathcal{D}_{T_i}^{ts}\}_{i=1}^n; \theta, \{\phi_{T_i}\}_{i=1}^n) = \theta - \nabla_{\phi_{T_i}} \sum_{i=1}^n \sum_{z_j \in \mathcal{D}_{T_i}^{ts}} l\left(g_{\phi_{T_i}}(x_j), y_j\right) \times \nabla_{\theta} g_{\phi_{T_i}},$$

This unified view is depicted as follow:

Figure 1: A common meta-training procedure of existing meta-algorithms. Note that $s(\cdot, \cdot)$ is an analytical expression.

Jiaxin Chen, Li-Ming Zhan, Xiao-Ming Wu, Fu-lai Chung {jiax.chen, Imzhan.zhang}@connect.polyu.hk, xiao-ming.wu@polyu.edu.hk, cskchung@comp.polyu.edu.hk Department of Computing, The Hong Kong Polytechnic University

Algorithm: Adaptation-Agnostic Meta-Training

From the unified perspective, the key constraint in designing a meta-algorithm is to find an inner-task algorithm which has an explicit analytical solutions which significantly limits the expressiveness of the inner-task algorithms. To relax this constraint, we propose an adaptation-agnostic meta-training strategy which makes no assumption on such dependency.

- In inner-task adaptation, the meta-parameters θ is fixed, and the support set is fed to the shared embedding network and used to train the task-specific predictor.
- In meta-update, the task-specific parameters φ_{T_i} are fixed and the query set is used to optimize the meta-parameters θ . The iteration scheme is formulated as follows:

Inner-task adaptation: Fix θ , $\phi_{T_i} = \arg\min_{x_{\phi_{T_i}}} \mathcal{L}(\mathcal{D}_{T_i}^{tr}; \theta, x_{\phi_{T_i}})$,

Meta-update: Fix $\phi_{T_i}, \theta = \theta - l_\theta \nabla_\theta \mathcal{L}(\mathcal{D}_{T_i}^{ts}; \theta, \phi_{T_i}),$

Algorithm: Inner-Task Algorithm

The generality and flexibility of the proposed adaptation-agnostic meta-training strategy enables us to apply a powerful algorithm as the inner-task algorithm. As shown in the flowing figure, we e combine the mean-centroid classification algorithm [1], initialization-based inner-task algorithm [2] and MLP proposed by us as the inner-task algorithm.

Figure 2: Inner-task adaptation of an instantiation (mean-centroid classification algorithm of (Snell et al., 2017), initialization-based inner-task algorithm in (Raghu et al., 2020) and MLP proposed by us (Eq. (11)) of A2M.

8th ICML Workshop on Automated Machine Learning

Results

standard few-shot classification

Table 1: Results of 5-way classification tasks using Conv-4 (the above set) and ResNet-18 (the below set) respectively. See the complete table in Appendix B.

miniImageNet test accuracy		
Model	5-way 1-shot	5-way 5-shot
Matching Net (Vinyals et al., 2016)	43.56 ± 0.84	55.31 ± 0.73
Relation Net (Sung et al., 2018)	49.31 ± 0.85	66.60 ± 0.69
MAML (Finn et al., 2017)	46.70 ± 1.84	63.11 ± 0.92
Protonet (Snell et al., 2017)	44.42 ± 0.84	64.24 ± 0.72
MetaOptNet (Lee et al., 2019)	49.20 ± 0.42	65.54 ± 0.38
A2M (Mean-centroid + MLP+ Init-based)	50.31 ± 0.87	68.55 ± 0.67
Matching Net (Vinyals et al., 2016)	52.91 ± 0.88	68.88 ± 0.69
Relation Net (Sung et al., 2018)	52.48 ± 0.86	69.83 ± 0.68
MAML (Finn et al., 2017)	49.61 ± 0.92	65.72 ± 0.77
Protonet (Snell et al., 2017)	54.16 ± 0.82	73.68 ± 0.65
MetaOptNet (Lee et al., 2019)	50.83 ± 0.45	71.01 ± 0.38
A2M (Mean-centroid + MLP+ Init-based)	57.04 ± 0.84	75.65 ± 0.71

cross-domain few-shot classification

Table 2: Results for a 5-way cross-domain classification task.

$mini$ ImageNet \rightarrow CUB		
	5-way 1-shot	5-way 5-shot
Matching networks (Vinyals et al., 2016)	41.10 ± 0.74	53.07 ± 0.74
Prototypical networks (Snell et al., 2017)	42.71 ± 0.78	62.02 ± 0.70
Relation net (Sung et al., 2018)	40.74 ± 0.76	57.71 ± 0.73
MAML (Finn et al., 2017)	32.77 ± 0.64	51.34 ± 0.72
D-MLP	35.88 ± 0.66	57.78 ± 0.76
A2M (Mean-centroid + MLP + Init-based)	43.55 ± 0.80	64.63 ± 0.82

Conclusion

We provided a unified view on the commonly used meta-training strategy and proposed an adaptation-agnostic meta-training strategy that is more general, flexible and less prone to overfitting. In future work, we target to analyze the theoretical properties of the adaptation-agnostic meta-training strategy and explore more powerful inner-task algorithms

References

- [1] Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical Networks for Fewshot Learning. *Advances in Neural Information Processing Systems*, *30*, 4077-4087.
- [2] Raghu, A., Raghu, M., Bengio, S., & Vinyals, O. (2019, September). Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML. In *International Conference on Learning Representations*.