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Abstract: Solving complex manipulation tasks in household and factory settings1

remains challenging due to long-horizon reasoning, fine-grained interactions, and2

broad object and scene diversity. Learning skills from demonstrations can be3

an effective strategy, but such methods often have limited generalizability be-4

yond training data and struggle to solve long-horizon tasks. To overcome this,5

we propose to synergistically combine two paradigms: Neural Object Descrip-6

tors (NODs) that produce generalizable object-centric features and Task and Mo-7

tion Planning (TAMP) frameworks that chain short-horizon skills to solve multi-8

step tasks. We introduce NOD-TAMP, a TAMP-based framework that extracts9

short manipulation trajectories from a handful of human demonstrations, adapts10

these trajectories using NOD features, and composes them to solve broad long-11

horizon, contact-rich tasks. NOD-TAMP solves existing manipulation bench-12

marks with a handful of demonstrations andsignificantly outperforms prior NOD-13

based approaches on new tabletop manipulation tasks that require diverse gen-14

eralization. Finally, we deploy NOD-TAMP on a number of real-world tasks,15

including tool-use and high-precision insertion. For more details, please visit16

https://sites.google.com/view/nod-tamp/.17

Keywords: Robot Learning, Robot Planning, Manipulation18

1 Introduction19

From children playing with Lego blocks to adults rearranging a room, our remarkable ability to20

plan long sequences of actions to achieve our goals is still beyond the capabilities of current robots.21

Consider the challenges involved in daily tabletop tasks shown in Fig. 1. First, these tasks are often22

long-horizon and full of sequential dependencies. Here, the robot must reason about the best pose23

to grasp a mug in order to stow it in a cabinet along with other steps to organize the entire table.24

Second, steps such as placing the mug in a tight cabin or stowing the screwdriver on the tool rack25

require intentional contact, which can render most motion planners that focus on avoiding collisions26

ineffective [1]. Finally, to be effective across broad environments, the robot must handle a wide27

variation of object shapes and scene layouts.28

Task and Motion Planning (TAMP) [2, 3] is an effective approach for such problems because29

it can effectively resolve sequential dependencies through hybrid symbolic-continuous reasoning.30

However, TAMP systems typically require accurate, special-purpose perception systems and hand-31

engineered manipulation skills. Thus, it is difficult to apply them to unseen objects and tasks that32

require complex motion trajectories. Recent works have proposed to learn manipulation skills from33

demonstration [4, 5] to partially relax these constraints. However, their generalization ability re-34

mains bounded by the training data, which is costly to collect at scale [6].35

By contrast, neural representation models have shown remarkable potential in enabling generalizable36

manipulation systems [7, 8, 9, 10]. In particular, Neural Object Descriptors (NODs) [8, 11, 12] are37

a powerful tool to extract dense, part-level features that generalize across object instances. Neural38
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Figure 1: Overview. NOD-TAMP is a TAMP-based framework that adapts demonstration trajecto-
ries to new situations to accomplish long-horizon, fine-grained tasks.

Descriptor Fields (NDFs) [8], a type of NOD that encodes SE(3) poses relative to a given object, can39

adapt key-frame poses (e.g. grasps) for one object instance to others in the same object category (e.g.40

mugs), thereby achieving category-level generalization. However, existing NOD-based methods [8,41

13, 14] are limited to adapting individual key-frame poses and thus struggle tasks involving complex42

motion and multi-step reasoning.43

In this paper, we propose to combine these complementary paradigms and introduce NOD-TAMP, a44

TAMP-based framework that extracts adaptable skills from a handful of human demonstrations us-45

ing NOD features and composes them to solve long-horizon tasks. Central to NOD-TAMP is a skill46

reasoning module that composes short-horizon skills to solve novel long-horizon goals that were47

never demonstrated, thereby achieving compositional generalization. To synthesize fine-grained48

manipulation trajectories for new objects, we propose a NOD-based trajectory adaptation module49

that can consistently adapt a recorded skill trajectory according to the observed objects. Finally,50

NOD-TAMP flexibly integrates the adaptation of recorded trajectories with traditional motion plan-51

ning to generalize across drastically different scene layouts.52

We empirically evaluate NOD-TAMP on many simulated multi-step manipulation tasks that test53

different factors of generalization across long-horizon tasks, including object shapes, number of54

objects, scene layout, task length, and task objectives. We find that NOD-TAMP can solve existing55

manipulation benchmarks [15], with a fraction (4 vs. 500 demos) of the data required by behavioral56

cloning methods. On a new task suite that stress-test generalization capabilities, NOD-TAMP also57

outperforms other existing methods [8, 16], some of which share a subset of its traits, highlighting58

the value of building a cohesive manipulation planning system. Finally, we successfully demonstrate59

NOD-TAMP on 6 real-world manipulation tasks.60

2 Related Work61

TAMP. Task and Motion Planning (TAMP) is a powerful paradigm for addressing long-horizon62

manipulation challenges by decomposing a complex planning problem into a series of simpler sub-63

problems [2, 17, 18, 19, 3]. Nonetheless, TAMP techniques presuppose knowledge of the object64

models and the underlying system dynamics. Such presuppositions can be limiting, particularly for65

domains with diverse objects and complex physical processes such as contact-rich manipulation.66

Learning for TAMP. Recent works have set to address such limitations by replacing hand-crafted67

components in a TAMP system with learned ones. Examples include environment models [20,68

21, 22, 23, 24], object relationships [25, 26, 27], skill operator models [28, 4] skill samplers [29,69

30], and learned policies [31, 32, 33]. However, these learned components are often limited to70

the tasks and environments that they are trained on. Two notable exceptions are M0M [34] and71

GenTP [35], but both methods plan with predefined manipulation skills. In contrast, our work72

directly tackles the generalization challenge at the level of motion generation. Closely related to73

our work are methods that learn manipulation skills for TAMP systems [4, 36, 37]. However, the74

resulting systems remain bottlenecked by the generalizability of the skills, which are trained using75
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conventional Reinforcement Learning [36] or Behavior Cloning [4, 37]. Instead, our work develops76

TAMP-compatible skills with object category-level generalization.77

Learning from Human Demonstrations. Modern deep imitation learning techniques have shown78

remarkable performance in solving real-world manipulation tasks [38, 39, 40, 6, 41, 42]. However,79

the prominent data-centric view of imitation learning [43, 6, 42], i.e. scaling up robot learning via80

brute-force data collection, remains limited by the sample efficiency of the existing learning algo-81

rithms and the challenges in collecting demonstrations for long-horizon tasks in diverse settings.82

Other recent works have proposed to replay a small set of human demos in new situations to facil-83

itate sample-efficient generalization [16, 44, 45, 46, 47, 48, 49, 50], but replay without adaptation84

can fail for novel object instances. Some other works leverage pretrained object representations to85

dramatically improve the generalization of policies given a handful of demonstrations [10, 8, 14].86

However, these methods are limited to adapting a short skill [10] or a single manipulation action [8].87

Our work develops a long-horizon planning framework that seamlessly integrates skills augmented88

with latent object representations into a classical TAMP framework.89

3 Problem Setup and Background90

The central question we aim to answer is: given a set of demonstration trajectories, can we adapt91

and recompose segments of them to solve new tasks? Our solution adopts the TAMP framework,92

where a high-level planner orchestrates a set of short-horizon motion generators (skills) to produce93

coherent long-horizon plans. The framework allows us to divide the problem into three technical94

sub-problems. (1) How to represent demonstration trajectory snippets as TAMP skills? In particular,95

how should we represent their precondition and effect constraints? (2) How to adapt skills instanti-96

ated with recorded trajectories to new scenes and objects? (3) Given a new task goal, how to chain97

these skills together to generate a trajectory plan? Our insight is that NOD features will enable us98

to adapt both motion trajectories and skill constraints to new scene layouts and object shapes. Our99

goal is to develop a cohesive TAMP framework that addresses these sub-problems by building its100

core components on NOD representations.101

3.1 Problem Setup102

We consider the problem of object rearrangement, where a robot must manipulate objects to achieve103

a desired scene configuration. The robot observes the scene in RGB-D frames and uses off-the-shelf104

segmentation models [51] to extract instance point cloud Po ∈ RN×3 for each manipulable object105

o. Accordingly, we represent the environment state as a set of object point clouds and the robot end-106

effector pose s = ⟨{Po}, T e
w⟩, where T e

w ∈ SE(3) is the end-effector pose in the world frame. The107

goal is specified as a set of task-relevant object point clouds g = {Po}, for example, a mug inside108

a cabinet. The robot must generate a sequence of actions [a1, ..., aT ] that manipulate the objects109

to reach a final configuration that closely matches the goal g, each action is an end-effector pose110

in the world frame T e
w ∈ SE(3). We measure task success by checking whether the desired scene111

configuration is reached. Our framework assumes access to a set of demonstration trajectories {τi},112

each of which is a sequence of actions τi = [a
(i)
0 , a

(i)
1 , ..., a

(i)
T ], and the object point clouds capturing113

the initial state of the recorded scene. The objective is to adapt and compose the trajectories to114

generate action plans for solving a new task given a new scene layout with unseen objects.115

Neural Descriptor Fields (NDF). Our approach leverages Neural Descriptor Fields (NDFs) [8] to116

compactly represent object poses and features. An NDF is a learned function ψNDF that maps an ob-117

ject point cloud P ∈ RN×3 and a query pose T q ∈ SE(3) in the same frame to a feature descriptor118

z ∈ Rd: z ← ψNDF(T
q | P ) ∈ Rd. We focus on two key properties of NDFs: Intra-category con-119

sistency: For objects of the same category (e.g., mugs), a trained ψNDF maps geometrically similar120

query points (e.g., mug rims) to similar feature descriptors z. Pose invariance: The descriptors are121

invariant to the object’s global pose T o
w, enabling generalization to new layouts.122

We use NDF to solve an inverse problem: given a query pose T q
w and its feature z derived from object123

point cloud Po, recover the pose T q′

w relative to a new object cloud Po′ . This optimization problem124

can be solved with gradient descent: NDF-OPTIMIZE(Po′ , z) ≡ argmin
T q′
w

||z − ψNDF(T
q′

w | Po′)||.125
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Figure 2: NOD-TAMP Pipeline. Given a goal specification, a task planner plans a sequence of skill
types. Then, a skill reasoner searches for the combination of skill demonstrations that maximizes
compatibility. Using learned neural object descriptors (e.g., NDFs), each selected skill demonstra-
tion is adapted to the current scene. Finally, the adapted skills are executed in sequence.

3.2 Skill Representation126

We employ NDFs in our skills to represent not only their control trajectories but also their start and127

end states. Accordingly, we represent each skill π as a tuple: π = ⟨name, param, pre, eff, traj⟩. Here,128

name denotes the skill type (e.g., PICK, INSERT). parami are skill parameters, which include the129

skill-relevant objects and their observed point clouds. Preconditions pre and effects eff specify the130

constraints that must hold before skill execution and the resulting new constraints, respectively. A131

constraint is represented by the relative configuration of two point clouds. For example, an INSERT132

skill may require the robot to hold a object in a specific way. Executing the skill results in a new133

constraint between the object and a receptacle. Finally, let traj = τi be a set of end-effector poses134

for this skill. A core objective of our method is to compose coherent multi-step plans by selecting135

and adapting a suitable trajectory within each constituent skill. We include details of all skills used136

in our experiments in the supplementary material.137

4 NOD-TAMP138

We present NOD-TAMP, a method for adapting and recomposing a set of skill demonstrations to139

solve new tasks. First, we show how a single skill can be adapted to a new environment using140

NDFs (Sec. 4.1). Then, we propose a planning algorithm that identifies skill segments from multi-141

ple demonstrations to maximize compatibility (Sec. 4.2). Finally, we use motion planning to connect142

each skill in order to efficiently and robustly generalize to new environments (Sec. 4.3). The work-143

flow for NOD-TAMP is illustrated in Fig. 2.144

4.1 Skill Adaptation145

We seek to adapt a skill to a newly observed scene, which may be populated with new objects146

and layouts. To do so, we leverage a key invariance: the skill trajectory still needs to satisfy the147

recorded constraints (i.e., relative configurations between pairs of objects). Our skill adaptation148

module (1) transforms the skill trajectories to constraint-centric NDF feature trajectories and (2)149

adapts the trajectory to the observed scene via sequential optimization. To encode a skill trajectory150

relative to a recorded constraint, we consider common rearrangement skills that can be divided into151

two categories: hand-object interaction, such as grasping and manipulating constrained mechanisms152

(doors, etc.), and object-object interaction, where a robot uses the object in hand to interact with153

another object, such as placing and insertion.154

Hand-object interaction. In this case, the constraint is between the manipulated object o and155

robot end-effector e at the end of a trajectory. Thus we use the recorded object point cloud as the156

conditioning input to the NDF to encode the demonstrated robot end-effector trajectory as an NDF157

feature trajectory Zτ = [z1, z2, ..., ] where zi = ψNDF(T
e
w[i] | Po).158
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Object-object interaction. Here, the constraint is between a pair of objects (o, o′), where o′ is159

the in-hand source object, and o is a target object, e.g., a receptacle. Assuming a rigid transform160

between the end-effector and o′ (i.e. a secure grasp), we can place a query pose T q′

w on o′ and161

create an object-centric demonstration trajectory. The encoded trajectory is thus Zτ = [z1, z2, ..., ],162

where zi = ψNDF(T
q′

w [i] | Po). Note that the robot may also manipulate an unseen in-hand object163

o′ during deployment. For example, the robot may be asked to stow a larger mug in a bin when164

the demonstration is with a small mug. Thus we must also featurize the query pose with respect165

to o′ in order to satisfy the precondition constraint between o′ and the end-effector. To do so, we166

encode the constraint between the query frame and object o′ as zq = ψNDF(T
q′

w | Po′). This way,167

with feature zq and Zτ , we can fully characterize the constraints between object o and o′ across time168

while considering their shapes.169

Trajectory adaptation. Given the feature trajectory Zτ , we will use the NDF func-170

tion conditioned on the observed point cloud to recover a transformed skill trajectory, i.e.,171

NDF-OPTIMIZE(Pobserved, z), for each z ∈ Zτ . We employ a sequential optimization procedure172

to speed up the convergence, where each optimized pose serves as the initialization to warm-start173

the optimization of the next pose. In the case of object-hand interaction, the optimization output is174

an end-effector trajectory that can be directly used as a sequence of robot control setpoints. In the175

case of object-object interaction, the output is an object-centric trajectory (the constraint between176

query frame and the receptacle object across time), which we need to convert to robot controls. To177

do this, we first adapt the constraint between the query frame and the in-hand object in test scenarios178

using the recorded feature zq , resulting a rigid transform between the query frame and the in-hand179

object. Then with the in-hand pose, we can derive the end-effector poses for control. We describe180

the skill adaptation with extended notation and pseudocode algorithm in the supplementary material.181

4.2 Skill Planning182

Given a set of skills, the goal of the skill planner is to select a sequence of skills and their motion183

trajectories that can be chained together to reach a task goal. The trajectories are then adapted using184

the procedure described in Sec. 4.1.185

For a given task, we assume an H-step task plan skeleton [π̂1, ..., π̂H ] that defines a sequence of186

selected skills, e.g., [PICK(mug), PLACE(mug, bin), ...]. Recall that each skill can contain multiple187

candidate demonstration trajectories. The start and end of each trajectory represent its precondition188

and effect constraint, respectively. The essential step in skill planning is, for each skill in the plan,189

choose a candidate trajectory that is most compatible with the constraints of its adjacent skills. We190

calculate compatibility based on the distance between pairs of constraints in the NDF space. For191

simplicity, for the i-th skill in the plan, we denote the NDF-encoded precondition of a candidate192

skill trajectory as zipre , and the effect as zi
eff

. The compatibility is calculated as c = ||zipre−z
i−1
eff
|| +193

||zi
eff
−zi+1

pre ||. Finally, we parse the goal configuration g into a set of pair-wise object constraints and194

encode them as a set of NDF features Zg . We then compute the plan cost as the distance between195

Zg and the final accumulated constraints of the entire plan sequence.196

After we obtain all costs for all skill trajectory combinations, the plan with the lowest plan-wide197

NDF feature distance is returned. For simplicity, we present this as a Cartesian product over relevant198

skills, but this can be done more efficiently by performing a Uniform Cost Search in plan space,199

where the NDF feature distance serves as a the cost function. Algorithm 2 in the supplementary200

material displays the pseudocode for the NOD-TAMP planner.201

4.3 Transit & Transfer Motion202

Adapting demonstrated skills is particularly effective at generating behavior that involves contact.203

However, demonstrations typically contain long segments without contact (outside of holding an204

object). Because these components do not modify the world, it is often not productive to replicate205

them. Thus, we temporally trim skill demonstrations to focus on the data points that involve contact.206

In our implementation, we simply select the 20 steps before contact.207
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After trimming, and in often before trimming, two adjacent skills might be far away in task space.208

While linear interpolation is an option, this is not generally safe because the straight-line path may209

cause the robot to unexpectedly collide. To address this, we use motion planning to optimize for210

safe and efficient motion that reaches the start of next the skill. Motion planning generally requires211

some characterization of the collision volume of the obstacles to avoid. Because we do not assume212

access to object models, we use the segmented point clouds as the collision representation. For each213

pose yielded by the skill, we use Operational Space Controller (OSC) [52] to track them.214

5 Experiments215

We validate NOD-TAMP and how its components contribute to solve long-horizon tasks, perform216

fine-grained manipulation, and generalize to new object shapes. We select three evaluation set-217

tings: (1) LIBERO [15], a standard manipulation benchmark that feature diverse objects and long-218

horizon tasks, (2) a set of custom tabletop tasks that stress test spatial generalization and skill rea-219

soning&reuse, and (3) six real-world tasks with noisy perception and multitudes of challenges com-220

bined. We highlight key conclusions in this section and leave additional results and experiment221

detail in the supplementary material.222

5.1 Experimental Setup223

LIBERO Benchmark: LIBERO [15] is an existing multi-task manipulation benchmark. Our224

evaluation covers the “LIBERO-Spatial” (10 tasks), “LIBERO-Object” (10 tasks), and three225

of the “LIBERO-Long” tasks (Task 1, 5, and 8). For “LIBERO-Spatial” tasks, we provide226

our system with just one demo of manipulating a bowl instance and test each system’s ability to227

generalize over different initial bowl poses and goal configurations. For “LIBERO-Object” tasks,228

we provide our system with four demos of manipulating a cheese box, milk box, ketchup bottle, and229

soup can and then test our system’s ability to generalize over similar objects shapes (e.g., salad230

dressing bottle, pudding box) and poses.231

Customized Tabletop Tasks: To push the limit of the system, we design a suite of rearrangement232

tasks that have large variation in task horizon, object instances, scene layouts, goal configurations,233

and precision tolerances (See Fig 3).“MugPicking” - Pick up mugs with varying shapes and initial234

poses; “MugInsertion” - Insert mugs of varying shape into a tight cabinet. Both the mug and the235

cabinet are randomly placed on the table; “TableClear” - Place two mugs into two bins, which236

aims to test the ability to achieve long-term goals by reusing the skills; “TableClearHard” -237

Stow one mug into a cabinet with side opening and place another mug into a bin. The robot must238

reason about proper grasp strategy to achieve the goal; “ToolHang” [39] - Insert the frame into239

a stand with tight tolerance, and then hang the tool object on the inserted frame, which tests the240

cabability of handling fine-grained motions.241

Table Clear Hard Tool HangTable ClearMug Insertion

Figure 3: Customized tasks. Examples of initial
state and goal state (in green bounding box).

We provide only two demos, which manipu-242

late one mug instance in two different ways243

by grasping either the handle or the rim, and244

test the methods on other nine different mug245

shapes. For the “ToolHang” task, we provide246

one demo of how to insert the frame and hang247

the tool on the frame after it is assembled.248

5.2 Baselines249

NDF+ [8] - We augment the original NDF method, which has only shown single-pose optimization,250

with task skeleton and the skill planning module. This baseline also uses a motion planner to transi-251

tion between key-frame poses; MimicGen+ [16] - MimicGen directly transforms the demonstrated252

poses to the relevant object frame and then sent to the controller without further adaptation. For fair253

comparison, we augment MimicGen with a motion planner for collision avoidance; BC - The best-254

performing BC baseline (ViT-T) from LIBERO benchmark [15]. We list the reported performance255

in the multi-task learning setting as it is an upper bound for lifelong imitation learning.256
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We also compare our full system with different variants: Ours/SR - This ablation removes the skill257

planning module. For each skill, we randomly choose a reference trajectory from the collected258

demonstrations belonging to this skill. This baseline validates the importance of skill reasoning for259

generalizing across tasks; Ours/MP - This ablation removes the motion planning component and260

uses linear trajectory interpolation to achieve transitions between the adapted skill trajectories. This261

baseline validates the benefit of leveraging motion planning, a capability present in TAMP systems;262

NSC (naı̈ve skill chaining) - This baseline ablates both the skill reasoning and the motion planning263

component, it randomly selects a reference trajectory for each skill, adapts the skill with NDF, and264

uses linear trajectory interpolation for transitions between the selected trajectories.265

5.3 Evaluation on the LIBERO Benchmark266

This experiment compares the best behavior cloning (BC) performance provided by the LIBERO267

benchmark [15] with methods that combine generalizable neural representations and model-based268

planners, such as NOD-TAMP and several baselines (See Tab. 1). For the “LIBERO-Spatial”269

and “LIBERO-Object” tasks, the BC method is trained with 500 demos, and achieves 78% suc-270

cess rate. In contrast, our system only requires namely 1 demo for “LIBERO-Spatial” and 4271

demos for “LIBERO-Object”, the success rates are 84% and 94% respectively.272

Table 1: Success rates on LIBERO tasks.
MimicGen+, Ours/MP, and Ours/SR are abbrevi-
ated as M+, O/MP, and O/SR.

Tasks BC NDF+ MG+ NSC O/MP O/SR Ours
Spatial 0.78 0.72 0.82 0.74 0.72 0.86 0.84
Object 0.78 0.80 0.88 0.80 0.76 0.90 0.94
Long1 0.80 0.50 0.40 0.10 0.10 0.70 0.70
Long5 0.52 0.70 0.60 0.20 0.20 0.60 0.70
Long8 0.00 0.30 0.80 0.20 0.10 0.80 0.90

We hypothesize that the performance gap is273

caused by different state/action representations274

and the structural information leveraged to275

build the system. The BC methods directly276

learn a mapping from the scene observation277

to the actions and thus require a huge broad278

data to cover diverse situations. Our method,279

along with the action-transferring baselines280

(e.g., NDF, MimicGen), utilize object-centric representations to adapt the spatial correspondences281

from demo scenes to test scenes. MimicGen+ assumes identical correspondences between demon-282

stration objects and test objects, directly replaying trajectories in the local frames of test objects.283

In contrast, our approach leverages learned object representations to infer spatial correspondences,284

enabling the transferred actions to be more robust to variations in object geometry. Compared to285

NDF+, NOD-TAMP transfers a sequence of actions that represent each dynamic manipulation skill286

instead of just a single target state, in this case, the last end-effector pose in the demonstration287

trajectory. This improves NOD-TAMP’s performance in fine-grained manipulation tasks.288

5.4 Evaluation on Customized Tabletop Tasks289

In the tabletop tasks, NOD-TAMP consistently achieves a high success rate (80-90%) across all290

tasks and outperforms the other baselines and ablations (see Tab. 2). Below, we highlight specific291

comparisons and underscore the importance of each component in NOD-TAMP. Additional analysis292

is in supplementary material.293
Table 2: Success rates on customized tabletop
tasks. MimicGen+, Ours/MP, and Ours/SR are
abbreviated as M+, O/MP, and O/SR.

Tasks NDF+ MG+ NSC O/MP O/SR Ours
MugPicking 0.80 0.70 0.85 0.80 0.85 0.85
MugInsertion 0.75 0.55 0.80 0.85 0.80 0.90
TableClear 0.60 0.75 0.80 0.75 0.85 0.85
TableClearHard 0.40 0.55 0.15 0.50 0.10 0.80
ToolHang 0.00 0.35 0.75 0.70 0.75 0.75

NOD-TAMP exhibits strong performance294

across long-horizon tasks and is able to reuse295

skills in new contexts. The “TableClear”296

task requires re-using the existing two pick-297

and-place human demonstrations, which only298

consisted of single mug and bin interactions,299

to stow two mugs into two bins. NOD-TAMP300

achieves strong performance and outperforms MimicGen+ by 15% and NDF+ by 25% on this task,301

showcasing a superior ability on re-purposing short-horizon skills for long-horizon manipulation.302

NOD-TAMP exhibits strong generalization capability across goals, objects, and scenes in long-303

horizon tasks. The “TableClearHard” task requires intelligent selection and application of304

demonstration trajectories to achieve diverse mug placements. We see the clear benefit of the skill305

planning component to achieve the different goals in this task – NOD-TAMP outperforms Ours/SR306

by 70% and NSC by 65%. The omission of the skill planning module results in an incompatible307
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Figure 4: Real-world tasks. Examples of initial and intermediate / goal states.

composition of skills. For example, the robot may grip the rim of a mug and attempt to insert it into308

the cabinet, leading to collisions between the cabinet and the gripper.309

NOD-TAMP is able to solve low-tolerance manipulation tasks. The ToolHang task requires fine-310

grained manipulation skills that adapt to various object poses. NOD-TAMP achieves 75% success311

rate, outperforming NDF+ and MimicGen+ that cannot adapt their trajectories based on environ-312

ment changes. Since the task does not require avoiding obstacles and reasoning over grasp poses, we313

find that ablated baselines (Ours/MP and Ours/SR) achieve similar performance as our full method.314

5.5 Real-world Evaluation315

We deploy NOD-TAMP on a real Franka Panda robot to solve six challenging manipulation tasks316

(Fig. 4): “SortTableware” - Insert a dish into a narrow slot on the rack and stack two bowls on317

top of it; “MakeCoffee” - Place a mug under the coffee machine, insert a coffee pod into a tight318

holder, close the lid and then press the button; “InsertScrewdriver” - Insert a screwdriver319

into a tight slot on the storage rack; “UseTool” (inspired by [19, 53]) - Use the L-shape tool320

to poke a box out from a narrow tunnel, and hook another box that out of reach, and stack them;321

“ClearMugs(SameGoal)” - Hang two mugs on the mug tree; “ClearMugs(MultiGoal)”322

- Hang one mug on the tree, and insert another mug into the cabinet. We provide a single demon-323

stration for each ⟨skill, object category⟩ pair and test skill reasoning and reuse across tasks, object324

instances (e.g., round vs. square plates), and scene configurations. We include more details, includ-325

ing the list of object instances and reset range in the supplementary material.326

We use a front-mounted Microsoft Azure Kinect camera to capture RGB-D images and SAM [51]327

to segment object point cloud. NOD-TAMP plans directly based on the partial-view object point328

cloud and executes the plans with impedance control. NOD-TAMP achieves a 60% success rate329

on “MakeCoffee”, 70% success rate on “InsertScrewdriver”, showing its capability on330

handling fine-grained motions (e.g., inserting the coffee pod or screwdriver with tight tolerance).331

It achieves 90% success rate on “SortTableware” and “UseTool”, and 80% success rate332

on “ClearMugs(SameGoal)” and “ClearMugs(MultiGoal)”, suggesting its capability on333

skill reusing and reasoning based on long-horizon goals, e.g., how to grasp the mug to store into bin334

vs. hang on mug tree and grasping different part of the tool to poke and hook.335

6 Limitations336

A limitation of NOD-TAMP is the computation efficiency in NOD-based trajectory adaptation (more337

detailed analysis in supplementary). We hypothesize that this bottleneck can be addressed via338

lightweight neural networks or more efficient optimization techniques, which is beyond the scope of339

this work. Additionally, we are interested in incorporating TAMP constraints that are parameterized340

by NOD features to, for example, ensure that a mug containing liquid is always upright in a plan.341

7 Conclusions342

We introduced NOD-TAMP, a planning algorithm for long-horizon and fine-grained manipulation343

that can generalize across object shapes. NOD-TAMP directly leverages human demonstrations to344

implement manipulation skills. To ensure that these skills generalize to new settings, NOD-TAMP345

uses NDFs to adapt demonstrated object-centric motion to new, unseen objects. These skills are346

chained together using feature matching to ensure plan feasibility. Finally, they are executed using347

traditional motion planning and control to generalize across environments. We evaluated NOD-348

TAMP and competitive baselines on two simulated task suites and six real-world tasks.349
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B Real-world Experiments530

B.1 System Setup531

We demonstrate deploying our method on a real Franka Emika Panda robot in Fig. 5. The system532

perceives the scene with a Microsoft Azure Kinect camera and uses the Segment Anything Model533

(SAM) [51] to generate instance segmentation masks. To identify the target objects for each task, we534

extract visual features for each mask region using a CLIP model [54], and retrieve the target masks535

through the text descriptions of target objects. We project the pixels belonging to each target object536

into the robot base frame to generate point clouds. For a pixel with coordinate (u, v) and depth d,537

the corresponding 3D location can be recovered by538

p = R ·K−1 · I + t,
where I = (ud, vd, d), [R|t] denotes the camera pose obtained through calibration, and K denotes539

the camera intrinsic matrix.540

The motion planning component is built on [55]. We execute trajectories using open-loop control541

and track them with a joint impedance controller [56] operating at a frequency of 20 Hz.542

Camera

Robot

Figure 5: Hardware Setup. An illustration of the hardware setup.

B.2 Task Details543

The objects used in each task, an example of start/goal state, reset range, and skills recorded are544

illustrated in Fig. 6 and Fig. 7. The skills are extracted from a single demonstration of the full task.545

Below we describe each real world task setup and the skill demonstrated.546

• “InsertScrewdriver”: A fine-grained manipulation task. Pick up a screwdriver by547

the handle and insert it into a tight slot (approx. 5mm) on the storage rack.548

• “SortTableware”: A multi-step manipulation where the robot must place dishes onto549

a dish rack. Grasp and insert a dish into a narrow slot on the dish rack and stack two bowls550

next to it. Dishes and bowls vary in shapes and size in each evaluation trial.551

• “MakeCoffee”: Operate a Keurig machine to make coffee — a multi-step task with fine-552

grained manipulation steps. Pick up a mug by the handle and place it the coffee machine,553

insert a coffee pod into the tight holder, close the lid and then press the button.554

• “ClearMugs(SameGoal)”: Grasp and hang two mugs on the mug tree. The robot must555

reason about how to pick up the mug (by the rim, not the handle), in order to hang the mugs.556

• “ClearMugs(MultiGoal)”: Grasp and hang one mug on the mug tree, and grasp and557

stwo another mug into the cabinet. The robot must reason about how to pick up the mug:558

to hang the mug, pick up by the rim. To stow a mug, pick up by the handle.559
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Figure 6: Real-world Task Setup (part 1). Visualization of the real world tasks. For each row,
we show the objects used for the task. The objects used in the demonstration are visualized using
bounding boxes with green dotted lines. We then show an example start and goal state, the reset
range by overlaying the initial frames of each trial, and the skills recorded for the task.
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Figure 7: Real-world Task Setup (part 2).

• “UseTool”: A classical physical problem-solving task that requires multi-step reason-560

ing [19, 53]. The robot must reason about how to pick up the tool in order to use the tool to561

interact with objects in the scene. Grasp the junction of an L-shape tool and use it to poke a562

box out from a narrow tunnel, and then regrasp the long handle of this tool to hook another563

box that out of reach, and finally stack the two boxes.564

Skill reuse. For the “ClearMugs(SameGoal)” task, we only record a demonstration of how565

to grasp a mug and hang it on the mug tree, as the skills of grasping a mug and stow it into cab-566

inet can be re-used from the “Make Coffee” task; For “ClearMugs(MultiGoal)”, we do567

not record any new demonstration as all the required skills for this task can be re-used from the568

“ClearMugs(SameGoal)” task.569

Evaluation setup. We conduct 10 evaluations per task. Select tasks involve different object in-570

stances for each evaluation. Objects are placed randomly within their respective initialization range.571

B.3 Performance Analysis572

The quantitative results are shown in Tab. 3.573

Table 3: Success rates of our system on real world tasks.
Tasks Sort Tableware Make Coffee Insert Screwdriver

Success Rate 9/10 6/10 7/10
Tasks Use Tool Clear Mugs (Same Goal) Clear Mugs (Multi Goal)

Success Rate 9/10 8/10 8/10

The task execution process is visualized in Fig. 8 and Fig. 9. NOD-TAMP can handle fine-grained574

motions (e.g., inserting the coffee pod or screwdriver with tight tolerance), and demonstrate its575

capability to re-use skills and reasoning over them to achieve long-horizon goals (e.g., grasping576

different parts of the tool to achieve poking and hooking behaviors). We also notice the major577

failures are caused by that the robot fails to grasp the handle of the mug, or not precisely align the578

pod with the holder of the machine, where the errors can be attributed to noisy depth perception,579

or incomplete object point clouds due to partial view observation. We conduct further analysis on580

perception noise in Sec. E.581
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Figure 8: Real-world Results. Key frames of real world task execution processes, the planning
results are shown below each frame.
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C Skill Reasoning Visualization582

To analyze the skill planning process, we use real world trials of “ClearMugs(SameGoal)”,583

“ClearMugs(MultiGoal)”, and “UseTool” for visualizing the feature distance of different584

skill combinations (See Fig. 10). For the left part of the figure, each row represent different strategies585

of picking a mug (i.e., grasp the rim or grasp the handle), each column represent different strategies586

of placing the holding mug (i.e., insert the mug into cabinet, or hang it on mug tree). For the right587

part of the figure, each row represents different ways of pick up the tool (i.e., grasp either the junction588

or the long handle), and each column show different ways of using the tool (i.e., poke object out of589

a tunnel or hook object that out of reach). Lower feature distance means better compatibility of the590

skill combination. The results show that by leveraging the learned object descriptor features that591

characterizing geometric configurations, our skill planning module is able to correctly evaluate the592

skill compatibility.593

Figure 10: Feature Matching. The NOD feature distance of different skill combinations for real
world trials. Lower score indicates more compatible skills (pre-post condition matching).
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D Simulation Experiments594

We visualize all reference demos used in the customized tabletop tasks in Fig. 11. We record just one595

demo for each task and post process the recorded data into skills. We conduct 20 evaluation trials for596

each task, and we change the object shapes and poses for each trial to test the generalization of the597

system, we visualize the task reset ranges by overlying the first image frame of each trial in Fig. 12.598

Fig. 13 show the generated trajectories of our framework and the execution process for our proposed599

tabletop tasks in simulation, highlighting the capability of our system on handling diverse shapes,600

configurations, and task goals.601

Pick (mug) Place (mug) Pick (mug) Place (mug)

Pick (frame) Insert (frame) Pick (tool) Hang (tool)

Figure 11: Simulation Demos. A visualization of the reference skill demos used for each cus-
tomized tabletop task. Here, the trajectories for each skill are projected into the camera coordinate
frame and drawn on top of the initial RGB image.

Table Clear Hard Tool HangTable ClearMug Insertion

Mug Insertion Table Clear Table Clear Hard Tool Hang

Figure 12: Customized Tabletop Task Reset Ranges. The task reset ranges.
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Figure 13: Simulation Results. Key frames of real world task execution and planning.
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E Robustness to Perception Noise602

To understand the performance of our system under different levels of perception noise, such as603

levels present in real-world sensors, we perform an experiment where we inject noise in the point604

cloud observation in simulation. We peform evaluation on the first stage of the ToolHang task, a605

high-precision task with tolerance of approximately 5mm. The robot needs to pick up the frame606

object and insert it into a stand. A study of the depth accuracy of the Microsoft Azure Kinect [57]607

showed that, within a distance of 0.8 meters, the noise standard deviation is 0.0005546 meters.608

To simulate this and settings with increased noise, we inject Gaussian noise with standard devia-609

tions of 0.05, 0.1, 0.15, and 0.2 centimeters. The results of the experiment are shown in Fig. 14.610

NOD-TAMP only experiences a 5% reduction in success rate for real-world levels of noise. Our ex-611

periments show that NOD-TAMP can robustly complete precise tasks even in the presence of typical612

sensor noise.613
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Figure 14: Robustness to Perception Noise. We evaluate the performance of NOD-TAMP under
different levels of perception noise on the first stage of the simulated ToolHang task. The vertical
dotted line represents the Gaussian noise standard deviation of a Microsoft Azure Kinect. The
success rate of NOD-TAMP only slightly decreases for real-world levels of noise, indicating that
NOD-TAMP is robust to sensor noise.
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F Computation Efficiency614

We provide a planning runtime analysis of our system in Fig. 15. We evaluate NOD-TAMP on a615

two-stage task that involves skill chaining and reasoning. We report the runtime of the trajectory616

adaptation, constraint transfer & skill reasoning, and trajectory tracking components. Since most617

daily tasks can be achieved through sparsely represented trajectories with around 10-20 poses, al-618

together, the planning time is typically 1-2 minutes, where the gradient-based NDF optimization619

occupies most of the runtime.620
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Figure 15: Time v.s. Trajectory Lengths. We show the runtime of our full system for a two-
stage task. TA is short for trajectory adaptation, CT & SR is short for constraint transfer and
skill reasoning. Tr is short for trajectory tracking. We see that trajectory adaption is the most
computationally expensive operation in NOD-TAMP.

We also observe that the computational bottleneck is trajectory adaptation, which involves NDF621

optimization of individual poses to align with the reference trajectory feature. The runtime of this622

component can be improved by utilizing lightweight neural networks for feature encoding and lever-623

aging more efficient optimization techniques. This is left for future work.624
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G Demonstration Extraction and Skill Representation625

Here, we provide additional detail on segmenting and representing skills from recorded demos, to626

supplement Sec. III.B and IV.B-C in the main text. To segment skill-level demonstrations from627

a longer task demonstration, we identify kinematic switches, which can be detected from gripper628

open & close actions and contact. Specifically, we detect object contacts and pinpoint the time step629

at which these changes occur to establish the boundaries of each skill, similar to prior works that630

uses signals such as gripper-object contact [58]. Some data sources, such as LIBERO, contain noisy631

actions such as repeated grasps and accidental contacts. To correct for this, we manually inspect and632

filter out low-quality skill demonstrations. To better leverage transit and transfer motion planning,633

we trim the skill segments to be just the actions before changes in contact. In our implementation,634

we simply consider the 50 steps before contact. Further discussion is included in Sec. IV.C.635

Skill name: Place (mug, bin)

Categories: mug, bin

Trajectory feature

Required constraints: 
{Z0=NDF(eef. pose|mug)}

Add constraints: 
{Z1=NDF(bin pose|mug)}

Delete constraints: 
{Z0=NDF(eef. pose|mug)}

t0

t1

Figure 16: Skill Representation. How we represent a pick skill in NOD-TAMP: the “required
constraints” represent preconditions and the “add & delete constraints” represent effects.

Fig. 16 illustrates how a skill is represented in the skill planning step (Sec. III.B). During skill636

planning, a candidate skill is currently executable only if the currently active set of constraints,637

which are updated after each skill is added to the current partial plan during the search, include the638

required constraints of the candidate skill. Additionally, we use a compatibility score in the form of639

the feature distance between two matched constraints to rank plan viability.640
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H Demo Quality Analysis641

To analyze how demo quality affects the performance of our system, we use the “Can” task from642

Robomimic benchmark [59] to test our system, which paired with hybrid human demos. Accord-643

ing to Robomimic, the demos are categorized into three groups with quality “better”, “okay”, and644

“worse”. We randomly sampled 4 demos from each group, and we run 10 evaluation trials for each645

source demo with randomly initialized object placements, the results are presented in Fig. 17.646
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Figure 17: Task success rate v.s. Demo Quality for the “Can” task in Robomimic [59]. Demon-
strations of different qualities are extracted from the accompanying dataset.

The results show that our system’s performance is affected by the quality of the reference demonstra-647

tions, similar to other learning from demonstration methods. However, the performance degradation648

is minimal. We also notice that some of the failure cases come from insecure grasps. This is proba-649

bly due to sub-optimal grasp poses. Incorporating failure detection and re-planning capability could650

further mitigate this issue.651
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I NDF Training652

We train per-category NDF models using 3D mesh models extracted from ShapeNet [60]. We adopt653

the same model architecture and learning hyperparameters as Simeonov et al. [8], namely a learning654

rate of 0.0001 and batch size of 16. The model is optimized using the Adam optimizer [61] and655

trained for 80k epochs. We employ 3D occupancy prediction as a pre-training task to acquire object656

descriptor features, and we randomly rotate and scale the object model to make the learned model657

more robust to shape variation. We use the same NDF models across all experiments in simulation.658

For real-world experiments, we further augment the training data by synthesizing partial point cloud659

to reflect the real-world perception input.660
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J LIBERO Qualitative Results and Failure Modes661

Fig. 18 visualizes the execution of several LIBERO tasks. Typical failure modes of our approach662

include gripper collisions due to a tight cabinet drawers and object slippage due to sub-optimal grasp663

poses. Our system’s performance is affected by the quality of the reference demonstrations, similar664

to other learning-from-demonstration methods. Thus, some of the failures can be improved through665

providing higher-quality demos. Additionally, incorporating the ability to replan would make the666

system more robust to skill execution failures.667

Figure 18: LIBERO Results. Key frames of three task execution processes for LIBERO benchmark.
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K Pseudocode668

Algorithm 1 shows the trajectory adaption process. Let o and o′ be the source and target objects in669

the test scene for the adapted skill. Let Cacc denote all the acquired constraints during the execution670

of prior skills (e.g., the grasp pose after executing PICK). Finally, let T o
w and T o′

w be poses for object671

o and o′ respectively.672

Algorithm 1 Trajectory adaptation

Declare: Source object in test scene o, target object in test scene o′, robot end-effector e
Declare: Global accumulated constraints Cacc

Declare: Planned skills π∗ = {d1, ..., dn}
1: procedure ADAPT-TRAJ(o, o′, d)
2: zq,Zτ ← d
3: Po ← PERCEPTION(o)
4: Po′ ← PERCEPTION(o′)
5: T q

w ← NDF-OPTIMIZE(Po′ , zq)
6: ▷ Adapt query pose to test scene based on target object
7: T q

o′ ← (T o′
w )−1 · T q

w

8: if d.mode=obj-obj then
9: T o′

e ← Cacc[⟨o′, e⟩] ▷ Extract constraints from Cacc

10: for z ∈ Zτ do
11: T q

w ← NDF-OPTIMIZE(Po, z)
12: ▷ Adapt motion to test scene based on source object
13: if d.mode=obj-obj then
14: T e

w ← T q
w · (T q

o′)
−1 · (T o′

e )−1

15: else
16: T e

w ← T q
w

17: yield T e
w ▷ Yield target to controller

18: if d.mode=obj-obj then
19: delete Cacc[⟨o′, e⟩] ▷ Remove constraint from Cacc

20: else
21: T o

o′ ← T q
o′ · (T

q
w)

−1 · T o
w ▷ Acquire the last constraint

22: Cacc[⟨o, o′⟩]← T o
o′ ▷ Append constraint to Cacc

Note that the object poses used in our equations are just intermediate variables that help bridge the673

desired transformations, therefore these object poses do not need to carry any actual meaning. Here,674

we explain how we use NDFs to estimate novel object Pnew’s point cloud transform Tnew w.r.t. a675

given reference object Pref with pose Tref . To do so, we simply define the rotation of T as identity,676

and define translation as the mean of Pref :677

zref ← ψNDF(Tref | Pref )

Tnew ← NDF-OPTIMIZE(Pnew, zref ).

The overall NOD-TAMP planning algorithm is shown in Algorithm 2.678
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Algorithm 2 NOD-TAMP planner

Declare: Plan skeleton [π̂1, π̂2, ..., π̂H ]
Declare: Task goal specification Zg

1: procedure PLAN-NDF-SKILLS([π̂1, π̂2, ..., π̂H ], Zg)
2: D ← [ ] ▷ List of demos per skill
3: for i ∈ [1, ..., H] do
4: D ← D + [{τ}i], where {τ}i is the trajectory set of skill π̂i

5: π∗ ← None ▷ Optimal trajectory plan
6: c∗ ←∞ ▷ Lowest cost
7: for π ∈ PRODUCT(D) do ▷ All valid traj. sequences
8: c← 0 ▷ Feature cost
9: Zacc ← {} ▷ All accumulated constraints

10: for i ∈ [1, ..., H − 1] do
11: zipre , z

i
eff ← PARSE(π[i]) ▷ Parse pre. and eff. constraints

12: zi+1
pre , zi+1

eff ← PARSE(π[i+ 1])

13: c← c+ ||zieff − zi+1
pre ||

14: ▷ Compute feature distance among skills
15: Zacc ← Zacc ∪ {zieff}
16: ▷ Update acquired constraints
17: for ⟨k, zk⟩ ∈ Zg do ▷ Enumerate goal constraints
18: ẑk ← Zacc [k]
19: c← c+ ||ẑk − zk||
20: ▷ Compute feature distance of the goal configuration
21: if c < c∗ then ▷ Update best plan
22: π∗ ← π; c∗ ← c

23: return π∗
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