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1 Introduction

This supplementary file provides evidences that support the claims submitted in the main paper. We re-
fer to Section/Table/Figure/Eq. in the main paper as Section M.xx/Table M.xx/Figure M.xx/Eq.M.(xx).
We denote Section/Table/Figure/Eq. in this supplementary file as Section S.xx/Table S.xx/Figure
S.xx/Eq. S.(xx).

In brief summary, the following contents are included: 1. The proof supporting Theorem 1 of the
main paper. 2. More explanations behind Section M.4.1 that distinguish Conditional-i from HOOD
in principle. 3. How we generated OOD training data for Conditional-i-generative. 4. Algorithm
flow for Conditional-i. 5. Implementation details of implementing Conditional-i-generative. 6. More
implementation and evaluation details of experiments demonstrated in M.Section 5, including how
the error bar was produced, sampling strategy and other setups. 7. HSIC metric comparisons between
compared methods. 8. Code Licenses. 9. Detailed performance scores corresponding to each specific
test dataset.

2 Proof of Theorem 1

An outline of proof for Theorem 1 is provided below by adapting techniques from [9]. For con-
venience, let h(c) = F (c) ◦ (g(1), . . . , g(C), g(o)) denote the mapping from the sample-generating
random vectors to the feature of class c extracted from the samples. Therefore for a random sample
(w

(1)
i , . . . ,w

(C)
i ,βi) of the generating vector (w(1), . . . ,w(C),β), where w(c) denotes the generator

of a class c incidence, β denotes the generator of an outlier, and h(c) : (w
(1)
i , . . . ,w

(C)
i ,βi) 7→ z

(c)
i ,

for c = 1, . . . , C. We also denote the lth element of h(c) as h(c)
l for l = 1, . . . , d.

By intermediate value theorem,∣∣∣∣∣ ∂F (c)
l

∂[βi]j

∣∣∣∣∣ ≤ ∣∣∣h(c)
l (w
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i , . . . ,w

(C)
i ,βi−∆·ej)

∣∣∣/(2∆)+|∆2ϕ′′′
lj /6|,

(1)
where ∆ is a small constant, ej is the unit vector in the direction of [βi]j , and ϕ′′′

lj is the third

derivative of h(c)
l as a function of [βi]j alone (fixing values of other inputs) at a value in the interval

([βi]j −∆, [βi]j +∆).
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then the right side of Eq. S.(1) is bounded further using the triangular inequality by
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By Jensen’s inequality, both E(
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where K1 is a constant and RN is the Rademacher complexity of function class F (c)
l (·;θ) for all

l = 1, . . . , d and c = 1, . . . , C, based on Theorem 3.3 of [10].

The first term in Eq. S.(2) is assumed to be bounded by ν ≥ 0. The rationale for a small ν
is that an optimal solution F should minimize Eq. (10) in the main text, which is equivalent to
minimizing the empirical distance between the softmax function of (z(1)

i , . . . ,z
(C)
i ) and that of the

true classifiers (w(1)
i , . . . ,w

(C)
i ). The empirical distance between the softmax functions is bounded

and Lipschitz and can be approximated by the L2 norm of the distance between (z
(1)
i , . . . ,z

(C)
i )

and (w
(1)
i , . . . ,w

(C)
i ), and thus we expect to see a small empirical distance given a well-performing

optimal solution F . Therefore, an upper bound for Eq. S.(2) is given by ϵ = ν + K1RN +

4C2
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log(1/δ)/(2N). Evaluating the expectation of Eq. S.(1) with conditions in Theorem 1 gives
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and finding the minimizer ∆ leads to the desired result.

3 Examples Supporting Section M.4.1

Here we provide an example to demonstrate the difference in solution between the Conditional-i
and HOOD [7] methods. With results of Sections 3.4 and 4.1 in the main text, in the scenario of
d = 1 and linear kernel, HSICHOOD = ∥Z⊤Q∥F , where Z denotes the vector of samples from
the mixture distribution pM (z) =

∑C
c=1 pθ(z

(ξ) | ξ = c)p(ξ = c) and Q denotes the samples
of out of distribution features q. When the sample size is large, HSICHOOD is approximately
the Frobenius norm of N times of the correlation between the out of distribution feature and z
from the mixture distribution. Minimizers q of HSICHOOD are those orthogonal (inner product
defined by the correlation) to the linear combination

∑C
c=1 p(ξ = c)z(c), where z(c) follows the

conditional distribution of z given class ξ = c. Suppose the total number of classes C = 2,
p(ξ = 1) = p(ξ = 2) = 1/2, and the correlation between z(1) and z(2) is omissible. Then
q = z(1)/

√
2− z(2)/

√
2 minimizes HSICHOOD but is not orthogonal of each z(c). On contrary, the

minimizer of HSICcond-i is required to be orthogonal of each z
(c)
i .

We also associate new visualization results to support the difference between HOOD and Conditional-
i. Figure S.1 demonstrates how well the test score functions out of each method separates the
in-distribution and out-of-distribution data. It can be observed that Conditional-i (Figure S.1(c))
offers better separation than HOOD (Figure S.1(b)), as per the discussion in the response. HOOD
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(a) K-Base (AUROC: 65.36)
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(b) HOOD (AUROC: 79.62)
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(c) Conditional-i (AUROC: 85.20)

Figure 1: OOD test score histograms out of different OOD detection methods.
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Conditional-i

Figure 2: Illustration of HOOD optimum and Conditional-i optimum

and Conditional-i both significantly surpass the K-Base model (Figure S.1(a)) in terms of test score
separation. The features used here were obtained from the model producing Table M.2 in the main
paper.

In terms of the illustrative example where d = 3 we mentioned during response, we also managed to
illustrate our example in Figure S.2.

Specifically, in the scenario of d = 3 and linear kernel, HSIChood = |Z⊤Q|F . We assume, for the
purpose of visual illustration, in-distribution feature from the 1st in-distribution class z(1) is virtually
represented by the vector [1, 0, 0]⊤ ∈ R3, and the 2nd in-distribution class z(2) is virtually represented
by [0, 1, 0]⊤ ∈ R3. Suppose again the total number of classes C = 2, p(ξ = 1) = p(ξ = 2) = 1/2,
and the correlation between z(1) and z(2) is omissible, made apparent by the orthogonal relation
between z(1) and z(2). Then OOD feature q = [−

√
2
2 ,

√
2
2 , 0] is one of the minimizers for HSIChood

but is not orthogonal of each individual z(1) or z(2) from in-distribution classes at all. This means
that q still poses strong correlations/dependence with both in-distribution features z(1) and z(2),
whereas q is independent of the standardized sum [

√
2
2 ,

√
2
2 , 0] of the two (HOOD motivation), which

represents the mixture distribution of the two features.

However, the HOOD minimizer q = [−
√
2
2 ,

√
2
2 , 0] cannot be a minimizer of HSICcond-i, as

Conditional-i poses stricter conditions that q needs to be having small dependence on every in-
distribution class. Correspondingly, q = [0, 0, 1] is an optimal solution of Conditional-i loss, that
q = [0, 0, 1] achieves simultaneous independence with both z(1) and z(2). Note that the desired
solution q = [0, 0, 1] can also be a local minimum of HOOD though, but HOOD has no incen-
tive to avoid the solution of q = [−

√
2
2 ,

√
2
2 , 0] among infinite number of local minima, whereas

Conditional-i exclusively can escape such bad local minima, by always anchoring at the desired
solution q = [0, 0, 1].

This example is well illustrated by Figure S.2, where qhood illustrates the minimizer of HOOD
whereas qcond−i represents the minimizer of Conditional-i. Minimizer of OOD feature qhood out
of HOOD lies in the same hyperplane spanned by z(1) and z(2). Note that qhood is orthogonal to
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the sum of z(1) and z(2), whereas qhood is still correlated to both z(1) and z(2). Minimizer of OOD
feature qcond−i out of Conditional-i lies in the position orthogonal to the hyperplane spanned by z(1)

and z(2), and qcond−i is orthogonal to both of z(1) and z(2).

4 Overall Algorithm Flow of Conditional-i

# encoder: f; cls: classifier;
# x, y: inlier images and labels;
# u: outlier images; C: number of inlier classes;
# C_hat: number of classes for CondHSIC;
# lamb: conditional -i loss weight; queue: inlier queue;

for (x, y, u) in loader:
# encoding features
z, q = f(x), f(u) # (N, D)
# cross entropy loss
p = cls(z). # (N, C)
ce_loss = CrossEntropyLoss(p, y)
# conditional -i loss
cond_hsic_loss = CondHSIC(q, queue).mean()
loss = ce_loss + lamb * cond_hsic_loss # total loss
loss.backward ()
# update encode and classifier
update(f, cls)
# update inlier queue based on class of z
enqueue_n_dequeue(queue , z, y)

def CondHSIC(q, queue):
C = queue.size(dim=0) # number of inlier classes
# random select a list of inlier classes
C_hat_list = randint(C, size=C_hat)
# conditional hsic loss
cond_hsic = 0.
for i in C_hat_list:

cond_hsic += HSIC(q, queue[i]) / C_hat
return cond_hsic

def HSIC(q, z):
N = z.size(1)
# compute batch -wise kernel K
K_z , K_q = b_kernel(z), b_kernel(q) # (C, N, N)
# compute KH
KH_z = K_z - mean(K_z , dim=1, keepdim=True)
KH_q = K_q - mean(K_q , dim=1, keepdim=True)
return trace(bmm(KH_z , KH_q))/(N-1)** 2

Figure 3: PyTorch pseudo-code of Conditional-i Model.

5 Conditional-i-generative

In this section, we describe how we did generate “fake” OOD training data for Conditional-i-
generative, particularly for the training scenarios when we lose access to true known OOD training
data. Briefly speaking, we apply distortions to each of the inlier data so that we can generate OOD
training data based on in-distribution data themselves through relatively cheap implementations.

In order to produce the Conditional-i-generative scores reported in Table M.1, we apply strong
augmentations [2] technique to each inlier training image with the augmentation strength N = 5,
M = 30 [2]. The strong augmentation then effectively applies strong distortions to inlier data,
leading to potential distributional shift of the inlier features [11]. We treat these distorted inlier data
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as training OOD data which was then used to compute the outlier kernel matrix Φq of Conditional-i
during training.

In order to produce Conditional-i-generative scores reported in Table M.2, we apply both strong
augmentations [2] technique and CutMix techniques to generate the fake OOD training data. We
firstly apply strong augmentation with the augmentation strength N = 5, M = 30 [2] on top of the
inlier training image. We then apply the CutMix [13] technique between each random paring of inlier
data out of the strong augmentation approach. Specifically, we employ each inlier data as the reference
image, and we randomly cut patches from another inlier data. We apply the CutMix approach to mix
the patch with the reference image as described in [13]. This procedure also effectively helps us to
generate desired feature level distributional shift [11] to generate OOD data. For the hyperparameters
used in CutMix, we set α = 0.2. The resultant feature is then used as training outliers that forms the
outlier matrix Φq . This procedure also corresponds to the method "+RandAug+Cutmix" described in
Table M. 7.

6 Implementation Details of Section M.5

This section describes supplementary implementation details of the experiments reported in Section
M.5. The reported details include: hyperparameters for training baseline models and Conditional-i
models in the main paper; Ablations against the τ values for Conditional-i, showing that Conditional-i
is relatively robust against the choice of kernel temperature τ ; Error bar calculation rules; More
optimization details complementary to the main file; The complete OOD detection test scores across
each specific test datasets, based on which we obtain the averaged score Table M.1, M.2, M.3 in the
main file.

6.1 Hyperparameters for other baseline models compared in Section M.5

For all compared methods, we believe we have tuned each of the methods to our best by searching the
optimal hyperparameters in the suggested searching range. The optimal hyperparameters (either the
default value in the original publication or the optimal value we found) for each method were listed
in Table S.1. Other hyperparameters that are not reported in Table S.1 remain as the default values as
defined in the original publications. Please see the references in Table S.1 for specific hyperparameter
definitions.

Table 1: Optimal hyperparameter values found for Table M.1, M.2 and M.3.

Methods Table M.1 Table M.2 Table M.3
ODIN [6] T = 10+3, ϵ = 0.0 T = 10+3, ϵ = 0.0014 T = 10+4, ϵ = 0.0

Mahalanobis [5] ϵ = 0.0014 ϵ = 0.005 ϵ = 0.00005
ReAct [12] p = 99 p = 99 p = 99.9

OE [4] λ = 0.5 λ = 0.5 λ = 6.0
Energy [8] min = −15, mout = −5 min = −15, mout = −5 min = −15, mout = −7

6.2 More hyperparameters defined for Section M.5

We use Gaussian kernel to train for Conditional-i model. The τ values we used for the Gaussian
kernel at training time are illustrated in the following Table S.2.

Table 2: τ and λ values for Table M.1, M.2 and M.3

Method Table M.1 Table M.2 Table M.3
Conditional-i-generative τ = 5.0, λ = 0.5 τ = 20.0, λ = 300.0 /

Conditional-i τ = 5.0, λ = 0.03 τ = 4.0, λ = 0.06 τ = 3.0, λ = 0.2
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6.3 Ablations against the τ values

We display ablation studies against the temperature τ values under the same training setup used for
producing Table M.1. We vary the value of τ and the optimal τ is found to be τ = 5.0. Table S.3
shows that the OOD detection performance is relatively robust against mild changes of τ .

Table 3: Ablations against the τ values

τ values 3.0 4.0 5.0 6.0
FPR95 ↓ 35.43 34.40 33.18 34.07

AUROC ↑ 88.99 89.86 90.03 89.81
AUPR ↑ 60.84 61.18 61.48 61.12

6.4 Ablations against the kernel during training

We have implemented Gaussian kernel, linear kernel and and inverse multiquadric (IMQ) kernels
during Conditional-i’s training. We empirically found that Gaussian kernel provided the relatively
better performance, while other training kernels returns comparable results.

6.5 Error bar calculation

This section describes how we calculated the error bar present in Table M.1 M.2 and M.3. We train
each OOD detection approach for 3 training runs and we report the test score averaged across these 3
total training runs. For all training runs, we include the same sampled training data across all the
training approaches. To produce the test scores, we test each network out of a single training run by
averaging across 10 different test stage inference runs [4]. Each of the error bar produced in our main
paper was then reported by averaging across 3 training runs × 10 test runs in total. The randomness
and score variance might have originated from 3 sources: firstly, different training seeds might have
affected the network initialization; secondly, the seed have also changed the ordering of training
batches; Finally, each 1 out of the 10 tests corresponds to a different partition of the complete test set,
while the inlier:outlier test data ratio remains to be a constant ratio 1:5 [4].

6.6 Sampling scheme for training and testing

For every single training/test run across all the compared methods, we ensure that all methods were
fed with the same set of sampled training data and test data to ensure strict apple-to-apple comparisons.
To reach this goal, we shuffle all the training inliers and training outliers to remove the correlation
between the image ID ordering and their classes. Then we fix the data permutation and we sample
certain amounts of training OOD data to ensure our training procedure is reproducible. We train each
model with the same set of training data for 3 times. The test scores of each method are then averaged
across such 3 training models (each model 10 test runs), based on which we report the final averaged
performance score. This sampling scheme is different from that being used in HOOD paper [7].

6.7 More optimization details for training NLP task present in Table M.3

For NLP experiments that return the score in Table M.3, we train a 2-layer GRUs [1] for 5 epochs.
We adopt Adam optimizer with learning rate lr = 0.01 and batchsize = 64 to train for the models.

7 HSIC metric comparison between OOD detection methods

We employ Eq. M.(5) compute the HSIC metric of the deep models out of every compared method at
the last training epoch (under the same training setup as we produce Table M.1). We then compute
the HSIC values of the compared methods using CIFAR-10 test data and OOD test data respectively
as Φ(c)

z and Φq. The HSIC and evaluation metrics are illustrated in Table S.4 along with their test
accuracy. As shown in Table S.4, Conditional-i training achieves the lowest HSIC metric and highest
accuracy among all methods no matter whether we use linear or Gaussian kernel to evaluate the HSIC
metric.
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Table 4: HSIC metric comparison between OOD detection methods

Metrics Values HSIC loss Gaussian kernel (τ = 5) HSIC loss linear kernel FPR95 ↓ AUROC ↑ AUPR ↑
K-Base 0.0053 16.2912 65.84 74.76 33.25

OE 0.0019 4.2954 33.41 89.75 57.74
Conditional-i 0.0003 0.4850 32.66 90.03 61.48

8 Code Licenses

We downloaded the published code from each baseline method’s official website and reimplemented
every method. We claim that we only use these code for academic purposes. We also included our
code for Conditional-i at https://github.com/OODHSIC/conditional-i. Please kindly do not distribute
the code URLs before our paper is eventually published. We promise to release our code upon the
paper publication.

9 Complete OOD detection performance over each specific test dataset

This section reports the complete OOD detection performance over each specific test dataset. Please
see Table S.5, S.6, S.7 presented below that display the detailed test scores respectively for Table
M.1, M.2, M.3.

7
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Table 5: OOD Detection performance of CIFAR-100 as in-distribution for each specific OOD test dataset.
Averaged test scores across different test sets are reported in Table M.1 of the main paper.

Dataset Dtst
ood Methods True Out. Expo. FPR95 (%) ↓ AUROC (%) ↑ AUPR (%) ↑

Texture

K-Base [3]

no

63.32 77.06 35.25
ODIN [6] 65.05 77.82 36.76
Mahalanobis [5] 37.88 90.86 73.32
Energy [8] 65.13 77.81 34.50
ReAct (+Energy) [12] 54.28 80.92 37.20
Conditional-i-generative (ours) 57.73 89.53 68.32
Energy [8]

yes

32.08 90.80 56.87
OE [4] 30.38 91.28 61.07
HOOD [7] 31.25 91.82 68.89
HOOD-bank 31.55 91.90 72.12
Conditional-i (ours) 30.71 92.15 72.15

SVHN

K-Base [3]

no

52.19 80.85 39.94
ODIN [6] 50.68 82.68 42.53
Mahalanobis [5] 42.24 86.69 54.07
Energy [8] 50.13 82.89 39.85
ReAct (+Energy) [12] 40.04 85.33 41.88
Conditional-i-generative (ours) 0.31 99.70 95.66
Energy [8]

yes

13.79 94.86 66.55
OE [4] 18.23 95.05 73.91
HOOD [7] 15.19 95.29 70.52
HOOD-bank 15.19 94.67 66.60
Conditional-i (ours) 14.61 94.84 71.41

Places365

K-Base [3]

no

62.78 78.83 38.40
ODIN [6] 66.52 79.02 39.23
Mahalanobis [5] 62.94 81.28 45.56
Energy [8] 66.14 78.95 36.35
ReAct (+Energy) [12] 66.13 78.96 36.40
Conditional-i-generative (ours) 45.05 89.85 61.26
Energy [8]

yes

35.11 90.20 59.00
OE [4] 36.12 89.68 57.90
HOOD [7] 34.53 90.06 58.17
HOOD-bank 33.64 90.55 61.38
Conditional-i (ours) 33.55 90.59 61.77

LSUN

K-Base [3]

no

69.51 75.17 32.24
ODIN [6] 74.59 74.23 31.56
Mahalanobis [5] 62.77 77.32 35.00
Energy [8] 74.27 73.85 28.52
ReAct (+Energy) [12] 77.01 73.55 28.55
Conditional-i-generative (ours) 65.13 82.18 42.81
Energy [8]

yes

36.13 89.20 56.99
OE [4] 39.95 89.11 58.01
HOOD [7] 39.95 88.47 54.79
HOOD-bank 37.58 89.13 57.69
Conditional-i (ours) 36.95 89.39 58.52

CIFAR10

K-Base [3]

no

54.81 80.72 40.56
ODIN [6] 56.36 81.57 42.23
Mahalanobis [5] 63.04 77.43 33.98
Energy [8] 55.57 81.68 39.73
ReAct (+Energy) [12] 59.41 80.74 39.11
Conditional-i-generative (ours) 87.23 57.42 15.38
Energy [8]

yes

48.22 82.76 45.17
OE [4] 42.37 83.62 37.82
HOOD [7] 45.06 83.39 43.51
HOOD-bank 46.91 83.07 43.02
Conditional-i (ours) 47.47 83.17 43.57

8



Table 6: OOD Detection performance of IN1K as in-distribution for each specific OOD test dataset. Averaged
test scores across different test sets are reported in Table M.2 of the main paper.

Dataset Dtst
ood Methods True Out. Expo. FPR95 (%) ↓ AUROC (%) ↑ AUPR (%) ↑

Texture

K-Base [3]

no

77.36 67.00 15.22
ODIN [6] 61.24 77.04 23.62
Mahalanobis [5] 80.14 70.24 25.88
Energy [8] 65.10 74.00 20.57
ReAct (+Energy) [12] 63.08 76.25 23.94
Conditional-i-generative (ours) 62.17 78.01 24.93
Energy [8]

yes

52.38 86.82 48.21
OE [4] 66.57 80.86 38.46
HOOD [7] 55.56 82.52 39.53
HOOD-bank 59.09 83.37 42.60
Conditional-i (ours) 57.34 83.92 44.15

SVHN

K-Base [3]

no

31.27 91.20 65.65
ODIN [6] 9.32 98.23 93.12
Mahalanobis [5] 35.77 85.51 41.17
Energy [8] 8.79 98.25 92.57
ReAct (+Energy) [12] 9.36 98.06 91.91
Conditional-i-generative (ours) 4.63 98.27 87.02
Energy [8]

yes

37.58 83.44 35.87
OE [4] 25.42 92.58 65.96
HOOD [7] 10.15 97.39 83.54
HOOD-bank 20.96 92.47 57.27
Conditional-i (ours) 10.00 97.41 84.01

Places365

K-Base [3]

no

77.86 68.37 26.88
ODIN [6] 67.53 75.94 34.16
Mahalanobis [5] 93.04 46.61 14.77
Energy [8] 70.90 73.72 30.60
ReAct (+Energy) [12] 71.92 73.68 30.83
Conditional-i-generative (ours) 63.48 78.04 41.29
Energy [8]

yes

60.02 80.49 44.87
OE [4] 70.03 75.80 37.92
HOOD [7] 62.61 77.58 38.74
HOOD-bank 60.22 79.58 41.92
Conditional-i (ours) 56.84 80.61 42.59

LSUN

K-Base [3]

no

77.74 65.36 23.97
ODIN [6] 70.62 70.45 27.23
Mahalanobis [5] 94.23 42.04 13.34
Energy [8] 71.82 68.93 25.70
ReAct (+Energy) [12] 74.01 67.85 25.06
Conditional-i-generative (ours) 70.52 70.47 24.87
Energy [8]

yes

45.63 87.50 57.68
OE [4] 67.26 76.64 39.13
HOOD [7] 56.89 79.62 40.18
HOOD-bank 53.39 83.27 47.46
Conditional-i (ours) 47.18 85.20 49.27
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Table 7: OOD Detection performance of 20 Newsgroups as in-distribution for each specific OOD test dataset.
Averaged test scores across different test sets are reported in Table M.3 of the main paper.

Dataset Dtst
ood Methods True Out. Expo. FPR95 (%) ↓ AUROC (%) ↑ AUPR (%) ↑

SNLI

K-Base [3]

no

46.21 88.98 71.28
ODIN [6] 43.82 90.54 76.79
Mahalanobis [5] 90.91 36.06 12.28
Energy [8] 33.34 93.72 83.94
ReAct (+Energy) [12] 32.87 93.89 84.47
Energy [8]

yes

1.08 99.68 98.27
OE [4] 1.70 99.13 96.92
HOOD [7] 0.87 99.73 99.29
HOOD-bank 1.05 99.70 99.04
Conditional-i (ours) 0.80 99.77 99.31

IMDB

K-Base [3]

no

50.28 82.43 46.84
ODIN [6] 41.20 86.44 56.74
Mahalanobis [5] 76.89 60.42 19.56
Energy [8] 30.62 91.21 64.72
ReAct (+Energy) [12] 30.82 91.18 64.51
Energy [8]

yes

2.57 99.18 94.53
OE [4] 3.05 98.82 93.72
HOOD [7] 1.69 99.60 97.33
HOOD-bank 1.74 99.50 97.30
Conditional-i (ours) 1.32 99.62 98.08

Multi30K

K-Base [3]

no

65.70 80.50 48.01
ODIN [6] 56.57 83.85 55.91
Mahalanobis [5] 61.94 72.58 27.43
Energy [8] 56.96 86.76 61.62
ReAct (+Energy) [12] 54.69 87.44 62.91
Energy [8]

yes

0.72 99.68 98.25
OE [4] 0.77 99.55 98.93
HOOD [7] 0.17 99.93 99.73
HOOD-bank 0.25 99.82 99.49
Conditional-i (ours) 0.03 99.95 99.76

WMT16

K-Base [3]

no

49.65 85.12 56.24
ODIN [6] 43.76 87.73 64.59
Mahalanobis [5] 67.64 71.35 27.43
Energy [8] 39.31 90.27 68.81
ReAct (+Energy) [12] 38.48 90.62 69.85
Energy [8]

yes

0.71 99.76 98.50
OE [4] 0.57 99.86 99.44
HOOD [7] 0.23 99.94 99.73
HOOD-bank 0.22 99.95 99.79
Conditional-i (ours) 0.05 99.97 99.80

Yelp

K-Base [3]

no

55.92 79.57 40.69
ODIN [6] 46.81 83.60 48.08
Mahalanobis [5] 56.23 77.33 32.09
Energy [8] 39.57 87.08 50.62
ReAct (+Energy) [12] 38.96 87.48 51.81
Energy [8]

yes

17.48 95.99 82.71
OE [4] 18.71 95.85 77.45
HOOD [7] 13.57 95.96 72.50
HOOD-bank 11.96 96.11 73.06
Conditional-i (ours) 10.50 96.77 76.49

EWT-A

K-Base [3]

no

44.63 87.05 33.17
ODIN [6] 38.27 89.29 44.55
Mahalanobis [5] 72.27 67.23 7.72
Energy [8] 30.27 92.33 47.24
ReAct (+Energy) [12] 30.48 92.34 47.28
Energy [8]

yes

1.03 99.63 93.66
OE [4] 1.04 99.69 96.54
HOOD [7] 0.85 99.87 98.01
HOOD-bank 0.55 99.90 98.54
Conditional-i (ours) 0.55 99.91 98.50

EWT-E

K-Base [3]

no

39.83 88.95 42.78
ODIN [6] 36.47 90.21 55.12
Mahalanobis [5] 73.97 60.28 8.32
Energy [8] 28.71 93.40 59.16
ReAct (+Energy) [12] 27.80 93.68 60.20
Energy [8]

yes

0.90 99.71 95.71
OE [4] 0.88 99.73 97.48
HOOD [7] 0.50 99.91 98.84
HOOD-bank 0.51 99.92 98.95
Conditional-i (ours) 0.38 99.92 99.01

EWT-N

K-Base [3]

no

71.43 82.17 24.11
ODIN [6] 66.34 85.28 40.40
Mahalanobis [5] 73.86 65.74 5.52
Energy [8] 64.91 86.99 37.50
ReAct (+Energy) [12] 63.98 87.18 38.22
Energy [8]

yes

1.27 99.62 90.54
OE [4] 1.26 99.60 94.41
HOOD [7] 0.97 99.81 95.94
HOOD-bank 0.86 99.80 96.68
Conditional-i (ours) 0.69 99.87 97.15

EWT-R

K-Base [3]

no

49.88 85.06 33.76
ODIN [6] 42.86 86.95 41.37
Mahalanobis [5] 67.49 69.35 10.89
Energy [8] 35.55 90.77 48.15
ReAct (+Energy) [12] 33.66 91.00 48.23
Energy [8]

yes

1.07 99.57 94.79
OE [4] 0.93 99.56 97.55
HOOD [7] 0.47 99.90 98.92
HOOD-bank 0.45 99.81 98.88
Conditional-i (ours) 0.29 99.93 99.14

EWT-W

K-Base [3]

no

54.91 82.89 17.23
ODIN [6] 50.99 85.14 26.37
Mahalanobis [5] 59.69 73.41 5.77
Energy [8] 50.76 86.93 24.69
ReAct (+Energy) [12] 50.71 87.28 25.30
Energy [8]

yes

1.04 99.72 89.74
OE [4] 1.03 99.78 95.00
HOOD [7] 0.95 99.85 95.98
HOOD-bank 0.70 99.88 97.02
Conditional-i (ours) 0.60 99.90 97.26
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