
Published as a conference paper at ICLR 2024

FUNCTIONAL INTERPOLATION FOR RELATIVE POSI-
TIONS IMPROVES LONG CONTEXT TRANSFORMERS

Shanda Li1∗, Chong You2, Guru Guruganesh2, Joshua Ainslie2, Santiago Ontanon2

Manzil Zaheer3, Sumit Sanghai2, Yiming Yang1, Sanjiv Kumar2, Srinadh Bhojanapalli2
1Carnegie Mellon University 2Google Research 3Google DeepMind
shandal@cs.cmu.edu

ABSTRACT

Preventing the performance decay of Transformers on inputs longer than those
used for training has been an important challenge in extending the context length
of these models. Though the Transformer architecture has fundamentally no limits
on the input sequence lengths it can process, the choice of position encoding used
during training can limit the performance of these models on longer inputs. We
propose a novel functional relative position encoding with progressive interpolation,
FIRE, to improve Transformer generalization to longer contexts. We theoretically
prove that this can represent some of the popular relative position encodings, such
as T5’s RPE, Alibi, and Kerple. We next empirically show that FIRE models have
better generalization to longer contexts on both zero-shot language modeling and
long text benchmarks.

1 INTRODUCTION

Transformer based Language Models have demonstrated state-of-the-art zero-shot performance
on many natural language processing tasks (Brown et al., 2020), enabling increasingly longer
context applications such as chat bots (Roller et al., 2021; Zhang et al., 2020b) and long document
summarization and question answering (Zhang et al., 2020a; Guo et al., 2022; Ainslie et al., 2023).
However, the accuracy of these models usually drops quickly for inputs longer than the ones used
during training (Press et al., 2022; Anil et al., 2022; Deletang et al., 2023) – which are usually
relatively short (e.g. 2048 for LLaMA (Touvron et al., 2023a;b)) to avoid the expensive quadratic
attention cost during training. This has led to a significant interest in improving length generalization
of Transformers - where we train the model using shorter inputs (e.g. 2048) and test the models
performance on longer inputs (e.g. 8192) (Press et al., 2022; Anil et al., 2022; Chi et al., 2022; 2023;
Chowdhury & Caragea, 2023; Chen et al., 2023).

Transformers are fundamentally permutation equivariant, and are agnostic to input sequence order-
ing (Vaswani et al., 2017; Yun et al., 2019)1. They rely on position encodings to learn the ordering
of input tokens. Popular position encodings such as Absolute Positional Encoding (APE) (Vaswani
et al., 2017) and more recent Rotary Positional Encoding (RoPE) (Su et al., 2021) do not generalize to
longer contexts than seen during training (Kazemnejad et al., 2023). T5’s relative positional encoding
(Raffel et al., 2019) generalizes to longer contexts by using the same representation for all out of
distribution (OOD) sequence lengths, but suffers from slow vector operations on modern accelera-
tors (Press et al., 2022). Another line of recent work promotes length generalization by encoding
specific inductive biases on how attention should decay with sequence length (Press et al., 2022; Chi
et al., 2022; 2023). More recently, Kazemnejad et al. (2023) show that having no position encodings
in decoder-only models can have better length generalization, albeit for small-scale synthetic tasks.

In this work we take a functional approach to learn the relative position biases2, instead of having hard
coded inductive biases, towards training language models with length generalization (focusing on
decoder-only models). We propose FIRE (Functional Interpolation for Relative Positional Encoding)
method that i) uses a learnable function to map the input positions to biases, and ii) uses a progressive

∗Work done during internship at Google Research.
1Note that decoder-only models can infer position from the causal attention mask (Haviv et al., 2022).
2We consider relative position encodings for their superior performance over absolute position encodings

(Raffel et al., 2019; Chen et al., 2021).
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interpolation technique, which ensures bounded input for the position encoding function for all input
sequence lengths, thereby enabling length generalization.
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Figure 1: Language modeling per-
plexity on C4 with varying evalua-
tion sequence lengths. Models are
trained on length 2048.

A functional approach to learn the biases allows the model
to adapt to the given task instead of always having the same
inductive bias, e.g. bias towards nearby tokens as in (Press
et al., 2022; Chi et al., 2022; 2023). In particular we use an
MLP to learn these biases, which we theoretically prove can
represent several popular methods such as T5’s RPE, Alibi,
and Kerple in a parameter efficient manner. In fact, all our
experiments use a tiny MLP with a hidden size of 32, which is
also accelerator-friendly unlike T5’s RPE. Next, our progres-
sive interpolation technique normalizes the query-key relative
distance by the query position. Since for causal attention in
language models the relative distance is always between 0
and the query position, progressive interpolation results in an
output that is always bounded between [0, 1]. This results in
a bounded input to the position encoding function for all input sequence lengths, leading to better
generalization performance. As a result, with increasingly longer sequence lengths, the positional
inputs will form progressively finer grids, interpolating the positional encoding function on [0, 1].

Inspired by the existing methods, we incorporate the following two transformations into FIRE, which
we find helpful to improve the model quality. i) To encourage locality bias in FIRE, we apply the
popular log transformation (Raffel et al., 2019; Chi et al., 2022) to the relative distance before feeding
it to the MLP, which amplifies the input differences for local tokens. ii) Next we modify progressive
interpolation with a learnable threshold in the normalizer to yield exact distances for shorter contexts.
Note that both these transformations do not limit the ability of the model to learn arbitrary biases. In
fact we show that FIRE learns to pay more attention to far away contexts in some attention heads.

We conduct an extensive empirical study to demonstrate the effectiveness of FIRE for length general-
ization. We benchmark FIRE as well as other positional encoding approaches on a wide range of
real-world language modeling (C4, arXiv, and Github), long text benchmark (SCROLLS), zero-shot
long-context question answering (NarrativeQA), and natural language understanding benchmarks
(GLUE/SuperGLUE). Our empirical results show the strong length generalization performance and
long text modeling capability of FIRE. Our experiments on standard natural language understanding
benchmarks show that FIRE is competitive on short sequence tasks as well. We further visualize the
learned positional encoding of FIRE showing that it learns diverse patterns, beyond just locality bias.

The main contributions of our paper are summarized below:

• We propose FIRE, a new functional relative positional encoding method. Using progres-
sive interpolation, FIRE is able to transform arbitrary input lengths into bounded domain,
followed by a learned mapping.

• We theoretically prove that FIRE can represent popular position encodings such as T5’s
RPE, Alibi, and Kerple, thereby unifying a class of existing position encoding approaches.

• We empirically show strong length generalization behavior of FIRE, significantly improving
over existing methods in zero-shot and finetuning settings on a wide range of datasets and
benchmarks. For instance, it consistently delivers strongest performance on C4 language
modeling across various sequence lengths, outperforming the best baseline by 2.28 perplexity
points (Fig. 1). On SCROLLS long text benchmark, FIRE surpasses all the competing
methods on average by over 1 point (Table 1).

• We present visualization of learned position embeddings of FIRE model showing that it can
learn both local and anti-local position biases.

2 POSITIONAL ENCODINGS AND LENGTH GENERALIZATION

We are interested in building Transformer models with length generalization ability, i.e., we expect
that the model can be trained on sequences of length Ltrain and be directly applied to sequence length
Ltest without performance degradation for Ltest > Ltrain (Press et al., 2022). Length generalization
requires Transformers to generalize to unseen positions during training, and designing better position
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encodings is an active line of research towards improving the length generalization (Chi et al., 2022;
2023; Kazemnejad et al., 2023; Chen et al., 2023). In this section, we review existing positional
encoding approaches with an emphasis on their length generalization abilities. More discussions on
related work can be found in Appendix D.

2.1 ABSOLUTE POSITIONAL ENCODING

The Transformer paper (Vaswani et al., 2017) proposes Absolute Positional Encoding (APE) to endow
Transformers with positional information. In particular, a (learnable or fixed sinusoidal) real-valued
embedding ei ∈ Rd is assigned to each position i, leading to an Absolute Positional Encoding matrix
E = [e1, · · · , en]⊤, which will be added to the input sequence. Though simple and straightforward,
APE-based Transformers usually generalize poorly to longer sequences (Press et al., 2022).

2.2 RELATIVE POSITIONAL ENCODING

Relative Positional Encoding (RPE) is an increasingly popular way to encode positional information
for Transformers. Shaw et al. (2018) are the first to introduce RPE to Transformers and their proposed
method adds position encodings to the key (and optionally the value) in the attention layer, instead
of the input. Raffel et al. (2019) simplify the vector representations of relative positions to scalars
and use them as a bias term added to the pre-softmax attention logits. They further map any OOD
sequence lengths to the same position, resulting in length generalization. This form of additive
RPE has proven to be highly effective in many applications (Dai et al., 2019; Liu et al., 2021; Ying
et al., 2021). Following this, multiple additive RPE methods have been proposed to improve both
length generalization and efficiency, such as Alibi (Press et al., 2022), Kerple (Chi et al., 2022), and
Sandwich (Chi et al., 2023).

Additive RPE. For most of these additive RPE methods, the computation of the (pre-softmax)
attention logits can be unified using the following formula:

ARPE(X) = XWQ(XWK)⊤ +B, (1)

where the bias matrix B ∈ Rn×n is induced by the position encoding function b : N∗2 → R. Let
the (i, j)-th entry of B be b(i, j). Different formulations and parameterizations of b lead to different
RPE variants. A few examples that support arbitary sequence length include:

• T5’s RPE (Raffel et al., 2019): b(i, j) = rmin{i−j,K}, where K is a hyper-parameter and
{ri}Ki=0 are learnable scalars.3

• Alibi (Press et al., 2022): b(i, j) = −r|i− j|, where r > 0 is a hyper-parameter.
• Kerple (Chi et al., 2022): b(i, j) = −r1 log(1+r2|i−j|) (logarithmic variant) or −r1|i−j|r2

(power variant), where r1, r2 > 0 are learnable scalars.

• Sandwich (Chi et al., 2023): b(i, j) = r1
∑r2

k=1 cos
(
(i− j)/10000

k
d′

)
, where r1 and r2

are hyper-parameters.

The above methods can be applied to longer sequences than training, but they also have several
limitations. T5’s RPE uses the same attention bias for all query-key pairs with distance greater
than K, lacking representational power to distinguish between different positions in long sequences.
Furthermore, it relies on vector operations that are not accelerator-friendly, making its training and
inference relatively slow (Press et al., 2022). Alibi, Kerple, and Sandwich significantly bias towards
local attention, making it harder to attend to more distant query-key pairs (Chi et al., 2023). This
property can prevent the model from capturing long-range dependencies and lead to performance
degradation on some tasks. In the subsequent section, we will present our method to overcome these
limitations.

Rotary Positional Encoding. In addition to the aforementioned methods, there are also several
non-additive RPE variants. Among them, the most popular one in large language models is Rotary
Position Encoding (RoPE) (Su et al., 2021; Chowdhery et al., 2022; Touvron et al., 2023a). RoPE

3In practice, T5’s RPE segments relative distances into distinct buckets with a logarithmic scale, each
associated with a unique parameter. Refer to Appendix A.1 for further details.
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rotates the query and key vectors with an angle proportional to their absolute positions before the
dot product attention, which results in attention being a function of the relative distance between the
tokens, capturing the relative positional information.

Press et al. (2022); Kazemnejad et al. (2023) find that RoPE-based language models have poor length
generalization. To address this, Chen et al. (2023) propose RoPE with position interpolation, and
show this allows better length generalization of these models. Such interpolation techniques ((Chen
et al., 2023) for RoPE and (Dosovitskiy et al., 2021) for APE), usually requires 1) knowing the
target sequence length a priori, which may not be feasible in practical generative applications, 2)
finetuning the model at the new target sequence length, which can be challenging for larger scale
models. In contrast, our proposed approach uses a progressive interpolation technique that does not
require any prior information of the target sequence length. This property is appealing since the
maximum sequence length can be hard to predict for auto-regressive language models. Further, our
experiments show that the proposed approach does not require any additional finetuning to achieve
strong zero-shot length generalization behavior.

2.3 NO POSITIONAL ENCODING

While encoder-only Transformer models (e.g., BERT (Devlin et al., 2019)) are permutation equivariant
without positional encoding, Haviv et al. (2022) show that decoder-only Transformers with causal
attention masks can learn positional information even without any explicit positional encoding.
Recently, Kazemnejad et al. (2023) show that the no positional encoding (NoPE) model shows strong
length generalization on small scale synthetic tasks.

3 METHOD

In this section, we formally introduce FIRE (Functional Interpolation for Relative Positional
Encoding), a new relative positional encoding approach for improving length generalization of
Transformers.

3.1 FUNCTIONAL POSITION ENCODING WITH PROGRESSIVE INTERPOLATION

Our proposed approach FIRE uses a learnable continuous function to map input positions to biases.
We implement the function using an MLP fθ : R → R,4 where θ denotes the MLP parameters. This
avoids hard coding specific inductive biases and lets the position encoding be learnt jointly with the
task at hand. A standard approach would be to feed the relative query-key distance as the input to the
MLP. However this suffers from generalization issues when the inputs (the relative distances) are
outside the training domain of the MLP.

We propose Progressive Interpolation to address this challenge. Instead of using the raw query-key
relative distance as the input to the MLP, we normalize the distance by the query position index.
Formally, we consider the following positional encoding function:

b(i, j) = fθ

(
i− j

i

)
where fθ(x) = v⊤

3 σ(V2σ(v1x)), θ = {v1,V2,v3}.5 (2)

Here σ is the ReLU activation function; i and j denote the query and key positions respectively. Note
that in causal attention, the relative distance satisfies 0 ≤ i− j < i. Therefore, the normalized relative
distance is constrained to be in [0, 1] regardless of the sequence length. In particular, with increasingly
longer sequence lengths, the positional inputs will form progressively finer grids, interpolating the
positional encoding function on [0, 1]. Hence, this technique aligns inference domain with training
domain for any sequence lengths, leading to better length generalization.

Discussion on the choice of the normalizer. FIRE uses the query position i to normalize the
relative distance and implement interpolation. For auto-regressive generation with causal attention,

4Here we focus on a single attention head. Generally, with H heads, FIRE learns an MLP fθ : R → RH and
uses different attention biases for different heads.

5v1,v3 ∈ Rs,V2 ∈ Rs×s, and s denotes the hidden size. Bias terms are omitted for brevity.
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the query position index i corresponds to the length of current context. Another possible choice is to
use some pre-defined max context length as the normalizer. In this case, the model will still suffer
from unfamiliar (large) distances when the texts exceed the pre-defined max lengths, making such a
choice suboptimal. Using the query position index as the normalizer avoids this issue.

3.2 ADDITIONAL TRANSFORMATIONS

Inspired by existing methods, we introduce two transformations on FIRE for further improvement.
We note that these transformations do no limit the expressive power of FIRE to learn arbitrary biases.

Amplifying the differences among local positions. Existing works show that RPE attention
biases change more rapidly for the local tokens than for the distant tokens (Khandelwal et al., 2018;
Wang et al., 2021). Thus, it’s appealing to consider some monotonically increasing transformation
ψ : N → R+ with a monotonically decreasing slope (i.e., a concave function) to the relative distance,
so that more modeling capacity can be allocated to learn RPE for local positions:

b(i, j) = fθ

(
ψ(i− j)

ψ(i)

)
. (3)

For example, in our experiments, we use ψ : x 7→ log(cx + 1) where c > 0 is a learnable
parameter. This transformation ψ amplifies the differences among local positions. Note that, the log
transformation is applied to both the relative distance and the normalizer. Thus, the MLP inputs are
still constrained to [0, 1] for any sequence lengths as long as ψ is monotonically increasing.

Thresholding the normalizer for better short sequence modeling. While the progressive in-
terpolation technique offers robust length generalization capabilities, our preliminary experiments
indicate a marginal degradation in model performance for shorter sequences. We posit that it’s
because the actual relative distances are important in RPE of short sequences, while the normalization
in progressive interpolation obfuscates this information. To address this, we introduce an adaptive
thresholding mechanism, activating the progressive interpolation technique only for larger query
position indices, i.e., long contexts. Specifically, we define a learnable threshold L and only apply
progressive interpolation when i > L. For short sequences with less than L tokens, we use ψ(L) to
normalize the relative distance.

Based on the above, the positional encoding function of FIRE can be formulated as

bFIRE(i, j) = fθ

(
ψ(i− j)

ψ(max{L, i})

)
, (4)

where ψ : N → R+ is monotonically increasing and L > 0 is a learnable scalar. Our main
experiments of FIRE are based Eq. (4) with ψ : x 7→ log(cx+ 1). We present experiments ablating
these design choices in Appendix B.

3.3 EXPRESSIVENESS OF FIRE

In this subsection, we theoretically prove that FIRE can represent all the existing additive RPE
approaches discussed in Sec. 2.2. This expressiveness allows FIRE to learn suitable position encoding
functions from the data. We state this formally in the theorem below. The proof can be found in
Appendix A.
Theorem 3.1. Let b0 be the positional encoding function of T5’s RPE, Alibi, Kerple, or Sandwich
as defined in Sec. 2.2. Consider FIRE function bFIRE(i, j) in Eq. (4). Given any sequence length
L0 ∈ N∗, there exist some transformation ψ, threshold L, and MLP configuration (weights θ and
activation function σ) such that bFIRE(i, j) = b0(i, j) for any 0 < j ≤ i ≤ L0.

Remark. We point out that our proof is constructive, and does not leverage the universal approxi-
mation property of MLP, i.e., the MLP does not need to be extremely wide or deep. In fact, FIRE is
parameter efficient in the sense that it represents T5’s RPE, Alibi, and Kerple with nearly the same
number of parameters (up to a constant factor). Further, in all our experiments with FIRE, we show
that a small MLP with a hidden size of 32 suffices for strong performances.
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Figure 2: Language modeling perplexity with varying evaluation sequence lengths for large models
trained on sequence length 2048.

4 EXPERIMENTS

In this section we present experimental results comparing our proposed unified relative encoding
method FIRE with T5’s RPE (Raffel et al., 2019), Alibi (Press et al., 2022), and Kerple (Chi et al.,
2022), showing that the proposed approach significantly improves long context generalization while
not sacrificing short context performance. We also include comparisons to other popular methods -
Rotary Positional Encoding (RoPE) (Su et al., 2021) and no positional encoding (NoPE) (Kazemnejad
et al., 2023). We use a hidden size of 32 for the MLPs in FIRE for all our experiments.

We consider language models trained on the C4 dataset (Raffel et al., 2019) with 2048 input length,
with different positional encoding methods. We first compare the zero-shot perplexity values on inputs
with different lengths (512 to 8192) from various datasets, comparing the long context generalization
ability of different position encoding methods (Sec. 4.1). Later, we present finetuning results on
both longer inputs of length 8192 on SCROLLS (Shaham et al., 2022) and shorter inputs of length
1024 on GLUE/SuperGLUE (Wang et al., 2019b;a) (Sec. 4.2 & 4.4).6 In addition, we conduct
experiments on zero-shot long-context question answering on NarrativeQA (Kočiskỳ et al., 2018)
with different context lengths from 512 to 32768 (Sec. 4.3). In Appendix B, we present some ablation
experiments studying the design choices of FIRE. The complete experimental setup along with the
hyper-parameters for each of the tasks and hardware details is provided in Appendix C.

4.1 LANGUAGE MODELING WITH LENGTH GENERALIZATION

Following Brown et al. (2020), we use the causal LM objective to pretrain decoder-only Transformers
with different position encodings on C4 dataset (Raffel et al., 2019). We experiment with two model
size settings, base (125M parameters) and large (350M parameters). The evaluation metrics are
validation log perplexity on C4, arXiv, and Github (Raffel et al., 2019; Gao et al., 2020). We pretrain
the models on sequence length to 2048, and evaluate their zero-shot perplexity on sequence lengths
{512, 1024, 2048, 4096, 8192}. For base-sized models, we additionally compare our method with a
concurrent work, YaRN (Peng et al., 2024), which improves length generalization of RoPE-based
Transformer models.7 Model and training configurations are detailed in Appendix C.1.

The results are shown in Fig. 1, 2, & 7. We first notice that FIRE consistently achieves lower
perplexity across different model sizes, validation sequence lengths, and datasets. In comparison to
existing approaches, the performance gain is particularly significant for validation sequences that
are longer than training sequences (out-of-distribution sequence lengths), showing better length
generalization behavior. For example, for base models trained on sequence length 2048 and evaluated
on sequence length 8192, FIRE outperforms the best baseline method, Kerple, by 2.28 points (21.24
v.s. 23.52 perplexity). Methods such as RoPE achieve strong performance for in-distribution sequence
lengths, but their performances quickly degrade with longer inputs. YaRN requires knowledge of
target sequence length and further finetuning, but we can see from Fig. 1 & 7 that it underperforms
FIRE on long sequences and sacrifices model quality on short sequences (e.g., length 512). Note that
in all our experiments, perplexity is computed in a single forward pass for a given input, and we do
not use any sliding window tricks during inference (Press et al., 2022).

6While finetuning is not the same as the zero-shot long-context generalization, it still measures the ability of
the pre-trained model to adapt to longer inputs in the downstream applications.

7We note that YaRN needs additional tuning on long sequences. All the other methods in this subsection,
including FIRE, are evaluated on long context without any tuning.
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Table 1: Experimental results on SCROLLS benchmark. Abbreviations for dataset names:
Qasper (Qas), ContractNLI (CNLI), QMSum (QMS), NarrativeQA (NQA), SummScreenFD (SumS),
GovReport (GovR), and QuALITY (QuAL). We provide the evaluation metrics, the median sequence
lengths in each dataset (Ainslie et al., 2023), and detailed results for base/large models. RoPE-PI
refers to the RoPE interpolation (Chen et al., 2023). Best results are highlighted in bold.

QAS CNLI QMS NQA SumS GovR QuAL Average
Metric F1 EM Rgm F1 Rgm Rgm EM
Median length 5472 2148 14197 57829 9046 8841 7171

Base models

NoPE 10.98 72.90 14.36 5.90 15.44 16.24 22.10 22.56
RoPE 10.44 71.75 14.90 8.71 14.40 15.72 6.71 20.38
RoPE-PI 15.41 71.94 13.12 9.21 15.77 16.86 20.33 23.23
Alibi 8.38 67.21 5.48 4.24 3.49 6.96 9.68 15.06
Kerple 11.67 75.99 14.39 9.24 15.73 16.42 25.36 24.11
T5’s RPE 12.80 74.93 16.12 9.00 15.37 15.96 24.83 24.14
FIRE (ours) 16.24 82.93 14.58 9.55 15.87 16.31 24.02 25.64
Large models

NoPE 15.34 74.25 15.79 7.56 16.60 16.66 24.16 24.34
RoPE 11.01 79.94 15.13 9.40 15.84 15.50 9.92 22.39
RoPE-PI 17.02 84.28 14.05 10.14 16.72 17.03 23.01 26.04
Alibi 8.20 68.95 5.81 4.91 4.34 11.58 12.27 16.58
Kerple 18.93 77.24 15.09 9.97 17.14 16.85 24.83 25.72
T5’s RPE 17.51 75.70 16.17 9.62 16.68 16.76 24.45 25.27
FIRE (ours) 19.47 85.15 15.10 10.27 17.27 16.83 25.26 27.05

4.2 FINETUNING ON LONG TEXT BENCHMARK

To further test the models’ capability of learning and modeling long sequences, we conduct finetuning
experiments on SCROLLS, a long text benchmark (Shaham et al., 2022) which contains 7 different
datasets. We initialize the models with the C4 checkpoints pretrained on sequence length 2048, and
finetune them on sequence length 8192 for each individual task. In addition to position encoding
methods in Sec. 4.1, we also experiment with RoPE with positional interpolation (RoPE-PI) (Chen
et al., 2023), which extends the context window of RoPE-based pretrained models given a downstream
maximum sequence length. Following existing works by Shaham et al. (2022); Ainslie et al. (2023),
we use three different evaluation metrics (Rgm, F1, and EM scores) for different datasets. We also
compute the average score across different datasets as done in the SCROLLS benchmark. Detailed
descriptions of the datasets and evaluation metrics are provided in Appendix C.2.

The results on SCROLLS benchmark are shown in Table 1. We first notice that FIRE attains the best
average score, outperforming existing approaches by over 1.0 point on both model sizes. Even at the
individual task level, FIRE achieves the best performances on 4/5 out of 7 tasks among the base/large
models. RoPE-PI significantly improves RoPE as expected, but lags behind FIRE. One drawback
though is that RoPE-PI requires the knowledge of maximum input sequence length beforehand, which
is not always known in practice for decoder-only models.

4.3 ZERO-SHOT LENGTH GENERALIZATION ON NARRATIVEQA

We next evaluate the zero-shot length generalization capabilities of the finetuned models on the
downstream NarrativeQA dataset. We use the NarrativeQA dataset (Kočiskỳ et al., 2018) with
different input context lengths to test the model’s ability to leverage long context in zero-shot
learning settings. We use the base-sized model checkpoints pretrained on C4 (sequence length
2048) and finetuned on NarrativeQA (sequence length 8192). We evaluate the models on context
lengths {512, 2048, 4096, 8192, 16384, 24576, 32768} without any further tuning on the target con-
text lengths. For RoPE with position interpolation (Chen et al., 2023), we consider two variants with
max sequence lengths set to 8192 or 32768. We use unigram overlap (F1) as the evaluation metric.
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Figure 3: Left: Comparisons on NarrativeQA with different context lengths. “RoPE-PI8192” and
“RoPE-PI32768” refers to RoPE interpolation with max sequence lengths 8192 and 32768 respectively.
Right: Results on GLUE and SuperGLUE benchmarks. We report the average accuracy across
all the tasks on these two benchmarks.
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Figure 4: Visualization of FIRE learned position biases for the 128th query position with key
positions between 1 and 128. We notice that FIRE learns both local and anti-local position patterns.

We compare FIRE with the most competitive baselines in the left panel of Fig. 3. Detailed results
(including omitted baselines) can be found in Table 11. We notice that FIRE achieves top perfor-
mances consistently across different sequence lengths. The plot also shows sensitivity of RoPE-PI to
the max sequence length parameter in this zero-shot length generalization setting. Setting the max
sequence length to a small value (8192) results in good performance until 8192, but with a steep drop
for longer contexts. On the other hand, using a larger value for max sequence length (32768) gets rid
of the steep drop for long contexts; but results in worse performance across all sequence lengths. In
contrast, FIRE using progressive interpolation is able to generalize across all sequence lengths.

4.4 FINETUNING ON GLUE/SUPERGLUE

We next evaluate the C4 pre-trained models on GLUE/SuperGLUE benchmarks, to test these methods
on shorter sequence lengths. We finetune on standard natural language understanding benchmarks,
GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a), with shorter sequence lengths
(1024) to evaluate the general quality of the models. We use the average accuracy/exact match across
all the tasks as our main evaluation metric. Detailed experiment results can be found in Table 12.

The results are shown in the right of Fig. 3. Among the baseline approaches, NoPE and Alibi slightly
lag behind, while RoPE, Kerple, and T5’s RPE all achieve similarly good accuracies. FIRE is on par
with these approaches, demonstrating good performance on GLUE and SuperGLUE tasks. These
results show that although FIRE is designed to enhance length generalization of Transformers, it does
not sacrifice the accuracy on downstream tasks with shorter sequence lengths.

4.5 VISUALIZATION OF FIRE

In this subsection we present visualization of learned position encoding biases from a FIRE model
pretrained on C4. We plot the learned position encoding bias for the query token at the 128th position,
for all the attention heads from selected layers in Fig. 4. We notice that, in different attention heads,
FIRE learns both local and “anti-local” attention patterns that emphasize far away keys more, showing
the advantage of functional approach, as opposed to a fixed local inductive bias (Press et al., 2022;
Chi et al., 2022; 2023).
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Table 2: Comparing FIRE with/without positional encoding function sharing across layers.
FIRE and FIRE-S refer to models without and with sharing, respectively.

C4 log perplexity with varying lengths GLUE & SuperGLUE

512 1024 2048 4096 8192 Average accuracy
FIRE 3.15 3.08 3.05 3.05 3.06 71.14
FIRE-S 3.22 3.14 3.10 3.09 3.10 71.04

SCROLLS benchmark

Qas CNLI QMS NQA SumS GovR QuAL Average
FIRE 16.24 82.93 14.58 9.55 15.87 16.31 24.02 25.64
FIRE-S 17.93 75.22 15.05 9.22 16.02 16.25 24.11 24.83

4.6 LAYERWISE SHARING
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Figure 5: Inference time com-
parisons for different methods.
The reported results are averaged
over 10 runs for each method.

Another important factor beyond length generalization is compu-
tational cost of these approaches. Most of FIRE’s computation is
based on matrix multiplication, which is more accelerator-friendly
than the vector operations used in T5’s RPE. To further improve
the computational efficiency of FIRE, we consider FIRE-S, a
weight-sharing version which uses the same position encoding
bias for all the layers. This way the position encoding bias only
needs to be computed once, and the cost is amortized over all
the layers. Note that sharing position encoding across layers is a
common inductive bias in many existing methods (Su et al., 2021;
Press et al., 2022; Luo et al., 2022).

We conduct experiments to evaluate FIRE-S (with layerwise shar-
ing) on C4 language modeling, SCROLLS long text benchmark,
and GLUE/SuperGLUE. We also measure the inference speed of
different methods. Experimental details are provided in C.6.

Model quality. Table 2 compares the accuracy of FIRE-S and the standard FIRE. The results show
that sharing position encoding function across layers only leads to a slight performance degradation.
FIRE-S still outperforms other baselines in the long sequence regime. For example, on C4 language
modeling with sequence length 8192, it outperforms Kerple, the best baseline in Fig. 1 (3.10 v.s.
3.16 log perplexity). On SCROLLS, its average score outperforms all the strong baseline methods
including T5’s RPE, RoPE with positional interpolation, and Kerple.

Inference speed. Fig. 5 compares the model speed of FIRE/FIRE-S with baselines. We first
notice that FIRE and FIRE-S are both faster than T5’s RPE while achieving stronger performances.
Moreover, FIRE-S significantly improve the efficiency of FIRE and is faster than all the baselines but
NoPE (no positional encoding). In conclusion, the experiments show that FIRE-S demonstrates good
speed-accuracy trade-off.

5 CONCLUSION

We propose a functional interpolation for relative position encoding (FIRE) to improve Transformer’s
ability to generalize to longer contexts, and present theoretical and empirical results showing its
effectiveness. We prove that FIRE unifies many existing additive RPE methods, while being adaptive
enough to learn diverse position encoding biases in long context settings. Empirical results show
strong length generalization behavior pushing the paradigm of train short test long. Our work does
suffer from some limitations. 1) We only study decoder models. 2) We do not analyze the role of other
components of Transformer and other training components (data, optimizer) in length generalization.
These questions are interesting directions for future exploration.
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A OMITTED PROOF

In this section, we first provide a more general formulation of T5’s positional encoding function as
mentioned in Sec. 2.2. Then we provide the proof of Theorem 3.1.

A.1 T5’S RPE WITH BUCKETING

In Sec. 2.2, we use a simplified description for T5’s RPE. In practice, T5’s RPE does not assign
different position bias for all different relative positions. Instead, all possible relative distances are
partitioned into several buckets, and the relative distances in one bucket share a (learnable) attention
bias. Formally speaking, T5’s RPE pre-defines 0 = s0 < s1 < · · · < sk−1 < sK , and computes the
attention bias as

b(i, j) =

{
rk sk ≤ i− j < sk+1; k = 0, · · · ,K − 1

rK i− j ≥ sK
. (5)

It’s easy to see that the formulation in Sec. 2.2 is a special case of Eq. (5) by setting sk = k. In the
official T5 implementation8, the buckets are defined based on “log binning". With K +1 buckets and
a pre-defined distance L1, the attention bias is calculated as (assuming K + 1 is even)

b(i, j) =


ri−j 0 ≤ i− j < K+1

2

rK+1
2 +⌊K+1

2 log( 2(i−j)
K+1 )/ log( 2L1

K+1 )⌋
K+1
2 ≤ i− j < L1

rK i− j ≥ L1

. (6)

This is also a special case of Eq. (5).

In the proof of Theorem 3.1, we will be working on the most general formulation (Eq. (5)), so that
the proof works for any specific instances.

A.2 PROOF OF THEOREM 3.1

Proof. For each RPE variant (T5’s RPE, Alibi, Kerple, and Sandwich), we provide constructions in
which FIRE represent each of the target b0 for 0 < j ≤ i < L0.

T5’s RPE. We consider the general T5’s RPE formulation with bucketing in Eq. (5). The target
positional encoding function can be rewritten as

b0(i, j) = r0 +

K∑
k=1

(rk − rk−1) · 1{i−j≥sk}. (7)

Consider a two-layer MLP with activation σ(x) = 1{x≥0} and K hidden neurons:

fθ(x) = v⊤
2 σ(v1x+ b1) + b2. (8)

Let v1 = L01 (where 1 denotes an all-one vector), b1 = [−s1,−s2, · · · ,−sK ]⊤,v2 = [r1−r0, r2−
r1, · · · , rK − rK−1]

⊤, and b2 = r0.

In the positional encoding function of FIRE (Eq. (4)), we set the transform ψ to be the identity
mapping x 7→ x and the threshold L to L0.

8https://github.com/google-research/text-to-text-transfer-transformer.
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Then for any 0 < j ≤ i ≤ L0,

bFIRE(i, j) =fθ

(
i− j

L0

)
(9)

= [r1 − r0 r2 − r1 · · · rK − rK−1]σ



i− j − s1
i− j − s2

...
i− j − sK


+ r0 (10)

= [r1 − r0 r2 − r1 · · · rK − rK−1]


1{i−j≥s1}
1{i−j≥s2}

...
1{i−j≥sK}

+ r0 (11)

=

K∑
k=1

(rk − rk−1) · 1{i−j≥sk} + r0. (12)

Thus, we have bFIRE(i, j) = b0(i, j) for any 0 < j ≤ i ≤ L0.

Alibi. The target positional encoding function is b0(i, j) = −r(i− j) (note that we focus on the
setting where i ≥ j). Consider a one-layer MLP with identity activation and no bias term (which
degrades to a linear mapping) fθ(x) = v1x, and let v1 = −rL0. In the positional encoding function
of FIRE (Eq. (4)), we set the transform ψ to be the identity mapping x 7→ x and the threshold L to
L0. Then for any 0 < j ≤ i ≤ L0,

bFIRE(i, j) = fθ

(
i− j

L0

)
= −r(i− j) = b0(i, j), (13)

which concludes the proof.

Kerple (logarithmic variant). The target positional encoding function is b0(i, j) = −r1 log(1 +
r2(i − j)) (note that we focus on the setting where i ≥ j). Consider a one-layer MLP with
identity activation and no bias term (which degrades to a linear mapping) fθ(x) = v1x. and let
v1 = −r1 log(1 + r2L0). In the positional encoding function of FIRE (Eq. (4)), we set the transform
ψ to be the log transform x 7→ log(r2x+1) and the threshold L to L0. Then for any 0 < j ≤ i ≤ L0,

bFIRE(i, j) = fθ

(
log(1 + r2(i− j))

log(1 + r2L0)

)
= −r1 log(1 + r2(i− j)) = b0(i, j), (14)

which concludes the proof.

Kerple (power variant). The target positional encoding function is b0(i, j) = −r1(i− j)r2 (note
that we focus on the setting where i ≥ j). Consider a two-layer MLP with activation σ(x) = xr2 ,
one hidden neuron, and no bias term: fθ(x) = v2(v1x)

r2 . Let v1 = r2
√
r1L0 and v2 = −1. In the

positional encoding function of FIRE (Eq. (4)), we set the transform ψ to be the identity mapping
x 7→ x and the threshold L to L0. Then for any 0 < j ≤ i ≤ L0,

bFIRE(i, j) = fθ

(
i− j

L0

)
= −( r2

√
r1(i− j))r2 = −r1(i− j)r2 = b0(i, j), (15)

which concludes the proof.

Sandwich. The target positional encoding function is

p0(i, j) = c

d′∑
k=1

cos
(
(i− j)/10000

k
d′
)
. (16)

Consider a two-layer MLP with cos activation, d′ hidden neurons, and no bias term:

fθ(x) = v⊤
2 cos(v1x). (17)
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Let v1 =
[
L0/10000

1
d′ , L0/10000

2
d′ , · · · , L0/10000

1
]⊤

and v2 = c1. In the positional encoding
function of FIRE (Eq. (4)), we set the transform ψ to be the identity mapping x 7→ x and the threshold
L to L0. Then for any 0 < j ≤ i ≤ L0,

bFIRE(i, j) =fθ

(
i− j

L0

)
(18)

= [c c · · · c]


cos

(
(i− j)/10000

1
d′

)
cos

(
(i− j)/10000

2
d′

)
...

cos
(
(i− j)/100001

)

 (19)

=c

d′∑
k=1

cos
(
(i− j)/10000

k
d′
)
. (20)

Thus, we have bFIRE(i, j) = b0(i, j) for any 0 < j ≤ i ≤ L0.

B ABLATION STUDY

The positional encoding function of FIRE can be viewed as a composition of a position transformation
and a function approximator b(i, j) = fθ(g(i− j, i)). The position transformation g takes the relative
distance i − j and the query position i as the input and produces a “normalized” distance. For
example, in Eq. (4), the position transformation g : (i− j, i) 7→ ψ(i− j)/ψ(max{i, L}). Different
choices of ψ leads different position transformation g. The function approximator fθ should be in an
expressive function class parametrized by θ, which transforms the normalized distances into attention
biases. For example, we use a two-hidden-layer MLP with 32 neurons in each hidden layer and
ReLU activation by default, as discussed in Appendix C.1.

In this section we ablate our design choices for both the position transformation and the function
approximator. We also conduct ablation experiments to test the length generalization performances
on different training sequence lengths. All the ablation experiments are based on base-sized models.

B.1 THE LOG TRANSFORM AND THRESHOLDING IN POSITION TRANSFORMATIONS

In Sec. 3.2, we propose two modifications, the log transformation and thresholding operation, as
additional transformations to the relative distance. We conduct experiments to ablate these design
choices and demonstrate their effectiveness. We experiment with base-sized models and compare
FIRE variants with or without the additional transformations in Sec. 3.2. Specifically, we consider
three variants with the following positional encoding functions:

Without log transform/thresholding: b1(i, j) = fθ

(
i− j

i

)
. (21)

With log transform but without thresholding: b2(i, j) = fθ

(
log(c(i− j) + 1)

log(ci+ 1)

)
. (22)

With log transform and thresholding: b3(i, j) = fθ

(
log(c(i− j) + 1)

log(cmax{L, i}+ 1)

)
. (23)

For all the three variants (Eq. (21-23)), fθ is parameterized as a two-hidden-layer MLP with 32
neurons in each hidden layer and ReLU activation to ensure a fair comparison. Eq. (23) is the
standard FIRE positional encoding function used in Sec. 4. We experiment on C4 language modeling
and GLUE/SuperGLUE benchmark using the settings and evaluation metrics described in Appendix
C. The experimental results are shown in Table 3. From the language modeling results, we can
see that both the log transformation and the thresholding operation improve the language modeling
quality for all the lengths, and the standard FIRE positional encoding function in Eq. (23) is the best
variant. In particular, the log transformation largely improve the performance on long sequences,
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indicating that amplifying the differences among local positions helps in the long sequence regimes.
We further study the effectiveness of the thresholding operation on GLUE/SuperGLUE benchmark
which contains relatively short sequences. The results show that the thresholding operation leads to
0.72 point performance gain on average GLUE/SuperGLUE accuracy, verifying its effectiveness on
improving short sequence modeling.

Table 3: Ablation study on the position transformation. We compare FIRE variants with or
without the additional transformations in Sec. 3.2. For log transform, % indicates ψ(x) = x, i.e., no
log transform; while ! indicates ψ(x) = log(cx + 1), i.e., applying log transform for the relative
distance. For thresholding, % indicates using ψ(i) to normalize the relative distance, i.e., thresholding
operation; while! indicates ψ(max{i, L}) to normalize the relative distance with L being a learnable
threshold.

Method C4 log perplexity with varying lengths

Log transform Thresholding Formula 512 1024 2048 4096 8192
% % Eq. (21) 3.194 3.128 3.099 3.216 3.334
! % Eq. (22) 3.161 3.093 3.062 3.057 3.085
! ! Eq. (23) 3.149 3.083 3.054 3.046 3.056

Method GLUE/SuperGLUE

Log transform Thresholding Formula Average accuracy
% % Eq. (21) 69.06
! % Eq. (22) 70.42
! ! Eq. (23) 71.14

Additional discussions on the thresholding operation. We note that even FIRE without thresh-
olding outperforms all the baselines (including RoPE, T5’s RPE, etc) on all the sequence lengths on
C4 language modeling. Detailed comparisons are in Table 4.

In all the experiments presented in the paper, the threshold L of FIRE in Eq. (23) is a learnable
parameter. For the base-sized model pretrained on sequence length 2048, the learned parameter L is
between 1200 to 1600 across different layers. Setting L to a fixed value is also a viable option. In our
preliminary exploration, FIRE with either fixed or learnable L outperforms all the baselines, while the
learnable variant leads to better performances. The fixed variant introduces one more hyper-parameter
and may require more tuning. Thus, FIRE uses learnable threshold L as the default choice.

Table 4: Comparing FIRE variants with baselines. We present additional comparisons between
existing methods and FIRE variants with or without thresholding.

C4 log perplexity with varying lengths

Method 512 1024 2048 4096 8192
NoPE 3.206 3.14 3.111 3.287 3.410
RoPE 3.178 3.102 3.070 3.375 3.519
Alibi 3.320 3.248 3.216 3.438 3.537

Kerple 3.326 3.217 3.170 3.156 3.158
T5’s RPE 3.164 3.095 3.064 3.095 3.181

FIRE without thresholding (Eq. (22)) 3.161 3.093 3.062 3.057 3.085
FIRE (Eq. (23)) 3.149 3.083 3.054 3.046 3.056

B.2 EFFECTS OF THE FUNCTION APPROXIMATOR CAPACITY ON THE PERFORMANCES

We experimentally study the impact of the function approximator (fθ) capacity on the model perfor-
mance. We compare a linear layer, a one-hidden-layer MLP, and a two-hidden-layer MLP. The MLPs
both have 32 neurons in the hidden layers and use ReLU (Nair & Hinton, 2010) activation function.
Two-hidden-layer MLP is the defualt choice for FIRE in Sec. 4. We experiment on C4 language
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modeling and evaluate the models on varying sequence lengths using the settings and evaluation
metrics described in Appendix C.1 and present the experiment result in 5. The result shows that a
linear layer is not experssive enough and leads to suboptimal performance on C4 language modeling.
Introducing non-linearty and parametrizing fθ as a one/two-hidden-layer MLP leads to much better
results. In particular, using a one-hidden-layer MLP has largely improve the overall performances
especially in the long sequence regimes. For example, it outperforms a linear fθ by 0.24 point log
perplexity on sequence length 8192. Moreover, using an MLP with larger capacity (two hidden layers
v.s. one hidden layer) can further brings performance gains. That being said, the MLP is still very
tiny (with only 32 hidden neurons) and we believe it’s the non-linearty that helps.

Table 5: Ablation study on the capacity of the function approximator (fθ). We compare FIRE
variants with different activation functions in MLP.

C4 log perplexity with varying lengths

Parametrization of fθ 512 1024 2048 4096 8192
Linear 3.21 3.14 3.11 3.20 3.32

One-hidden-layer MLP (32 hidden neurons) 3.17 3.10 3.07 3.06 3.08
Two-hidden-layer MLP (32 hidden neurons) 3.15 3.08 3.05 3.05 3.06

B.3 CHOICE OF THE MLP ACTIVATION FUNCTION

We study the impact of the MLP activation function on the model performance. We experiment on
C4 language modeling and evaluate the models on varying sequence lengths using the settings and
evaluation metrics described in Appendix C.1. We compare ReLU (Nair & Hinton, 2010) and GeLU
(Hendrycks & Gimpel, 2016) activation functions and present the experiment result in 6. The result
shows that the model performance is not sensitive to the choice of activation function in the length
generalization setting, while ReLU works better on normal sequence lengths. Thus, we use ReLU as
our default activation function.

Table 6: Ablation study on the MLP activation. We compare FIRE variants with different activation
functions in MLP.

C4 log perplexity with varying lengths

512 1024 2048 4096 8192
ReLU 3.15 3.08 3.05 3.05 3.06
GeLU 3.36 3.26 3.06 3.05 3.06

B.4 CHOICE OF FINAL ACTIVATION OF MLP OUTPUT

In our main experiments, we focus on MLPs of the form fθ(x) = v⊤
ℓ σ(· · ·σ(v1x)) where σ is

the activation function. In this implementation, the MLP ends with a linear layer and no activation
function is applied to the MLP final output. A slightly different choice is to consider f̃θ(x) =
σ(v⊤

ℓ σ(· · ·σ(v1x))) where a final activation is applied to the MLP output. We compare these two
choices by experimenting on C4 language modeling and evaluating the models on varying sequence
lengths. We use one-hidden-layer MLP with 32 hidden neurons and the ReLU (Nair & Hinton, 2010)
activation function in both model variants. The results are presented in Table 7. We find that MLP
without final activation leads to better performances on long sequences and use it as our default
choice.

B.5 FIRE IS STILL STRONG WHEN TRAINED ON SEQUENCE LENGTH 512

In most of our pretraining experiments, the training sequence length is set to 2048 (see Appendix
C.1). In this experiment we train models with different positional encodings on C4 with training
sequence length 512 to confirm that the overall performance trends are not sensitive to the pretraining
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Table 7: Ablation study on final activation of MLP output. We compare FIRE variants using MLP
with/without final activation to its output.

C4 log perplexity with varying lengths

512 1024 2048 4096 8192
With final activation 3.16 3.10 3.07 3.09 3.19

Without final activation 3.17 3.10 3.07 3.06 3.08

sequence length. Other experimental settings are te same as those in Appendix C.1. We evaluate the
models on varying sequence lengths and report the log perplexity in Fig. 6. It’s clear that FIRE still
achieves the strongest overall performance compared with all the other baselines. The results in Fig.
1 & 6 demonstrate that FIRE can robustly deliver higher modeling quality regardless of the training
sequence lengths.
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Figure 6: Language modeling perplexity evaluated on varying sequence lengths on C4 validation
set. The plots are base-sized models with training sequence length 512.

C EXPERIMENT SETTINGS & ADDITIONAL RESULTS

C.1 LANGUAGE MODELING WITH LENGTH GENERALIZATION

Model configurations. In this experiment, we train decoder-only Transformer language models
with different positional encoding variants while keeping all the other configurations the same. For
T5’s RPE, we follow Raffel et al. (2019) and use 64 position bucket for each attention head. For
Alibi, we follow Raffel et al. (2019) to set the hyperparameters in the positional encoding function in
each attention head. For our FIRE method, we use the positional encoding function defined in Eq.
(4). In Eq. (4), we let ψ(x) = log(cx+ 1) where c is a learnable parameter; fθ is parametrized as a
two-hidden-layer MLP with 32 neurons in each hidden layer and ReLU activation.

We experiment with two model size settings, base (125M parameters) and large (350M parameters).
The model configurations follow (Brown et al., 2020) and are presented in Table 8.

Training recipe. Following Brown et al. (2020), we use the causal LM objective to pretrain
decoder-only Transformers with different position encodings. We use the C4 dataset (Raffel et al.,
2019) as the pretraining corpora. We set pretraining sequence lengths to 2048, and evaluate the
zero-shot perplexity on sequence lengths {512, 1024, 2048, 4096, 8192}. We truncate documents
with length greater than 2048 to multiple sequences of length 2048 during training; similar trucation
is done to construct the validation sets of different sequence lengths. Our training recipe follows
(Brown et al., 2020) and is presented in Table 9.

Additional results. We evaluate language modeling log perplexity with varying lengths on C4,
arXiv, and Github datasets (Raffel et al., 2019; Gao et al., 2020) for both base and large models. The
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Table 8: Model configurations for language model pretraining.

Small model Large model
Training sequence length 2048 2048

Number of layers 12 24
Attention heads 12 16

Hidden layer size 768 768
Head dimensions 64 64
FFN activation GeLU GeLU

Number of parameters 125M 350M

results of base models on C4 are presented in Fig. 1. The results of large models on all the three
datasets are presented in Fig. 2. In Fig. 7, we additionally present the results of base models on arXiv
and Github. All the results show similar trends and FIRE consistently demonstrate strong length
generalization behavior.
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Figure 7: Language modeling perplexity evaluated on varying sequence lengths on arXiv (left) and
Github (right) validation set. The plots are base-sized models with training sequence length 2048.

Table 9: Training recipe for language model pretraining.

Small model Large model
Training sequence length 2048 2048

Batch size 256 256
Numer of iterations 600k 600k

Dropout prob. 0.0 0.0
Attention dropout prob. 0.0 0.0

Optimizer AdamW AdamW
Learning rate 6e− 4 3e− 4

Hardware (TPUv4 chips) 128 256

C.2 FINETUNING ON LONG TEXT BENCHMARK

Datasets and evaluation metrics. We use SCROLLS long text benchmark (Shaham et al., 2022) to
further test the models’ capability of learning and modeling long sequences. SCROLLS benchmark
includes question-answering datasets - Qasper, NarrativeQA, and QuALITY ; natural language
inference datasets - ContractNLI; and summarization datasets - QMSum, SummScreenFD, and
GovReport. Following existing works Shaham et al. (2022); Ainslie et al. (2023), three different
evaluation metrics are used for different datasets: Rgm score (the geometric mean of ROUGE-1,2,L)
for GovReport, SummScreenFD, and QMSum, unigram overlap (F1) for Qasper and NarrativeQA,
and exact match (EM) for ContractNLI and QuALITY. We also compute the average score across
different datasets as done in the SCROLLS benchmark.
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Model and training configurations. We finetune the checkpoints pretrained on C4, so the model
configurations are the same as those in Table 8. We use the same set of hyperparameters for all
the models and all the tasks, and report the best results on the validation set. Table 10 presents our
finetuning configurations.

Table 10: Finetuning configurations for SCROLLS benchmark.

Batch size 128
Numer of iterations 25k

Dropout prob. 0.1
Attention dropout prob. 0.1

Optimizer AdamW
Learning rate 1e− 5

Hardware (TPUv4 chips) 128

C.3 ZERO-SHOT LENGTH GENERALIZATION ON NARRATIVEQA

Datasets and evaluation metrics. We use the NarrativeQA dataset (Kočiskỳ et al., 2018) with
different input context lengths to test the model’s ability to leverage long context in zero-shot learning
settings. We use the base-sized model checkpoints pretrained on C4 (sequence length 2048) and
finetuned on NarrativeQA (sequence length 8192). We evaluate the models on context lengths
{512, 2048, 4096, 8192, 16384, 24576, 32768} and use unigram overlap (F1) as the evaluation met-
ric.

Detailed results. We provide detailed performances of all the tested models in Table 11. The result
shows that FIRE is consistently outperforming all the baselines across all different context lengths.

Table 11: Detailed performance comparisons on NarrativeQA with varying context lengths.
“RoPE-PIL0

” refers to RoPE interpolation with max sequence lengths L0. Best performances are
highlighted in bold.

Context length 512 2048 4096 8192 16384 24576 32768 Average

NoPE 2.245 4.070 4.277 5.661 4.770 4.716 3.930 4.238
RoPE 1.546 1.482 2.060 8.737 1.071 0.190 0.132 2.174

RoPE-PI8192 5.241 4.639 6.070 8.301 0.565 0.728 0.623 3.738
RoPE-PI32768 4.092 5.912 5.769 5.459 5.677 5.446 6.767 5.589

Alibi 4.036 4.339 4.190 4.251 4.144 4.086 3.899 4.135
Kerple 5.590 7.832 8.001 9.249 9.483 9.204 9.010 8.338

T5’s RPE 4.595 5.557 6.528 8.983 3.872 2.226 1.757 4.788
FIRE (ours) 6.232 8.076 8.178 9.581 9.581 9.868 9.417 8.705

C.4 FINETUNING ON GLUE/SUPERGLUE

Datasets, evaluation metrics, and configurations. GLUE and SuperGLUE are widely-used bench-
marks to evaluation the natrual language understanding capability of neural language models (Wang
et al., 2019b;a). We finetune the models on a mixture of the tasks in GLUE and SuperGLUE for
simplicity. We evaluate the model on each task separately. We use the macro average accura-
cy/exact match across all the tasks as our main evaluation metric. Table 12 presents our finetuning
configurations.

Detailed results. For reference, we present detailed results for all the models on each individual
dataset in Table 13. In general, FIRE achieves decent performances. Thus, FIRE’s strong perfor-
mances on long sequences does not come at the price of sacrificing model quality on short sequences
and standard tasks.

22



Published as a conference paper at ICLR 2024

Table 12: Finetuning configurations for GLUE/SuperGLUE benchmark.

Batch size 256
Numer of iterations 25k

Dropout prob. 0.1
Attention dropout prob. 0.1

Optimizer AdamW
Learning rate 1e− 5

Hardware (TPUv2 chips) 32

Table 13: Detailed performances on GLUE and SuperGLUE tasks. The evaluation metrics are
EM (exact match) for Multirc & Record; and accuracy for the remaining tasks.

Base models

Boolq Cb Cola Copa Mnli Mrpc Qnli Qqp
NoPE 72.51 73.21 69.42 67.00 79.72 75.98 84.70 88.72
RoPE 75.78 80.36 74.78 60.00 83.11 79.17 87.70 90.03

RoPE-PI 75.72 80.36 72.87 64.00 82.87 80.64 86.89 89.93
Alibi 69.76 76.79 69.32 58.00 78.02 76.72 83.97 88.14

Kerple 77.31 82.14 74.11 61.00 82.69 80.64 87.66 90.22
T5’s RPE 76.30 83.93 71.33 61.00 82.10 81.37 87.61 89.87

FIRE (ours) 76.76 83.93 73.63 59.00 83.01 80.39 87.83 89.97

Rte Sst2 Wic Wnli Multirc Record Wsc
NoPE 71.84 91.17 58.78 63.38 16.89 35.50 67.31
RoPE 73.65 92.89 66.93 61.97 23.19 46.57 71.15

RoPE-PI 71.48 91.51 65.05 60.56 22.46 45.96 70.19
Alibi 68.23 88.76 57.05 61.97 12.70 29.34 63.46

Kerple 69.68 92.43 64.89 53.52 22.56 47.74 66.35
T5’s RPE 73.65 92.20 63.79 60.56 20.57 45.71 69.23

FIRE (ours) 75.81 92.66 64.58 60.56 25.81 46.89 66.35

Large models

Boolq Cb Cola Copa Mnli Mrpc Qnli Qqp
NoPE 79.27 83.93 78.24 61.00 84.39 79.90 89.79 90.74
RoPE 79.66 91.07 80.54 63.00 85.67 81.86 90.87 91.04

RoPE-PI 79.45 92.86 80.54 63.00 85.31 81.62 90.52 91.05
Alibi 74.77 80.36 71.05 58.00 81.72 79.41 86.18 89.75

Kerple 80.70 92.86 79.29 65.00 85.63 80.88 90.56 90.86
T5’s RPE 79.88 87.50 78.33 65.00 84.80 83.58 89.77 90.71

FIRE (ours) 79.60 85.71 79.10 65.00 84.93 81.13 90.37 90.84

Rte Sst2 Wic Wnli Multirc Record Wsc
NoPE 77.26 93.69 62.70 59.16 26.65 51.18 70.19
RoPE 79.42 94.38 69.59 60.56 30.64 58.23 72.12

RoPE-PI 79.06 94.61 70.69 56.34 31.17 56.69 68.27
Alibi 72.56 91.97 60.35 50.70 22.77 40.79 66.35

Kerple 79.06 94.61 67.24 53.52 31.17 58.55 71.15
T5’s RPE 79.78 92.89 64.58 54.93 29.80 52.54 69.23

FIRE 80.87 93.92 67.71 59.16 31.90 54.67 72.12
Kerple 79.06 94.61 67.24 53.52 31.17 58.55 71.15

T5’s RPE 79.78 92.89 64.58 54.93 29.80 52.54 69.23
FIRE (ours) 80.87 93.92 67.71 59.16 31.90 54.67 72.12
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C.5 VISUALIZATION

We present another visualization of learned FIRE biases for query at position 8192 in Figure 8.
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Figure 8: Visualization of FIRE learned position biases for the 8192nd query position with key
positions between 1 and 8192. We notice that FIRE models learn both local and anti-local position
patterns.

C.6 EFFICIENCY AND FIRE-SHARED

For FIRE-S (FIRE with layerwise sharing), we experiment with the base-sized model (125M parame-
ters), and keep all the configurations and training recipes the same as those in previous subsections.
The models are pretrained on C4 with sequence length 2048. The finetuning sequence lengths are
8192/1024 for SCROLLS and GLUE/SuperGLUE, respectively.

For the inference time evaluation, we test the forward time of base-sized model with different
positional encodings on sequence length 2048. We measure the forward time on 4 TPUv2 chips for
all the models, and report the average result over 10 runs.

D RELATED WORKS

In the main body of the paper, we cover the most relevant works to our paper (Sec. 2). In this section,
we provide more discussions on related works.

Length generalization. Many existing works show the length generalization failure of standard
Transformer models (Press et al., 2022; Anil et al., 2022; Deletang et al., 2023; Liu et al., 2024).
Recently, there have been growing interests in long-context applications such as multi-step reason-
ing (Wei et al., 2022; Dziri et al., 2023; Zhao et al., 2023) and document/book understanding (Kočiskỳ
et al., 2018; Ke et al., 2022; Guo et al., 2022; Ainslie et al., 2023; Liu et al., 2023). Designing length-
generalizable Transformers is appealing for these applications. Dubois et al. (2020); Chowdhury &
Caragea (2023) introduce location attention for length generalization on synthetic tasks. Bueno et al.
(2022) show that generating step-by-step rationales and using marker tokens as positional guides
helps length generalization. Studying positional encoding approaches for length generalization is
a main direction in this line of research. Press et al. (2022); Chi et al. (2022; 2023) propose new
relative positional encoding methods which emphasize recency bias and improve language modeling
on longer sequences. Chu et al. (2023) propose Conditional Positional Encodings to enhance Vision
Transformer length generalization. The most relevant to our work is a concurrent paper by Chen
et al. (2023). It propose Position Interpolation (PI) for Rotary Positional Encoding (RoPE), which
extends the context window of RoPE-based pretrained models given a downstream max sequence
length. However, this requires additional finetuning on longer sequence data, albeit for much fewer
steps than original training. By contrast, our proposed FIRE does not require a pre-defined max
sequence length, and can be directly applied to length generalization setting without tuning. We
provide extensive experimental comparisons in Sec. 4. More recently, Zhou et al. (2024) show that
standard Transformers can generalize to a sequence length that is 2.5× the training input length on
integer addition using FIRE (and other techniques (Ruoss et al., 2023; Zhou et al., 2023)).
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Positional encoding in Transformers. Positional encoding is a critical component of Transformers.
Vaswani et al. (2017) propose sinusoidal Absolute Positional Encoding (APE) to encode positional
information in the sequential input. Shaw et al. (2018) are the first to propose Relative Positional
Encoding (RPE) for Transformers, and many follow-up works explore different RPE strategies (Dai
et al., 2019; Raffel et al., 2019). There are also many works that study positional encoding from
different perspectives, including the disentanglement of positional and content information (Kitaev
& Klein, 2018; Ke et al., 2021), the representational power of attention modules and Transformers
(Cordonnier et al., 2019; Chen et al., 2021; Li et al., 2021; Luo et al., 2022), computational efficiency
(Su et al., 2021; Liutkus et al., 2021; Luo et al., 2021; Choromanski et al., 2023), and length
generalization (Press et al., 2022; Chi et al., 2022; 2023; Kazemnejad et al., 2023). Our work is based
on a unified formulation of existing additive relative positional encoding approaches, and proposes
new RPE variant aimed at improving length generalization.

Interpolation techniques in deep learning. Interpolation techniques are successfully applied to
many deep learning applications, especially in computer vision. Long et al. (2015) employ bilinear
interpolation in up-sampling layers of convolutional neural networks for dense visual prediction.
Dong et al. (2015); Johnson et al. (2016) employ bicubic interpolation for image super-resolution.
Radford et al. (2015) probe generative models by interpolation in the latent space. Zhang et al.
(2018); Han et al. (2022) use interpolating between pairs of examples and their labels as an data
augmentation method. Recently, Dosovitskiy et al. (2021) propose to perform 2D interpolation of the
pre-trained APE for Vision Transformer to apply the model to higher resolution images. In contrast,
our interpretation is applied in the relative position encoding functions. Besides, we are focused on
causal attention setting where “global” information such as the total sequence length is unknown,
while Dosovitskiy et al. (2021) work on encoder-only Transformers with fixed input lengths.

E IMPLEMENTATION

In this section, we present the implementation of our proposed FIRE module in PyTorch (Paszke
et al., 2019).

1 import torch
2 import torch.nn as nn
3
4 class FIRE(nn.Module):
5 def __init__(self, num_heads=12, mlp_width=32, init_c=0.1,
6 init_L=512., eps=1e-6):
7 """
8 FIRE attention bias module.
9

10 Args:
11 num_heads: number of attention heads.
12 mlp_width: Width of MLP.
13 init_c: initial value of log transformation parameter
14 init_L: initial value of thresholding parameter
15 eps: small constant for numerical stability
16 """
17 super(FIRE, self).__init__()
18
19 # Define the MLP layers
20 self.mlp = nn.Sequential(
21 nn.Linear(1, mlp_width),
22 nn.ReLU(),
23 nn.Linear(mlp_width, num_heads)
24 )
25
26 # Initialize c (log transformation parameter)
27 self.c = nn.Parameter(torch.tensor(init_c))
28
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29 # Initialize L (threshold)
30 self.init_L = nn.Parameter(torch.tensor(init_L),
31 requires_grad=False)
32 # Learn a multiplier to L
33 self.L_multiplier = nn.Parameter(torch.tensor(1.0))
34
35 self.eps = eps
36
37 def forward(self, x: torch.Tensor):
38 """
39 Compute FIRE attention bias.
40
41 Args:
42 x: input sequence,
43 shape [bsz, num_heads, seq_len, hidden_dim]
44
45 Returns:
46 attention bias,
47 shape [1, num_heads, seq_len, seq_len]
48 """
49 seq_length = x.size(2)
50 positions = torch.arange(seq_length,
51 dtype=torch.float,
52 device=x.device)
53 rel_distance = positions[:, None] - positions[None, :]
54
55 # Thresholding the normalizer
56 threshold = torch.abs(self.L_multiplier * self.init_L)
57 pos_normalizer = torch.max(positions, threshold)
58 pos_normalizer = pos_normalizer[:, None]
59
60 # Amplifying differences among local positions
61 # with log transform
62 rel_distance = torch.log(
63 torch.abs(self.c * rel_distance) + 1
64 )
65 pos_normalizer = torch.log(
66 torch.abs(self.c * pos_normalizer) + 1
67 ) + self.eps
68
69 # Progressive interpolation
70 normalized_distance = rel_distance / pos_normalizer
71 fire_bias = self.mlp(normalized_distance.unsqueeze(-1))
72 fire_bias = fire_bias.unsqueeze(0).permute(0, 3, 1, 2)
73 return fire_bias
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