1

2

3

Supplementary Material

1 Method Code-flow

Anonymous Author(s)
Affiliation
Address
email

We present code-flow work for each of the three training stages in the following sections.

1.1 Stage 1: Training a classification network using BAP

Hyper-parameters

MNumber of lterations

Learning Rate
Momentum
Weight Decay

Batch Size
Crop Size
Mumber of classes

Transforms

Random Scale
Random Crop

Random Horizontal Flip
Color Jitter

MNormalize Caffe

h

WandB Logging

Training Loss
Learning Rate

Maodel Checkpoint
Optimizer Checkpoint
Scheduler Checkpoint

Model Initialisation

Pre-trained VGG Backbone weights
Region of Interest (RO1) Size
Feature map grid size (N)

Stage 1 Training

Y

Loading Dataset

Input:
- Config file
- Raw dataset

Prepare dataset: sefup voc.bash
and extract bounding boxes
Assign batch wise index for each
box and apply transformations.

Return:
- Image and background mask
- Bounding boxes

Input:
- Transformed Dataloader
- Model and training parameters

Assign batch-wise index to each
bounding box using my_collate
function and train the model using
obtained image, bounding boxes
and back-ground mask, with the
specified pooling method.

Return:
- Trained classification model

v

Classification Network

Input:
- Backbone and model parameters
- Pooling method: GAP or BAP

Obtain feature map from the backbone
network followed by background

prototypes using class activation maps,

Apply the specified pooling method to
obtain the foreground prototypes and
train a soft-max classification head.

Return:
- Classification model architecture

Trained Model

Pooling Method

Classification Metwork:

- Classifier weights

- Feature map

- Background prototypes

Used for generating pseudo
labels in stage 2

Input:

- Feature map and Bounding boxes

- Background prototypes

Apply Global Average pooling (GAP) or
Background Aware Pooling (BAP).
Return:

- Foreground prototypes

Figure 1: Stage 1 Code flow

Submitted to ML Reproducibility Challenge 2021. Do not distribute.

4+ 1.2 Stage 2: Obtaining pseudo labels from the trained classification model

Hyper-parameters

Grid size

ROI size

Background threshold
DCRF parameters

Transforms

Mormalize Caffe

h

Loading Dataset

Input:
- Config file
- Raw dataset

Prepare dataset and extract bounding boxes.
Assign batch-wise index for each box and apply
transformations.

Setup PASCAL VOC: setup_voc.bash
Return:

- Image and background mask
- Bounding boxes

Stage 2 : Pseudo-label Generation

Maodel Checkpoint
Optimizer Checkpoint

Input:

- Hyperparameters

- Source and target dataset
- Model Weights from Stage1

=

Pseudo-label Generation:
- Loading source and target datasst
- Model initialization

- Feature extractor
- Generate Background Attention Map (u0)
- Generate Foreground Attention Map (uc)

Perform:
- DENSE_CRF(u, rgb_image)

Returns:

- Generate Yerf

- Generate Yret

- Save pseudo labels

WandB Logging

Training Loss
Learning Rate

Scheduler Checkpoint

Model Initialisation

Model Weights
ROI Size
Grid Size

Classification Network

rl

BANA/Generation

Store pseudo labels Yerf and Yret

Figure 2: Stage 2 Code flow

Input:
- Model weights from Stage1 training

Obtain feature map from the backbone
network followed by background
protatypes

5

1.3 Stage 3: Training segmentation network using the pseudo labels obtained and NAL loss

DeeplLab_Large FOV()

Input :
-NUM_CLASSES

Hyper-parameters

Number of lterations
Learning Rate

WandB Logging

Training Loss
Train lteration

Loading Dataset

- Apply transformations.

- Assign batch wise index for data

Return:

- Image

- Background mask

- Pseudolabels ycrf and yret

Transforms

Random Scale
Random Crop

Random Horizontal Flip
Color Jitter

Normalize Caffe

‘—,\r |

Momentum Learning Rate
- Backbone : VGG16 Step size Training Mean loU
Gamma Training Accuracy
l Weight Decay Validation Mean loU
Batch Size Validation Accuracy
Model Initialisation Crop Size Checkpoint
Input : l l
- Model type (SegMet_VGG/ Stage 3
Seghet_ASPP) ——
Retumns : Model to be trained)
(DeeplLab_LargeFOV() / Input :
Deeplab_LargeASPP()) - Config file
- Apply transforms and load dataset
|- Model Initialisation
”1- Load pre-trained backbone weights
- Restore checkpoint from WandB if any B
» |- train() -
- val()
Deeplab_ASPP()
Input : train()
- NUM_Classes .
= Input :
- Qutput stride . gonﬂg file
. - Model to be trained
- Backbone : RES101 - Checkpoint L
- Dataloader
Choice of loss __). - Define loss Criterion |
, - Define optimizer (SGD), and scheduler (PolynomialLR)
1. Baseline - Load checkpoint if any
2. Bootstraping - lteration step -
3. Cross Entropy - model forward()
4. Entropy Reqgularization _ Obtain loss
5. Noise Aware Loss - Evaluate the model

val()

Input :

- Config file

- Model to be evaluate
- Checkpoint

- Dataloader

- Load checkpeint

- Evaluation : obtain mloU and mean accuracy

- Apply DenseCRF
- Evaluation post DenseCRF

Input :
- Config file
- Model to be evaluated

- Dataloader, ground truth labels and generated pseudolabels.

- Mean accuracy and loU calculated using confusion matrix.

Returns :
- Mean Accuracy
- Mean loU

Figure 3: Stage 3 Code flow

6

10
11

2 Class Agnostic Pseudo Label Generation using v

In our VOC to COCO experiment, mapping was done between the classes of VOC to the corresponding COCO classes
to facilitate usage of CAMs. Here we further investigate the usage 1 — ug as a class agnostic foreground attention map
for all classes instead of using CAMs. We perform this experiment on the VOC train set, wherein no CAMs have been
used in label generation. The results in comparison with usage of CAMs for u,. strongly exhibit the generic nature of
pseudo label generator using the background attention map. Visual comparison of the images is shown in Fig. (4).

Method | CAMS for u. | 1 — ug in place of u.
BAP Ycrf 78.7 67.48
BAP Yret 70.8 68.66

T

Original Using CAMs No CAMs

Figure 4: Visual Comparison : class-agnostic label generation

-

3 Wandb Training Logs

3.1 Experiments with NAL loss

Following are the training logs obtained during the Stage 3 training with cross-entropy loss on Y,y and Y..; individually,
and with NAL using both.

Mean loU Mean Accuracy
= VGG RET = VGG NAL = VGG CRF == RES RET = VGG RET == VGG NAL = VGG CRF == RES RET
= RES NAL = RES CRF = RES NAL = RES CRF
0.7
0.85
0.65
0.8
0.6
0.75
0.55
Ste Ste
05 P 0.7 p
5k 10k 15k 20k 25k 5k 10k 15k 20k 25k
Train Loss Learning Rate
= VGG RET == VGG NAL = VGG CRF == RES RET = VGG RET == VGG NAL = VGG CRF = RES RET
= RES NAL = RES CRF = RES NAL = RES CRF
0.001
3 0.0008
5 0.0006
\\ 0.0004
1
e 0.0002
“Ste
0 . 0
0 5k 10k 15k 20k 25k 5k 10k 15k 20k

16 3.2 Experiments with NAL and it’s counterpart loss

17 Shown below are the training logs of Stage 3 experiments using NAL and other contemporary losses. Mean IoU score

18 and mean accuracy shown are obtained on training set.

Mean loU

= VGG NAL
= VGG Bootstraping

0.7

0.65

0.6

0.55

5k 10k 15k

Train Loss

= VGG NAL
= VGG Bootstraping

VGG Baseline

20k

VGG Baseline

= VGG Entropy Regularization

25k

= VGG Entropy Regularization

Mean Accuracy

= VGG NAL
= VGG Bootstraping

= VGG Entropy Regularization
= VGG Baseline

————O

0.85
0.8
0.75
0.7
5k 10k 15k 20k 25k
Learning Rate
= VGG NAL = VGG Entropy Regularization
= VGG Bootstraping = VGG Baseline
0.0008
0.0006
0.0004
0.0002
Train Iterati
0
5k 10k 15k 20k

19 3.3 Experiments with GAP and BAP

20 Here we present training logs from Stage 1 experiments using BAP and GAP on augmented dataset and non-augmented
21 dataset.

Learning Rate Loss
= Stagel GAP Non Aug Stagel GAP Aug = Stagel GAP Non Aug Stagel GAP Aug
Stagel BAP Non Aug = Stagel BAP Aug Stagel BAP Non g = Stagel BAP Aug
0.001 3
0.0008 2.5
2
0.0006
1.5
0.0004
1
0.0002 05
2
Step —Step®
0 0
2k 4k 6k 2k 4k 6k 8k

22 4 Detailed study: BAP vs GAP

23 The complete results in our comparison of BAP and GAP are shown below. In both the methods, we notice a significant
24 improvement in mean IoU upon using the augmented dataset. As seen from the results, BAP is superior than GAP for
the different experimental configurations.

Method Author’s Results Our Results
Augmented Augmented Non-augmented
train val train val train val
GAP Ycrf w/o u0 70.2 675 73.1 62.0

GAP Ycrf 75.5 76.1 76.6 755 772 75.7
GAP Yret - - 73.6 727 725 70.5

BAP Ycrf wiou0 77.0 77.8 783 770 739 62.0
BAP Ycrf 78.7 79.2 80.1 788 795 75.4
BAP Yret 70.8 69.9 714 699 703 65.0

BAP Ycrf & Yret 85.3 68.2 85.7 7277 824 79.6

Table 1: Comparison of pseudo labels on the PASCAL VOC validation sets in terms of mloU

25

	Method Code-flow
	Stage 1: Training a classification network using BAP
	Stage 2: Obtaining pseudo labels from the trained classification model
	Stage 3: Training segmentation network using the pseudo labels obtained and NAL loss

	Class Agnostic Pseudo Label Generation using u0
	Wandb Training Logs
	Experiments with NAL loss
	Experiments with NAL and it's counterpart loss
	Experiments with GAP and BAP

	Detailed study: BAP vs GAP

