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Abstract

This study investigated the possibility of using a laser methane detector (LMD) and optical
gas imaging (OGI) to detect and quantify enteric methane (CH4) produced by ruminants in
vitro. Four single-flow continuous fermenters were used for rumen culture incubation with
four different treatment diets: Control (50:50 forage to concentrate [F:C] ratio), Control +
Bromoform (CBR), Low Forage (LF; 20:80), and High Forage (HF; 80:20). After 10 days
of incubation, all fermenter contents were transferred and used in a 24 h ANKOM batch
culture to measure CH4 gas production with LMD and OGI. The authors introduce the
Controlled Diet (CD) dataset, a large-scale collection of 4,885 CH4 plume images captured
using an FLIR GF77 OGI camera under varying dietary conditions. The performance of
six semantic segmentation models (FCN, U-Net, Vision Transformer, Swin Transformer,
DeepLabv3+, and Gasformer) on the CD dataset is compared. Results showed that LMD
data for CH4 followed a similar pattern to the gas chromatography (GC) instrument results.
The in vitro results showed that different diets and F:C ratios had an impact on CH4 gas
production and rumen fermentation characteristics. Adding bromoform to the control diet
fully inhibited CH4 emission. The HF diet produced more CH4 compared to all treatments
(p < 0.01) when measured with GC and LMD. CBR produced the lowest CH4 values when
measured with GC and LMD. The Gasformer architecture achieved the highest perfor-
mance with mean IoU of 85.1% and mean F-score of 91.72%. These findings demonstrate
that OGI technology combined with advanced semantic segmentation models offers a
promising solution for predicting and quantifying CH4 emissions in the livestock sector,
potentially aiding in the development of mitigation strategies to combat climate change.

1 INTRODUCTION

Methane (CH4) emissions produced by ruminant animals are
contributing significantly to global climate change. The ability
of CH4 to warm the atmosphere is 36 times greater than car-
bon dioxide (CO2) [1]. Ruminant contribution to global climate
change is estimated to be about 6% of global climate emis-
sions [2]. CH4 is a byproduct of enteric fermentation that takes
place in the rumen. It is also estimated that the produced CH4
accounts for about 6–12% of lost energy that could be redi-
rected for the production of milk and meat [3]. Researchers
and governments have been working jointly to reduce the

Mohamed G. Embaby and Toqi Tahamid Sarker contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the

original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2025 The Author(s). IET Image Processing published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

impact of CH4 on the environment. Several mitigation strate-
gies have been developed by scientists to decrease enteric CH4
production from ruminant animals [2]. Some of these strate-
gies focus on manipulating animal feed, while others focus on
targeting the methanogens that produce CH4 during the fer-
mentation process. Evaluating the efficacy of these mitigation
strategies requires using precise methods and techniques for
CH4 detection and quantification.

Conventional methods for measuring CH4 emissions from
livestock include the use of CH4 gas chambers, ventilated hoods,
gas chromatography (GC) machines, and laser methane detec-
tors (LMD) [4–6]. While these methods have been widely
employed, they often pose challenges due to their complexity,
high costs, and limited scalability.
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To address these limitations, researchers have explored
advanced imaging technologies that enable non-invasive and
scalable CH4 detection. Recent advancements in multi-spectral
and hyperspectral imaging across the visible to short-wave
infrared spectrum (SWIR) have emerged as powerful tools for
CH4 detection and quantification. While multi-spectral cam-
eras provide broad spectral coverage with limited bands, making
them primarily suitable for detecting higher concentration CH4
plumes (typically above 200–300 kg/h), hyperspectral imaging
in the SWIR region (2.2–2.4 μm) enables detection of sub-
tle CH4 absorption features at much lower concentrations that
are invisible to traditional imaging methods. Kumar et al. [7]
proposed Hyperspectral Mask-RCNN, which processes hyper-
spectral data through multiple matched filters and ensemble
learning to detect CH4 plumes, achieving 87% intersection-
over-union (IoU) with expert annotations while reducing
manual processing time by 12x. Building upon this work, Kumar
et al. [8] introduced MethaneMapper, a spectral absorption-
aware transformer architecture that effectively combines both
spectral and spatial correlations to accurately delineate CH4
plumes. Their approach achieved 63% mean Average Precision
(mAP) while reducing model size by 5× compared to previous
methods. In the satellite domain, Rouet-Leduc and Hulbert [9]
demonstrated that vision transformers applied to multi-spectral
Sentinel-2 data could detect CH4 plumes down to 200–300
kg/h, achieving an order of magnitude improvement over tra-
ditional band-ratio methods. Their approach enables automated
CH4 monitoring at a global scale with high temporal resolution
(2–5 days revisit time) and fine spatial resolution (20 meter pixel
size), providing a significant advancement towards systematic
quantification of atmospheric CH4. However, the limited spec-
tral resolution of multi-spectral sensors remains a constraint
for detecting very low concentration CH4 emissions typical in
livestock applications.

Building upon these imaging advances, artificial intelligence
techniques have emerged as powerful tools for analyzing com-
plex CH4 data. Computer vision, deep learning, and machine
learning techniques have found applications in various aspects
of agriculture [10–12] and farm management [13–16], including
monitoring animal productivity, reproduction, and health in the
livestock sector [17, 18].

In the specific context of CH4 detection, Jongaramrungruang
et al. [19] developed MethaNet, a convolutional neural net-
work (CNN) model that directly quantifies CH4 point-source
emissions from high-resolution 2-D plume imagery without
relying on wind speed measurements. In the context of live-
stock, Ramirez-Agudelo et al. [20] investigated the potential use
of intake time as a predictor of enteric CH4 emissions in cat-
tle using a CNN based on the YOLO [21] architecture. Jeong
et al. [22] use a U-Net [23] architecture for image segmentation
to estimate dairy CH4 emissions from California’s San Joaquin
Valley using aerial imagery.

While these AI approaches have shown promise with vari-
ous imaging modalities, OGI cameras have emerged as another
powerful tool for CH4 detection and quantification, enabling
the visualization of CH4 plumes that are invisible to the naked
eye. Wang et al. [24] developed GasNet, a CNN-based approach

for automatic CH4 leak detection from OGI videos, achieving
high detection accuracy across various leak sizes and imaging
distances. In a subsequent study, Wang et al. [25] extended
the capabilities of infrared camera technology by developing
VideoGasNet, a 3D CNN that automatically classifies the size
of CH4 leaks with high accuracy. However, these studies pri-
marily focused on capturing CH4 gas with OGI cameras at
relatively high flow rates, which are more commonly associated
with industrial leaks. In contrast, detecting and quantifying CH4
emissions from livestock, which typically have much lower flow
rates, presents a unique challenge that requires further investi-
gation and the development of specialized techniques. In our
previous work, Sarker et al. [16] addressed this research gap
by proposing Gasformer, a transformer-based semantic seg-
mentation architecture that uses OGI to detect and quantify
CH4 emission from a CH4 calibration gas cylinder and detect
CH4 from dairy cow rumen gas samples. While Gasformer
demonstrated effectiveness in quantifying low-flow CH4 emis-
sions from a controlled gas cylinder, it could only detect CH4
emissions from a limited dataset of 340 images captured from
dairy cow rumen gas without the ability to quantify the emis-
sions. Further research is needed to push the boundaries of
CH4 emission detection and quantification in the livestock sec-
tor, particularly at very low concentrations across different diets,
using a larger dataset.

To the best of our knowledge, no research has combined
OGI and deep learning techniques to detect and quantify CH4
emissions from livestock at very low concentrations under dif-
ferent dietary conditions using a large-scale dataset. This article
aims to address this gap by using computer vision and deep
learning to detect and quantify CH4 gas emitted from dairy
cattle in vitro, where quantification is achieved through the clas-
sification of emissions into GC-validated concentration ranges,
focusing on very low concentrations of CH4 gas. This approach
enables accurate categorization of CH4 emissions based on
established concentration ranges, with GC validation ensuring
precise measurement standards.

We investigate the possibility of using an LMD and OGI to
detect and quantify enteric CH4 produced by ruminants in vitro.
We use four single-flow continuous fermenters for rumen cul-
ture incubation, with four different treatment diets added to
each fermenter. We capture CH4 plume images using a FLIR
GF77 OGI camera and develop a novel large-scale dataset called
the Controlled Diet (CD) dataset. This dataset consists of 4885
images of CH4 gas collected from the continuous culture fer-
menter system under varying dietary conditions. In comparison
to the work of Sarker et al. [16], our dataset represents a signif-
icant advancement by not only providing a substantially larger
number of images but also incorporates the impact of differ-
ent diets on CH4 emissions, enabling a more comprehensive
analysis of the factors influencing CH4 production in livestock.

It is important to note that while our deep learning approach
provides a method for quantifying CH4 plumes through con-
centration range analysis, the actual measurement of CH4
concentrations is performed using Gas Chromatography
(GC) and laser detection (LMD). The semantic segmenta-
tion model serves as a supporting tool for visualizing and
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categorizing emissions based on these measured concentration
ranges, rather than directly measuring CH4 concentrations from
the images.

To detect and quantify the CH4 plumes, we utilize six state-
of-the-art semantic segmentation models: Fully Convolutional
Network (FCN) [26], U-Net [23], DeepLabv3+ [27], Vision
Transformer [28], Swin Transformer [29] and Gasformer [16].
We compare the performance of these models using evaluation
metrics such as mean Intersection over Union (mIoU) and mean
F-score (mFscore) and analyze their computational efficiency
by considering frames per second (FPS) on GPU, giga floating
point operations (GFLOPs) and the number of parameters.

The main contributions of this article are as follows:

1. We present a novel approach for detecting and quantifying
enteric CH4 emissions from ruminants in vitro using LMD
and OGI, validated by GC analysis.

2. We introduce the CD dataset, which consists of CH4
plume images captured using a FLIR GF77 OGI camera,
categorized by GC-measured concentration ranges.

3. We compare the performance of six semantic segmentation
models on the CD dataset, demonstrating the effectiveness
of the Gasformer architecture in accurately segmenting CH4
plumes across different GC data range classes.

The remainder of this article is organized as follows. Sec-
tion 2 describes the materials and methods used in this study,
including the continuous culture system preparation and batch
culture system preparation. Section 3 describes the LMD data
logs, dataset collection, mask generation, and statistical analysis.
Section 4 discusses Gasformer architecture and model training.
Section 5 presents the results of the in vitro batch experiments,
LMD readings, and the performance of the semantic segmenta-
tion models on the CD dataset. Section 6 discusses the findings,
limitations, and future research directions. Finally, Section 7
concludes the article.

2 MATERIALS AND METHODS

2.1 Continuous culture system preparation

Four different treatments were incubated in four single-flow
continuous fermenters as described by Teather and Sauer [30].
Treatments were: control with a 50:50 forage to concentrate
(F:C), control + bromoform (CBR) (0.14 𝜇L/liter of rumen
fluid/day) added to 50:50 F:C ratio, low forage (LF) diet con-
sisting of 20% forage diet and 80% concentrate, and high
forage (HF) diet consisting of 80% forage and 20% concen-
trate mix. The incubation period lasted for 10 days. Continuous
fermenters were used as a simulation for cow rumen. Every fer-
menter consisted of 700 mL of rumen liquor collected from
a fistulated dairy cattle that receive a total mixed ration that
consists of 50:50 F:C mix diet. The forage diet consisted of
alfalfa pellets, while the concentrate mix ingredients are listed
in Table 1. Each fermenter received 54 gm of diet three times
daily at 0800, 1500, and 2400 h to maintain bacterial growth and

TABLE 1 Concentrate mix ingredients.

Ingredient g/kg (dry matter basis)

Ground corn 560

Soybean meal, 48% CP 260

Soybean hulls 160

Mineral mixa 10

Limestone 10

aMineral mix Purina (wind & rain). All season 7.5 complete. © 2024 Purina Animal
Nutrition LLC.

good fermentation. A CO2 gas tank was connected to provide a
continuous flushing of CO2 to maintain aerobic conditions nec-
essary for bacterial survival. To avoid acid accumulation inside
the fermenter as a result of microbial fermentation of food, all
fermenters received artificial saliva as described by McDougall
[31]. The saliva buffer was pumped at a rate of 70 mL/h using
a peristaltic pump (BT100F-1, manufactured by GOLANDER,
4405 International Blvd. Ste B117 Norcross, GA 30093, USA).
The fermenter temperature was kept at 39◦C using a circulat-
ing water batch, while the feed motility inside the fermenter was
maintained using an automatic stirrer (Fisher, St. Louis, MO,
USA) set at 45 RPM to guarantee the accessibility of rumen
microbes to nutrients. pH was recorded daily at feeding time
using a portable pH meter (OAKTON Instruments, Vernon
Hills, IL, USA). After 10 days of incubation, all fermenter con-
tents were used in a 24-h batch culture experiment to measure
gas production and rumen fermentation characteristics.

2.2 Batch culture system preparation

Total gas production was measured through a 24-h ANKOM
batch culture using the fermenters’ content as rumen culture,
and gas samples for the evaluation of CH4 production were also
collected. The batch culture system is designed by ANKOM
incubation (ANKOM Technology, Macedon, NY). 100 mL of
rumen liquor was incubated with 100 mL of buffer [31], and
3 gm of the same treatment diet fed to the fermenters. All
ANKOM modules were flushed with CO2 to maintain anaer-
obic conditions, then moved to a 39◦C water bath to keep
the bacteria at optimal temperature. Following the incubation,
TEDLAR gas bags (CEL Scientific Corp., Santa Fe Springs, CA,
USA) were connected to each module to collect the emitted gas
required for CH4 analysis. After 24 h of incubation, all gas bags
are collected and analyzed using the gas chromatography instru-
ment developed by SRI instrument (SRI 8610C, Torrance, CA,
USA). 1 mL of gas is drawn from each bag and injected into the
GC analysis port. The GC machine is equipped with a thermal
conductivity detector (6′ x1/8′ S.S. Shin Carbon), and a two-
meter Hay-D column was installed with a 1/8 in. OD, 2 mm ID,
6 feet Hayesep D packing, mesh size 80/100, pre-conditioned.
The GC was programmed to run for 3 min at 50◦C, while argon
was used as a carrier gas, and 3 gas peaks were identified (Hydro-
gen (H2), CH4, and CO2). Gases are reported as a percentage
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of total gas. Total gas production was calculated using the auto-
mated system of the ANKOM gas production system, and the
following formula was applied to convert the PSI values to mL
of gas:

n = p

(
V

RT

)
, (1)

where n is the gas produced in moles (mol), p is the pressure in
kilopascals (kPa), V is the headspace volume in the glass bottle
in liters (L), T is the temperature in Kelvin (K), and R is the gas
constant (8.314472 L kPa K−1 mol−1).

The dry matter digestibility was measured by collecting and
weighing the outflow at the last 3 days. Samples for volatile
fatty acids (VFA) and ammonia nitrogen (NH3-N) were col-
lected after 24 h of incubation. 4 mL of sample were mixed
with 1 mL of 25% meta-phosphoric acid as described by Jenk-
ins [32]. All samples were kept in freezers. At the end of the
experiment, all samples were thawed, and 2 mL of each sample
was centrifuged at 13,000g for 15 min. Following the centrifuge
step, 1 mL of the sample was moved to GC vials, while 0.1
mL of 2-ethylbutyric acid was added as an internal standard. All
VFA samples were run through a GC machine manufactured
by Shimadzu GC-2010 gas chromatograph (Shimadzu Scientific
Instruments Inc., Columbia, MD, USA), with a 30-m SP-2560
fused silica capillary column (Restek Stabil WAXDA column,
Bellefonte, PA, USA). The GC temperature was programmed
to 65◦C for 3 min, increased at 12◦C/min to a final temperature
of 180◦C with an overall 12-min running time for each sample.
The column temperature was maintained at 65◦C, and the flame
ionization detector temperature was at 225◦C.

3 DATASET

Following the CH4 gas generation from our experimental
setup, we established a comprehensive data collection and
analysis pipeline. This section details our approach to data
collection using both laser methane detection and optical gas
imaging, along with the statistical analyses and mask gen-
eration procedures used to prepare the dataset for deep
learning applications.

3.1 Laser data logs

For quantifying CH4 gas produced in the ANKOM incuba-
tion modules, we used the GAS ⋅ TRAC® LZ-30 laser methane
detector. The detector utilizes Tunable Diode Laser Absorption
Spectroscopy technology with the following key operational
parameters: detection sensitivity of 5 ppm ⋅ m at distances up to
15 m and 10 ppm ⋅ m at distances up to 50 m for concentrations
above 300 ppm ⋅ m, with a measurement range of 0–50,000
ppm ⋅ m in 1 ppm ⋅ m increments. The response time is less
than 0.1 s, enabling real-time monitoring. The device operates
optimally within a temperature range of −20◦C to 45◦C and
features a conical beam with a 20 cm diameter at 30 m distance.

FIGURE 1 Schematic overview of using laser methane detector to read
CH4 emission values from ANKOM incubation module.

TABLE 2 GC data range classes, dataset distribution, and color modes.

Class

GC Range

(ppm) Train Test Validation Color Modes

Class-1 166–171 1079 133 138 White hot, black hot,
rainbow

Class-2 300–334 1268 157 162 White hot, black hot,
rainbow

Class-3 457–510 1558 194 196 White hot, black hot

The CH4 gas is generated from rumen liquor through a
continuous culture fermenter system, which simulates the cow
rumen environment. The gas is generated in 15 ANKOM incu-
bation modules, with each module corresponding to one of
the dietary treatments as described in Section 2.1. To ensure
measurement accuracy within the optimal detection range of
0.5 m to 30 m, we place the detector 1 m away from each
ANKOM incubation module, as shown in Figure 1, and record
100 readings for each module. All measurements were con-
ducted at a controlled room temperature of 22◦C, well within
the device’s optimal operating temperature range of −20◦C to
45◦C, ensuring stable and reliable detection performance.

Data collection was performed using a mobile applica-
tion interface (SMART-LINK LIVE) connected to the GAS ⋅
TRAC® LZ-30 detector. This software interface allowed con-
tinuous monitoring of the target while simultaneously recording
measurements. The data was exported from the mobile device
for subsequent analysis.

3.2 Dataset collection and optical gas
imaging

We present the CD dataset, captured using the FLIR GF77 OGI
camera, for the purpose of CH4 plume detection and quan-
tification. The dataset consists of CH4 gas collected from a
continuous culture fermenter system described in Section 2.1,
which simulates the cow rumen environment. The CD dataset
is divided into three classes based on the GC data ranges: Class-
1 (166–171 ppm), Class-2 (300–334 ppm), and Class-3 (457–510
ppm) as shown in Table 2. These classes correspond to the
CH4 gas concentrations produced by the control diet, LF diet,
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FIGURE 2 Schematic overview of using FLIR GF77 OGI camera to collect CH4 plume images.

and HF diet, respectively. The CBR diet is excluded from the
dataset due to its very low CH4 concentration, which is below
the detection limit of the OGI camera.

The FLIR GF77 camera uses an uncooled microbolometer
detector with 320 × 240 pixel resolution and operates in the
spectral range of 7–8.5 μm, optimized for CH4’s absorption
band at 7.7 ± 0.1 μm. The camera’s thermal sensitivity is <25
mK (NETD), with a minimum Noise Equivalent Concentra-
tion Length (NECL) of 100 ppm-m for CH4 detection at a
1-m distance when maintaining a 10◦C temperature differen-
tial. To effectively detect CH4 plumes, a temperature difference
of at least 3◦C between the CH4 plume and the background
environment is required.

While high-end cooled-filter OGI cameras are typically used
for detecting low-concentration CH4 emissions from rumi-
nants, we faced budget constraints that led us to explore
alternative solutions with the more cost-effective uncooled
FLIR GF77. Though the GF77 was primarily designed for
industrial emission detection rather than low-concentration
ruminant CH4 emissions, we developed a novel imaging setup
using a block of ice as the background, as shown in Figure 2.
We tested the camera with air, CO2, and H2 and found that the
camera was not able to detect them with the same condition
with the ice as the background.

Following the validation of our imaging setup, the CH4 gas
is transferred from the TEDLAR gas bags to syringes before
release. Prior to releasing the gas, we record 15-s videos, which
are later used for background removal. For each of the three GC
data range classes, we capture three videos using the OGI cam-
era, resulting in a total of nine videos. The camera is positioned
12 inches away from the syringe containing the CH4 gas, while
the syringe is placed 2 inches from the background. Frames are
extracted from the captured videos to create the CD dataset,
which consists of 4885 images with a resolution of 640 × 480
pixels. Samples of the collected images are shown in the first row
in Figure 3. The CD dataset is then split into training, testing,

FIGURE 3 CH4 plume visualization across different GC data range
classes (Class-1: 166-171 ppm, Class-2: 300-334 ppm, and Class-3: 457-510
ppm) using the FLIR GF77 camera. The first row shows the original infrared
images, the second row presents the corresponding ground truth masks, and
the third row displays the overlay images, which are the ground truth masks
superimposed on the original infrared images.

and validation subsets using an 80%, 10%, and 10% split ratio,
respectively. Table 2 summarizes the GC data range classes, the
dataset distribution, and the color modes used during video
capture for the CD dataset.

3.3 Mask generation

To generate labeled data for semantic segmentation tasks, we
use a multi-step approach that begins with isolating CH4 plumes
from the foreground images through background subtraction.
We achieve this by calculating an average image from the
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6 of 14 EMBABY ET AL.

TABLE 3 GC data ranges mapped to classes and corresponding diets.

Class GC range (ppm) Corresponding diet

Class-1 166–171 Control

Class-2 300–334 Low forage

Class-3 457–510 High forage

background frames captured before each gas release and sub-
tracting it from the corresponding foreground frames. Next, we
apply contrast enhancement techniques to the resulting images
to improve the visibility of the CH4 plumes, followed by an
adaptive thresholding algorithm to convert the preprocessed
images into a binary representation, effectively separating
the CH4 plumes from the background. To further refine the
segmentation and precisely delineate the boundaries of the CH4
plumes, we use the watershed algorithm [33], which is guided
by an elevation map generated using a Sobel filter.

After obtaining the segmented objects, we perform region
properties analysis to identify and assess each object indi-
vidually. We select objects that exceed a predetermined size
threshold for annotation while filtering out objects other than
CH4 plumes and smaller, insignificant objects. This ensures that
we consider only gas plumes for the subsequent mask genera-
tion process. In the final step, we generate binary masks for each
identified CH4 plume, providing pixel-wise annotations that are
crucial for training and evaluating semantic segmentation mod-
els, and we save the binary masks as separate images as shown
in Figure 3. The classes identified from the GC data ranges, as
shown in Table 3, represent different concentration ranges of
CH4 produced by the control, LF, and HF diets.

3.4 Statistical analysis

To ensure the reliability and significance of our collected data,
we performed comprehensive statistical analyses on both the in
vitro experimental results and the laser detection measurements.

3.4.1 In vitro data statistical analysis

The effect of different types of diet on enteric CH4 emissions
and rumen fermentation characteristics was determined using
one-way analysis of variance (ANOVA) with JMP® Pro V17.2.0
statistical analysis software (SAS Institute, Cary, NC, USA). The
diet type represented the fixed effect, and the replicates reflected
the random effect. Student’s t-test and Dunnett’s test were used
to analyze the p-values for all possible pairwise comparisons of
the least square means (LSMEANS), and the significance was
determined at a p-value less than 0.05.

3.4.2 Laser data log statistical analysis

In this study, cleaning and preprocessing steps were imple-
mented using IBM SPSS® statistics software version 29 to

improve the quality and accuracy of the data before further
analysis. An explorative analysis of the descriptive statistics tech-
nique was implemented to investigate the features and detect the
overall pattern of the dataset, including measures of central ten-
dency and variability, such as mean, 95% confidence interval for
the mean, variance, standard deviation, minimum, maximum,
and range, as well as distribution. Extreme values with the high-
est and lowest cases and values were identified and removed as
they could skew the analysis and distort the results. Normal-
ity tests were conducted using Shapiro-Wilk [34] to establish
that the data follows a normal distribution, which is important
for statistical analyses and sampling selection approaches. More-
over, a lower standard error of means and standard deviation
was considered when selecting the best sample to ensure that
the data was more reliable and consistent.

4 GASFORMER ARCHITECTURE

While our previous work on Gasformer [16] focused on
developing a semantic segmentation model for detecting CH4
emissions at low flow rates (10-100 SCCM) and from dairy cow
rumen gas samples, the present study extends this framework to
quantify CH4 emissions under different dietary treatments. In
the original Gasformer article, we evaluated the model’s perfor-
mance on two distinct datasets: a Controlled Methane Release
(MR) dataset with varying flow rates and a limited Dairy Cow
Rumen Gas (CR) dataset of 340 images. The current study
specifically applies and validates the Gasformer architecture on
a new, comprehensive Controlled Diet (CD) dataset that cor-
relates CH4 concentrations with different dietary interventions
(166–171 ppm for control diet, 300–334 ppm for LF diet, and
457–510 ppm for HF diet). This application represents a novel
use of computer vision techniques in livestock CH4 monitor-
ing by directly linking visual plume characteristics to specific
dietary impacts on CH4 production, thereby providing a prac-
tical tool for evaluating feeding strategies aimed at reducing
CH4 emissions.

The Gasformer architecture, as illustrated in Figure 4, is
based on an encoder-decoder architecture that leverages the Mix
Vision Transformer (MiT) [35] as the encoder and a lightweight
and efficient decoder called Light-Ham [36, 37].

4.1 Encoder

The MiT encoder generates multi-scale feature representa-
tions from the input image without requiring explicit positional
encoding. It uses an overlapped patch embedding operation
to extract patches from the input image with 1/4 the spatial
resolution of the input image denoted as F1 in the Figure 4
and a hierarchical stack of Transformer blocks to process the
patch embeddings at different spatial resolutions. Each Trans-
former block consists of Efficient Self-Attention, Mix-FFN,
and Overlapped Patch Merging components.

Within each Transformer block, an Efficient Self-Attention
layer calculates the attention weights between patches using
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EMBABY ET AL. 7 of 14

FIGURE 4 Overview of the Gasformer [16] architecture. The encoder is based on the Mix Vision Transformer, which extracts hierarchical feature
representations (F1, F2, F3, F4) at different scales (1/4, 1/8, 1/16, 1/32 of the original image resolution) from the input image. These features are then fed into the
Light-Ham decoder, which leverages Hamburger Matrix Decomposition to capture long-range dependencies and produce the final segmentation output.

multi-head self-attention, projecting the patch embeddings into
query, key, and value matrices. This allows the model to weigh
the importance of different image regions when generating
feature representations. To reduce computational complexity,
a sequence reduction process [38] is applied, decreasing the
self-attention computation from O(n2) to O(n2∕r ) where r

is the reduction ratio. The encoder also incorporates a Mix-
FFN block, which eliminates the need for traditional positional
encoding by incorporating a 3×3 depth-wise convolution into
the feed-forward network, capturing channel-specific spatial
relationships. The Overlap Patch Merging operation is applied
after each Transformer block stage and downsamples the
feature maps while increasing the channel dimension, and gen-
erates multi-scale representations with resolutions of 1/8, 1/16,
and 1/32 of the input image size. These multi-scale features
denoted as F2, F3, and F4 in the Figure 4, capture both local
and global context.

4.2 Decoder

The Light-Ham decoder takes multiple feature maps (F1, F2,
F3, and F4) from different levels of the encoder as input. The
feature maps are resized to have the same dimension as F1 and
then concatenated to aggregate information from various scales.

A key component of the decoder is the Hamburger Matrix
Decomposition [39] module. This module efficiently captures
long-range dependencies by performing matrix decomposition
using Non-negative Matrix Factorization as an alternative to
self-attention. By factorizing the input features, the Hamburger
module allows for a more compact and efficient representa-

tion of the global image context. The Light-Ham decoder also
includes a squeeze layer to reduce the channel dimensions of
the input feature maps and an alignment layer to match the
output dimensions of the Hamburger module to the desired
segmentation mask size.

4.3 Model training

To classify and segment the CH4 plume based on the diet, we
use six semantic segmentation models: FCN [26], U-Net [23],
DeepLabv3+ [27], Vision Transformer [28], Swin Transformer
[29] and Gasformer [16]. We train the deep learning mod-
els using Pytorch [40] and MMsegmentation [41] on an Intel
Core i9 11900F CPU (2.50GHz) with 32 GB of memory and
an NVIDIA RTX 3090 graphics card. The encoders of FCN,
DeepLabv3+, Vision Transformer, Swin Transformer and Gas-
former are pre-trained on the ImageNet [42] dataset, while the
encoder of Unet is pre-trained on the CityScapes [43] dataset.

We train each model for 160,000 iterations using AdamW [44]
as an optimizer with a learning rate of 0.00006 and a weight
decay of 0.01. To decay the learning rate, we employ a two-stage
learning rate scheduler strategy: Linear learning rate for the first
1500 iterations and Polynomial learning rate for the remaining
iterations. The batch sizes for train, test, and validation data are
set to 2, 1, and 1, respectively. Every 16,000 iterations, we vali-
date the models using the validation data and save the model’s
weights if there is an improvement in the mIoU score.

To prevent overfitting on the training dataset, we apply data
augmentation techniques during training. We resize the images
and the corresponding segmentation masks to a resolution of
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8 of 14 EMBABY ET AL.

TABLE 4 Effects of different diet treatment on gas production and rumen fermentation characteristics.

Parameter Control Control + Bromoform High forage Low forage SEM† p-value

CH4 (ppm) 167.22c 1.41d 482.45a 293.72b 17.180 0.001‡

CO2 (%) 325.52 296.76 314.54 325.63 10.780 0.276

H2 (%) 2.90b 29.96a 3.14b 3.24b 1.023 0.001‡

Total gas (mL) 382.82a 327.98b 374.10a 384.17a 13.046 0.027‡

pH 6.64b 6.57c 6.80a 6.31d 0.009 0.001‡

Ammonia (mg/dL) 9.78c 4.22d 32.83a 20.87b 0.314 0.001‡

Total VFA (mmol) 63.57b 62.03b,c 58.33c 70.16a 1.697 0.001‡

Acetate (C2) (mmol) 23.12a 15.75c 20.87b 20.72b 0.525 0.001‡

Propionate (C3) (mmol) 17.38b 21.71a 14.34c 21.07a 0.532 0.001‡

Butyrate (mmol) 14.84b 12.17c 12.74c 18.98a 0.543 0.001‡

Iso-butyrate (mmol) 1.00b 0.74c 1.32a 1.09b 0.083 0.001‡

Valerate (mmol) 4.79c 9.70a 6.12b 5.46b,c 0.298 0.001‡

Iso-Valerate (mmol) 2.41b 1.94c 2.92a 2.82a 0.215 0.001‡

C2:C3 ratio 1.33b 0.72d 1.45a 0.98c 0.035 0.001‡

†SEM, Standard error of the mean; while the number of replicates or modules (n) = 3 − 4.
‡ p-value < 0.05 indicates statistical significance at 95% confidence level.
a,b,cValues with “a” are highest, followed by “b”, “c”, and “d” in descending order. Shared superscripts (e.g. bc) indicate values not distinctly different from either “b” or “c” but lower than
“b” alone.

512 × 512 pixels with a ratio range of 0.5–2.0, randomly crop
the image to a resolution of 512 × 512 pixels, and perform ran-
dom horizontal flips. During testing and validation, we resize
the images to a resolution of 512 × 512 pixels while main-
taining their aspect ratios, without applying any other data
augmentation techniques.

5 RESULTS

5.1 In vitro batch results

This article investigated the possibility of detecting and quanti-
fying enteric CH4 in vitro using LMD and OGI. The continuous
culture and batch culture in vitro techniques were used for data
collection and for data verification through GC instrument. The
GC results in Table 4 for CH4 showed that different diet types
had a significant effect on CH4. The HF diet had the highest
CH4 concentration, while the bromoform diet had traces of
CH4. The LF diet produced more CH4 compared to the control
(p < 0.01). There was no difference in the total gas values except
for the CBR treatment, and no difference was recorded for
CO2 concentration. However, H2 was higher in the bromoform
treatment than in all other treatments (p < 0.01). The HF treat-
ment had the highest pH value, while the LF treatment had the
lowest pH value (p < 0.01). NH3-N concentration was higher
in the HF, followed by LF, while the CBR diet had the lowest
NH3-N compared to all treatments (p < 0.01). The LF treat-
ment had the highest total VFA concentration, while HF had
the lowest compared to Control and CBR (p < 0.01). The molar
proportion of acetate was also significantly different among
treatments. The CBR diet had the lowest acetate concentration,

TABLE 5 LMD readings in ppm-m.

95% Confidence

interval

Diet

reatment Mean

Std.

error

Lower

bound

Upper

bound

Std.

deviation

Control 3105.13b 9.63 3086.2 3124.06 190.68

CBR 74.98c 3.26 68.57 81.39 58.196

HF 9594.41a 34.87 9525.89 9662.92 786.02

LF 3057.22b 16.5 3024.77 3089.67 313.5

a,b,cValues with a are highest, followed by b, and c in descending order.

while the control treatment had the highest acetate concentra-
tion (p < 0.01). No significant difference was observed between
LF and HF for the acetate concentration. LF and CBR had
the highest propionate molar concentration, while HF had the
lowest propionate molar concentration (p < 0.01). LF had the
highest butyrate molar concentration, while HF, and CBR had
the lowest butyrate molar concentration (p < 0.01). Iso-valerate
was lower in the CBR than all other treatments (p < 0.01). The
HF had the highest acetate to propionate ratio, while the CBR
treatment had the lowest ratio compared to control (p < 0.01).

5.2 Laser methane detector results

LMD readings are shown in Table 5. Results showed that HF
treatment had the highest CH4 concentration (p < 0.01) com-
pared with all treatments. There was no difference in CH4
concentration between the control and LF treatments. The CBR
diet had the lowest CH4 reading compared to all treatments
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EMBABY ET AL. 9 of 14

TABLE 6 Test of normality of CH4 concentrations in ppm-m using
Shapiro-Wilk for LMD readings.

Diet treatment Statistic df Sig.

Control 0.911 392 <.001

CBR 0.883 319 <.001

HF 0.978 508 <.001

LF 0.957 361 <.001

TABLE 7 Performance comparison of semantic segmentation
architectures on CH4 plume segmentation task.

Architecture Image size mIoU ↑ mFscore ↑

FCN 512 × 512 84.02 91.04

U-Net 512 × 512 82.02 89.7

Vision transformer 512 × 512 55.69 67.9

Swin transformer 512 × 512 83.97 91.02

DeepLabv3+ 512 × 512 84.49 91.33

Gasformer 512 × 512 85.1 91.72

(p < 0.01). The test of normality results are shown in Table 6.
All treatments followed a normal distribution (p < 0.01).

5.3 Optical gas imaging results

5.3.1 Quantitative comparisons

Table 7 presents the performance comparison of six semantic
segmentation architectures, namely FCN, U-Net, DeepLabv3+,
Vision Transformer, Swin Transformer and Gasformer, on the
task of CH4 plume segmentation. All models are trained and
evaluated using an input image size of 512 × 512 pixels. The
evaluation metrics used are mIoU and mFscore, which are
widely adopted in semantic segmentation tasks [23, 26]. Among
the six architectures, Gasformer achieves the highest perfor-
mance with a mIoU of 85.1% and a mFscore of 91.72%. This
indicates that Gasformer is able to accurately segment the CH4
plume regions while maintaining high precision and recall. The
superior performance of Gasformer can be attributed to its abil-
ity to generate multi-scale feature representations from the input
image without explicit positional encoding and its use of the
Mix-FFN block, which incorporates a 3 × 3 depth-wise con-
volution to encode local spatial relationships directly into the
feature representations [35].

DeepLabv3+ and FCN also demonstrate strong perfor-
mance, with mIoU scores of 84.49% and 84.02%, respectively.
These models incorporate multi-scale contextual information
through their atrous spatial pyramid pooling [45] and skip con-
nections [46], respectively. However, their mFscore is slightly
lower compared to Gasformer, suggesting a higher num-
ber of false positive or false negative predictions. The Swin
Transformer achieves an mIoU of 83.97% and an mFscore
of 91.02%, demonstrating its effectiveness in capturing both
local and global context information through its hierarchical
architecture and shifted window attention mechanism [29].

U-Net achieves an mIoU of 82.02% and an mFscore of
89.7%. Although U-Net has been widely used in medical
image segmentation tasks [23, 47], its performance on the
CH4 plume segmentation task across different GC data range
classes is lower than all architectures except Vision Trans-
former. This could be due to its limited ability to capture
long-range dependencies and global context information. The
Vision Transformer exhibits the poorest performance among
the six architectures, with an mIoU of 55.69% and an mFscore
of 67.9%. This can be attributed to the Vision Transformer’s
lack of inductive bias, which makes it more data-hungry and less
suitable for tasks with limited training data [28].

Table 8 presents a detailed performance analysis of the six
semantic segmentation models on the CH4 plume segmenta-
tion task, evaluating them on four different classes: Background,
Class-1, Class-2, and Class-3. The evaluation metrics used are
Intersection over Union (IoU) and F-score, providing a compre-
hensive assessment of the models’ segmentation accuracy. All
models achieve high IoU and F-score values for the background
class, with Gasformer and DeepLabv3+ slightly outperforming
FCN, U-Net, Vision Transformer, and Swin Transformer, indi-
cating their capability to accurately distinguish the background
regions from the CH4 plumes. For Class-1, Gasformer achieves
the highest IoU and F-score, followed by Swin Transformer and
DeepLabv3+, while Vision Transformer shows significantly
lower performance. In Class-2, Gasformer maintains its lead,
followed by DeepLabv3+ and Swin Transformer, while FCN,
U-Net, and Vision Transformer lag behind. Although FCN
achieves the highest IoU and F-score for Class-3, Gasformer,
and DeepLabv3+ still exhibit strong performance, demonstrat-
ing their robustness across different CH4 concentration levels.
The Swin Transformer demonstrates competitive performance
across all classes, while the Vision Transformer struggles to
accurately segment the plumes, particularly in Class-1, where it
achieves the lowest scores among all evaluated models.

Table 9 presents a computational efficiency analysis of the six
semantic segmentation architectures, considering FPS on GPU,
GFlops, and the number of parameters in millions (Params (M)).
Gasformer achieves the highest FPS of 64.5, demonstrating its
superior real-time performance compared to the other archi-
tectures. It is 1.26x faster than FCN, 1.37x faster than U-Net,
2.21x faster than Swin Transformer, 2.84x faster than Vision
Transformer, and 1.40x faster than DeepLabv3+. This can be
attributed to its efficient self-attention mechanism and the use
of the Mix-FFN block, which allows for parallel computation
and reduces the computational overhead [35]. Gasformer also
has the lowest GFlops value of 9.92, indicating its computa-
tional efficiency, requiring 19.96x, 20.46x, 23.79x, 44.63x and
17.74x fewer GFlops compared to FCN, U-Net, Swin Trans-
former, Vision Transformer, and DeepLabv3+, respectively.
In terms of model size, Gasformer is the most parameter-
efficient among the six architectures, with only 3.65 million
parameters. Gasformer is 12.92x smaller than FCN, 7.94x
smaller than U-Net, 16.15x smaller than Swin Transformer,
38.9x smaller than Vision Transformer, and 11.29x smaller
than DeepLabv3+. This makes Gasformer suitable for deploy-
ment on resource-constrained devices or scenarios with limited
memory. The computational efficiency analysis highlights the
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10 of 14 EMBABY ET AL.

TABLE 8 Class-wise performance analysis of semantic segmentation models on CH4 plume segmentation task.

IoU F-score

Architecture Background ↑ Class-1↑ Class-2↑ Class-3↑ Background ↑ Class-1↑ Class-2↑ Class-3↑

FCN 99.6 74.48 79.55 82.47 99.8 85.37 88.61 90.39

U-Net 99.56 67.68 79.54 81.3 99.78 80.73 88.6 89.68

Vision transformer 98.95 24.89 46.95 51.95 99.47 39.86 63.9 68.38

Swin transformer 99.59 74.86 80.21 81.21 99.8 85.62 89.02 89.63

DeepLabv3+ 99.61 74.79 81.33 82.21 99.81 85.58 89.71 90.24

Gasformer 99.62 76.94 82.31 81.51 99.81 86.97 90.3 89.81

FIGURE 5 Segmentation performance of different models on CD dataset, showing the input images, ground truth masks, and the segmentation outputs for
Class-1 (166–171 ppm), Class-2 (300–334 ppm), and Class-3 (457–510 ppm).

TABLE 9 Computational efficiency analysis of semantic segmentation
architectures on CH4 plume segmentation task.

Architecture FPS ↑ GFlops ↓ Params (M) ↓

FCN 51.37 198 47.125

U-Net 47.09 203 28.987

Vision transformer 22.72 443 142

Swin transformer 29.26 236 58.943

DeepLabv3+ 46.2 176 41.217

Gasformer 64.56 9.921 3.65

trade-offs between real-time performance, computational com-
plexity, and parameter efficiency, with Gasformer emerging as
the most efficient architecture, achieving the highest FPS with
the lowest GFlops and parameter count.

5.3.2 Qualitative comparison

Figure 5 presents a qualitative comparison of the segmentation
models’ performance on three different GC data range classes:
Class-1, Class-2, and Class-3. The results demonstrate that all
segmentation models except the Vision Transformer perform
well when the contrast between the gas plume and the back-
ground is high and the gas plume shape is simple, as observed

in the Class-1 case. However, the models exhibit varying levels
of performance when faced with more challenging scenarios,
such as complex gas plume shapes or low contrast between the
gas plume and the background.

In the Class-2 case, where the contrast between the gas plume
and the background is low, the models face difficulties in accu-
rately predicting the mask. The U-Net model, in particular,
exhibits suboptimal performance in this scenario, not only mis-
classifying the plume but also failing to predict the complete
shape of the gas plume. The Vision Transformer demonstrates
significant limitations, failing to accurately segment the plume
and missing substantial portions of its structure. In contrast,
the Gasformer model demonstrates its robustness by correctly
classifying and predicting the shape of the plume despite the
challenging low-contrast conditions. Similarly, in the Class-3
case, where the gas plume shape is complex, the Gasformer
model stands out as the only architecture capable of completely
and accurately predicting the segmentation mask. The other
models struggle to capture the intricate details of the plume’s
shape, resulting in incomplete or inaccurate segmentation.

6 DISCUSSION

Our approach to CH4 detection using an ice background rep-
resents a departure from traditional OGI techniques, which
typically rely on infrared spectral absorption characteristics
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EMBABY ET AL. 11 of 14

where gases absorb background radiation to create visible
plumes. While this modified method makes the ruminant-
discharged gas a thermal target, primarily showing its radiation
characteristics, we validated its effectiveness through rigorous
testing. Controlled experiments demonstrated that the FLIR
GF77, despite lacking the cooled filter found in more expen-
sive OGI systems, could selectively detect CH4 while showing
no response to other gases such as CO2 and H2 under identical
conditions. This validation, combined with our GC data cor-
relation, supports the reliability of our modified approach for
CH4-specific detection in low-concentration scenarios.

Having established the validity of our detection methodol-
ogy, it is important to distinguish the contributions of this work
from our previous research. While our previous work on Gas-
former [16] demonstrated the model’s capability to detect CH4
gas in daily cow rumen samples, the present study adapts this
framework for diet-specific quantification. By modifying the
model to handle three distinct classes corresponding to differ-
ent CH4 concentration ranges (166–171 ppm for control diet,
300–334 ppm for LF diet, and 457–510 ppm for HF diet), we
enable automated assessment of dietary impacts on CH4 emis-
sions through visual analysis. This application of the Gasformer
model to dietary intervention assessment represents a novel use
case in livestock CH4 monitoring.

While this study utilizes in vitro measurements rather than
direct animal trials, our methodology is grounded in well-
established practices for ruminant research. The ANKOM gas
production system used in this study is a validated approach for
simulating rumen fermentation and is widely accepted in the
scientific community as a preliminary step before conducting
more resource-intensive in vivo trials. The rumen liquid used
in our experimental setup was collected directly from fistulated
dairy cattle, ensuring that the microbial ecosystem closely rep-
resents actual rumen conditions. This in vitro approach allows
for controlled experimentation and method validation while
minimizing animal use and research costs.

Having established the scientific validity of our in vitro
approach, the possibility of detecting and quantifying enteric
CH4 in vitro using LMD and OGI was investigated in this arti-
cle. The in vitro batch culture data analysis for CH4 and rumen
fermentation parameters was conducted for two main reasons:
the first reason is to establish a dataset collection source, which
is the enteric CH4 produced by the gas production modules that
were used for imaging, while the second reason is to compare
and validate the results of the OGI and the LMD with the lab
techniques approved in peer-reviewed literature.

The F:C ratio is one of the strategies that have been investi-
gated for enteric CH4 mitigation. Increasing the F:C ratio was
reported to increase the enteric CH4 emission from dairy cows.
Aguerre et al. [48] reported that increasing the F:C ratio in the
diet of dairy cows from 47:53 to 68:32 increased CH4 from 538
to 648 g/cow per day. The findings of this article are in agree-
ment with our results, where increasing the F:C ratio from 20:80
to 80:20 increased CH4 emission from 293.72 to 482.45. The
same article also reported no changes in CO2 which is also in
agreement with our results. Bromoform, the active component
in red seaweed A. taxiformis, was reported to inhibit CH4 and

was used in this experiment as a negative control. The addi-
tion of bromoform at 0.14 𝜇l/Liter of rumen fluid/day was
able to inhibit CH4 by 98% compared to control. These find-
ings are in agreement with the findings of Roque et al. [49]
indicated that adding Asparagopsis armata to lactating dairy cows’
diet at two inclusion rates (0.5 and 1%) reduced CH4 yield by
26.4 and 67.2%, respectively. H2 concentrations were also high
with adding bromoform compared to all treatments, which is
attributed to bromoform’s mode of action that targets the path-
way of CH4 formation, which results in a higher accumulation
of H2 [50–52]. Increasing the F:C ratio increased the pH inside
the rumen culture while increasing the concentrated amount
favors the acid-producing bacteria and the starch-producing
bacteria that led to the formation of more H2 and reduced the
pH, while increasing the propionate production in the rumen
culture, which was also noticed in this study. Aguerre et al. [48]
reported that increasing the F:C ratio in the diet of dairy cows
from 47:53 to 68:32 increased pH from 6.38 to 6.59, which is in
agreement with the findings of this article, where increasing the
F:C ratio increased pH from 6.31 to 6.8.

The LMD data followed the same pattern for the HF diet
that had the highest CH4 values, while LF values were less than
the HF, and these results matched the GC results. The use of an
LMD in quantifying enteric CH4 was investigated by Chagunda
et al. [4], who reported that the physiological status of the animal
and the animal behavior could affect the released CH4 from the
animal. Chagunda reported that dairy cows produced more CH4
when ruminating than when eating or sleeping. Another study
by Chagunda [5] reported that the highest CH4 values were
recorded while drinking. From these findings, we can expect that
the laser CH4 readings will differ with different F:C ratios. How-
ever, the feasibility of using LMD for measuring enteric CH4
was also investigated in these studies, and the daily CH4 pro-
duction was 357 g/day, which is considered 17% higher than
the estimated through the mathematical equation based on the
daily intake of dry matter.

OGI input for developing a deep learning model that can
identify and quantify CH4 is also investigated in the current
article. The Gasformer model demonstrates significant per-
formance in segmenting CH4 plumes from the CD dataset,
outperforming other state-of-the-art semantic segmentation
architectures such as FCN, U-Net, Vision Transformer, Swin
Transformer, and DeepLabv3+. The qualitative comparison
of CH4 plume visualization across different GC data range
classes highlights the Gasformer model’s ability to accurately
segment plumes with varying shapes and intensities. This is par-
ticularly evident in the Class-2 and Class-3 cases, where the
model successfully captures low-contrast scenarios and complex
plume shapes, respectively. The Gasformer model’s computa-
tional efficiency, as demonstrated by its high FPS, low GFlops,
and minimal parameter count, makes it well-suited for real-time
applications and deployment on resource-constrained devices.

OGI, coupled with deep learning models like Gasformer,
presents a promising alternative solution for detecting and
quantifying CH4 emissions from livestock. Unlike traditional
methods such as gas chambers or LMD, OGI allows for non-
invasive measurements and provides high spatial and temporal
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12 of 14 EMBABY ET AL.

resolution. The ability to visualize and analyze CH4 plumes
in real-time using OGI and deep learning algorithms offers a
more comprehensive understanding of the emission patterns
and distribution, which can aid in developing targeted mitigation
strategies. Furthermore, the portability and flexibility of OGI
systems make them suitable for on-site measurements and mon-
itoring, enabling a more practical approach to assessing CH4
emissions from livestock in various settings.

The Gasformer model’s ability to provide non-invasive mea-
surements and high spatial and temporal resolution is based
on the infrared images captured by the FLIR GF77 camera.
However, it is important to note that the camera still needs
to be positioned in close proximity to the emission source to
effectively detect and visualize the CH4 plumes, similar to the
GAS ⋅ TRAC® LZ-30 LMD. The key difference is that the
Gasformer model analyzes the infrared images to provide a
more comprehensive understanding of the plume dynamics and
distribution, while the GAS ⋅ TRAC® detector provides point
measurements of CH4 concentrations.

However, it is essential to acknowledge the limitations of
the Gasformer model and the CD dataset. The controlled
laboratory setting in which the dataset is collected may not
fully represent the complexity and variability of real-world CH4
emissions from livestock. Additionally, the limited number of
GC data range classes and the quantity of data collected for
each treatment may impact the model’s ability to generalize
to new, unseen data or plumes from livestock under different
dietary treatments.

To address these limitations and further enhance the Gas-
former model’s capabilities, future work should focus on
expanding the dataset to include a wider range of GC data
range classes and collecting more extensive data for each
class. This would enable the development of more robust and
generalizable models capable of accurately segmenting CH4
plumes across a broader spectrum of CH4 concentrations.
Validating the model’s performance on real-world data col-
lected from actual livestock emissions is also crucial to assess
its practical applicability and identify potential challenges in
real-world deployment.

To advance this validation further, we plan to conduct in
vivo experiments to collect CH4 emission data directly from
ruminants. This future work will involve capturing OGI data
from live cattle under different dietary treatments, allowing us
to evaluate how well our model’s performance on in vitro data
translates to actual livestock emissions. The in vivo dataset will
help bridge the gap between laboratory conditions and practical
farm applications while potentially revealing new challenges and
opportunities for CH4 detection in real farming environments.
This extension to live animal studies represents a critical next
step in establishing the practical utility of our OGI and deep
learning approach for livestock CH4 monitoring.

The methodologies used in this study, particularly the use of
OGI and deep learning models like Gasformer, have the poten-
tial to be applied to the quantification of other greenhouse gases,
such as CO2 and N2O. However, detecting these gases would
require cameras with different lenses, such as the FLIR G343
for CO2 quantification. By developing effective tools to detect

and quantify various greenhouse gases, researchers and policy-
makers can gain valuable insights into the impact of livestock
production on global climate change. This information can be
used to develop targeted strategies and legislation for better
management practices and animal health, ultimately mitigating
the impact of livestock production on global warming. Future
research should explore the adaptation of the current method-
ology to other greenhouse gases and investigate the potential
for an integrated approach to monitoring and mitigating the
environmental impact of livestock production.

Exploring data augmentation techniques, transfer learning
approaches, or few-shot learning methods could help improve
the model’s ability to adapt to new GC data range classes or
limited data scenarios. Furthermore, establishing a direct quan-
titative relationship between the Gasformer model’s output and
the GAS ⋅ TRAC® detector’s measurements would enhance the
model’s utility in providing absolute concentration measure-
ments, facilitating a more comprehensive understanding of CH4
emissions from livestock under different dietary conditions.

7 CONCLUSIONS

This research demonstrates the potential of integrating com-
puter vision, deep learning, OGI, and LMD techniques for
precise and non-invasive monitoring of enteric CH4 emissions
from livestock. We introduced the CD dataset captured using
a FLIR GF77 OGI camera, which includes a diverse range of
CH4 plumes across different gas chromatography data range
classes. The previously published Gasformer architecture, a
transformer-based semantic segmentation architecture, outper-
forms state-of-the-art models such as FCN, U-Net, Vision
Transformer, Swin Transformer, and DeepLabv3+ on the CD
dataset. The model’s superior performance in detecting and
quantifying CH4 emissions can be attributed to its ability to
effectively capture complex plume shapes and low-contrast sce-
narios while maintaining high computational efficiency. These
findings have important practical applications for optimizing
feeding management practices. By combining OGI technol-
ogy with the Gasformer model, livestock farmers can establish
an early detection system that provides valuable insights into
the impact of management practices, such as animal intensifi-
cation and dietary choices. This information enables farmers
to make informed decisions to adjust their feeding strate-
gies and minimize environmental impact. Our investigation
of the GAS ⋅ TRAC® LZ-30 LMD to measure CH4 concen-
trations from the ANKOM incubation modules shows that
LMD measurements follow a similar pattern to the GC results,
validating its viability for quantifying emissions under differ-
ent dietary treatments. The integration of non-invasive OGI
and supplementary LMD techniques provides a comprehen-
sive monitoring approach that enables the development of
targeted mitigation strategies. Future work should focus on
expanding the dataset, validating the model’s performance on
real-world livestock emissions data, and exploring data aug-
mentation, transfer learning, and few-shot learning methods
to enhance adaptability. By addressing these limitations and
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further refining the models, these techniques could contribute
to developing effective quantification strategies and sustain-
able livestock production practices, ultimately mitigating the
environmental impact of CH4 emissions.
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