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Supplementary for “Cost-efficient SVRG with Arbitrary Sampling”

A USEFUL DEFINITIONS AND LEMMAS

Table 2 lists the main symbols used in the paper.

Table 2: Summary of main notations.

Symbol Definition
N Number of worker nodes
K Number of (outer) iterations
T Maximum epoch length
w Global model (parameters)
fi Local loss function of node i

gi(w) Gradient of node i at point w
g(w) Average gradient of all the nodes (

∑
i gi(w)/N)

(xij , yij) Data sample j of node i and its label
P Sampling policy of the master node
pi Sampling probability of node i
αk Step size (learning rate) at iteration k
L Expected smoothness

ξk,t−1 Sampled node(s) at iteration k, inner loop iteration t

As we recall, the random variables ξk,t ∼ P are all pairwise independent and identically distributed
(i.i.d) and represent a sampling from the set [N ] according to the distribution P , taken at each inner
loop iteration of Algorithm 1. For the sake of analysis, set

vk,t =

w̃k, t = 0,

vk,t−1 − αk
(
hξk,t−1

(vk,t−1)− hξk,t−1
(w̃k) + h̃k

)
, 1 ≤ t ≤ T + 1,

where w̃k and h̃k =
∑
i∈[N ] pihi (w̃k) are given by Algorithm 1, and hi(w) := gi(w)/Npi. Notice

that these new variables vk,t have the same values as the variables wk,t in Algorithm 1. We will use
the new variables in the convergence proof of the algorithm, since doing so will simplify some parts
of the proof.
Definition 1 (Sampling (Qian et al., 2019)). A mini-batch sampling ξ is a random set-valued mapping,
with possible values being the subsets of [N ]. Given a sampling ξ, we let pi := Pr(i ∈ ξ). We say ξ
is proper if pi > 0 for all i ∈ [N ].
Lemma 3. For any set of vectors {w1, . . . ,wn} ⊆ Rd, we have that ‖

∑n
i=1 wi‖2 ≤

n
∑n
i=1 ‖wi‖2.

Lemma 4 (Variance decomposition inequality). Let w be a random variable. Then

E
[
‖w − E [w]‖2

]
= E

[
‖w‖2

]
− ‖E [w]‖2 ≤ E

[
‖w‖2

]
.

Lemma 5. Consider the variables vk,t above, for 1 ≤ t ≤ T . We have that

E
[∥∥∥hξk,t−1

(vk,t−1)− hξk,t−1
(w̃k) + h̃k

∥∥∥2 | ξk,t−1] ≤ 4L (f (vk,t−1) + f (w̃k)− 2f (w?)) ,

where L is the expected smoothness constant in Lemma 1.
Lemma 6. Consider the variables vk,t above, for 1 ≤ t ≤ T , and suppose that w? is the minimizer
of f , i.e., that ∇f(w?) = 0. We have that

E
[
‖vk,t −w?‖2 | ξk,t−1

]
≤ ‖vk,t−1 −w?‖2

+ 4Lα2
k (f (vk,t−1) + f (w̃k)− 2f (w?))− 2αk (f (vk,t−1)− f (w?)) .
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B PROOFS

B.1 LEMMA 2

Since each function fi is Li-smooth, it follows that

fi(y) ≥ fi(x) + 〈gi(x),y − x〉+
1

2Li
‖gi(y)− gi(x)‖2,

for any i, x and y. If we set x = w?,y = w, and rearrange this inequality, we end up with

‖gi(w)− gi(w
?)‖2 ≤ 2Li (fi(w)− fi(w?)− 〈gi(w?),w −w?〉) .

Therefore, for any random variable ξ ∼ P ,

E
[
‖hξ(w)− hξ(w

?)‖2 | ξ
]

= E

[∥∥∥∥gξ(w)− gξ(w
?)

Npξ

∥∥∥∥2 | ξ
]

≤
∑
i∈[N ]

2Li
N2pi

(fi(w)− fi(w?)− 〈gi(w?),w −w?〉)

≤ 2 max
1≤i≤N

{
Li
N2pi

} n∑
i=1

fi(w)− fi(w?)− 〈gi(w?),w −w?〉

= 2 max
i∈[N ]

{
Li
Npi

}
(f(w)− f(w?)) ,

leading to L ≤ max
i∈[N ]

{Li/Npi}, where in the last step we used that f = 1
N

∑
i∈[N ] fi and g(w?) =

0.

B.2 LEMMA 3

Write ‖
∑n
i=1 wi‖2 = n2‖ 1n

∑n
i=1 wi‖2 and use Jensen’s inequality with the convexity of the norm

squared to conclude the lemma.

B.3 LEMMA 5

Lemma 3 yields

E
[∥∥∥hξk,t−1

(vk,t−1)− hξk,t−1
(w̃k) + h̃k

∥∥∥2 | ξk,t−1] ≤ 2E
[∥∥hξk,t−1

(vk,t−1)− hξk,t−1
(w?)

∥∥2 | ξk,t−1]
+ 2E

[∥∥∥hξk,t−1
(w?)− hξk,t−1

(w̃k) + h̃k

∥∥∥2 | ξk,t−1]
(a)
≤ 2E

[∥∥hξk,t−1
(vk,t−1)− hξk,t−1

(w?)
∥∥2 | ξk,t−1]

+ 2E
[∥∥hξk,t−1

(w?)− hξk,t−1
(w̃k)

∥∥2 | ξk,t−1]
(b)
≤ 4L (f (vk,t−1) + f (w̃k)− 2f (w?)) ,

where (a) is due to the variance decomposition inequality (Lemma 4) and the definition of h(w̃), and
(b) is due to Lemma 1. For (a), recall that h̃k =

∑
i pihi (w̃k) = E [hξ (w̃k) | ξ], for any random

variable ξ ∼ P , which applies to ξk,t−1.
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B.4 LEMMA 6

The inner loop of Algorithm 1 yields

E
[
‖vk,t −w?‖2 | ξk,t−1

]
= E

[
‖vk,t−1 − αk

(
hξk,t−1

(vk,t−1)− hξk,t−1
(w̃k) + h̃k

)
−w?‖2 | ξk,t−1

]
= E

[
‖vk,t−1 −w?‖2 + α2

k

∥∥∥hξk,t−1
(vk,t−1)− hξk,t−1

(w̃k) + h̃k

∥∥∥2
−2αk (vk,t−1 −w?)

T
(
hξk,t−1

(vk,t−1)− hξk,t−1
(w̃k) + h̃k

)
| ξk,t−1

]
(a)
≤ ‖vk,t−1 −w?‖2 + 4Lα2

k (f (vk,t−1) + f (w̃k)− 2f (w?))

− 2αk (vk,t−1 −w?)
T E
[
hξ (vk,t−1)− hξ (w̃k) + h̃k | ξk,t−1

]
(b)
= ‖vk,t−1 −w?‖2 + 4Lα2

k (f (vk,t−1) + f (w̃k)− 2f (w?))

− 2αk (vk,t−1 −w?)
T
g (vk,t−1)

(c)
≤ ‖vk,t−1 −w?‖2 + 4Lα2

k (f (vk,t−1) + f (w̃k)− 2f (w?))

− 2αk (f (vk,t−1)− f (w?)) ,

where (a) is due to Lemma 5, and the independence of wk,t−1 from ξk,t−1, and (c) is due to the
convexity of f . Equality (b) follows from

E
[
hξk,t−1

(vk,t−1)− hξk,t−1
(w̃k) + h̃k | ξk,t−1

]
=

N∑
i=1

pihi (vk,t−1) = g (wk,t−1) ,

where we have used the fact that h̃k = E [hξ (w̃k) | ξ], where ξ ∼ P is a sampling of the set [N ]
according to the distribution P .

B.5 PROPOSITION 1

Using proof by contradiction, it is relatively easy to establish that p?i /Li = a for all i ∈ [N ] and
some constant a > 0. Constraint

∑
i p
?
i = 1 yields a = 1/

∑
i Li = 1/NL̄, completing the proof.

B.6 PROPOSITION 2

The proof sketch is similar to the convergence of the original SVRG algorithm (Johnson and Zhang,
2013). Recall that ζk is uniformly sampled from {1, . . . , T}, and w̃k+1 = wk,ζk = vk,ζk . That is,

E [f(w̃k+1)] =
1

T

T∑
t=1

f(vk,t) . (A.1)

Use the inequality for E
[
‖vk,t −w?‖2 | ξt−1

]
in Lemma 6, together with the tower law E [X] =

E [E [X | Y ]], and sum them over the T iterations of one epoch:

T+1∑
t=1

E
[
‖vk,t −w?‖2

]
≤
T+1∑
t=1

E
[
‖vk,t−1 −w?‖2

]
+ E

[
T+1∑
t=1

4Lα2
k (f (vk,t−1) + f (w̃k)− 2f (w?))− 2αk (f (vk,t−1)− f (w?))

]
(A.1)
=

T∑
t=0

E
[
‖vk,t −w?‖2

]
+ E

[
4LTα2

k (f(w̃k+1) + f (w̃k)− 2f (w?))− 2Tαk (f(w̃k+1)− f (w?))

+ 4Lα2
k (f(wk,0) + f (w̃k)− 2f (w?))− 2αk (f(wk,0)− f (w?))

]
.
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Cancelling similar terms from both sides, noting that vk,0 = wk,0 = w̃k, and setting ∆k :=
E [f(w̃k)]− f(w?), yields

0 ≤ E
[
‖vk,T −w?‖2

]
≤ E

[
‖w̃k −w?‖2

]
+ 4LTα2

k (∆k+1 + ∆k)− 2Tαk∆k+1 + 8Lα2
k∆k − 2αk∆k

(a)
≤ 2∆k

µ
+ 4LTα2

k (∆k+1 + ∆k)− 2Tαk∆k+1 +
(
8Lα2

k − 2αk
)

∆k .

where (a) follows from strong convexity of f . After rearranging, we end up with

∆k+1 ≤

(
2
µ + 4LTα2

k + 8Lα2
k − 2αk

2Tαk − 4LTα2
k

)
∆k =

(
1

µTαk
+ 2Lαk + 4Lαk−1

T

1− 2Lαk

)
∆k , (A.2)

assuming αk ∈ (0, 1/2L) to ensure a positive denominator. Forcing the contraction factor to be in
interval (0, 1) yields T > 0 and α < 1/2L to meet the lower limit and

T >
1 + µαk(4Lαk − 1)

µαk (1− 4Lαk)
, (A.3)

to meet the upper limit. Moreover, T > 0 in (A.3) implies αk < 1/4L, and therefore 4Lαk − 1 ≤ 0,
which allows us to use the bounds

T >
1

µαk (1− 4Lαk)
, and (A.4)

∆k+1 ≤

(
1

µTαk
+ 2Lαk

1− 2Lαk

)
∆k . (A.5)

These bounds are comparable to the ones in the original SVRG paper (Johnson and Zhang, 2013),
with the difference being that here L represents the expected, rather than the maximum, smoothness
constant.

We can deduce the following corollary from Proposition 2:
Corollary 1. To ensure a contraction factor of at most σmax < 1 , the step size and the maximum
epoch length should satisfy

αk ≤
σmax

2L (1 + σmax)
, and T ≥ 1

mink∈N µαk (σmax − 2Lαkσmax − 2Lαk)
. (A.6)

B.7 COROLLARY 1

From Proposition 2, we set
1

µTαk
+ 2Lαk

1− 2Lαk
≤ σmax

and obtain
T ≥ 1

µαk (σmax − 2Lαkσmax − 2Lαk)
.

Equation (A.6) immediately follows. Notice that positivity of the denominator implies

αk <
σmax

2L(1 + σmax)
,

for some positive σmax < 1. This condition automatically implies αk < 1/4L (from σ/(1 + σ)
being monotonically increasing for 0 < σ ≤ 1), under which Proposition 2 holds.

B.8 OPTIMIZATION PROBLEM (3)

First, we can rewrite (3) as

minimize
p1,p2,...,pN

T
∑
i∈[N ]

cipi , (A.7a)

subject to
∑
i∈[N ]

pi = 1 , (A.7b)

pi ≥
4Li
N

max

{
α,

1

4Lmax

}
,∀i ∈ [N ]. (A.7c)

4
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To this end, notice that Constraint (3c) is equivalent to pi ≥ 4αLi/N for all i ∈ [N ]. Moreover,
x1
y1
≥ x2
y2
⇐⇒ x1

x1 + y1
≥ x2
x2 + y2

(A.8)

for all x1, x2 ≥ 0 and y1, y2 > 0 implies that constraint (3d) is equivalent to Lmax ≥ maxi{Li/Npi}
and therefore to pi ≥ Li/NLmax for all i ∈ [N ], concluding the transformation.

Now, let βi := 4Li max {α, 1/4Lmax} /N and L̄ :=
∑N
i=1 Li/N . Feasibility of (A.7) is ensured if

and only if
∑
i∈[N ] βi ≤ 1, since the constraint (A.7c) is equivalent to βi ≤ pi, and we should have∑

i pi = 1. Consequently,

max

{
4αL̄,

L̄

Lmax

}
=
∑
i∈[N ]

βi ≤ 1 . (A.9)

Recall that L̄ ≤ Lmax, so that L̄/Lmax ≤ 1. Since α ≤ 1/4L̄, it follows that (A.9) is satisfied,
meaning that the problem is always feasible. Let (p1, . . . , pN ) be the probability distribution given
in (4), and notice that it satisfies pi = βi for every i 6= j, and pj = 1 −

∑
i 6=j βi ≥ βj . That is, it

satisfies the constraint (A.7c), meaning that it is a feasible solution. We will now show that it is also
an optimal solution to the problem.

Any other feasible probability distribution (p′1, · · · , p′N ) can be obtained as p′i = pi+ei, where ei ≥ 0
for i 6= j, and ej = −

∑
i6=j ei ≤ βj − pj , due to the constraints p′i ≥ βi, and

∑
i p
′
i = 1 =

∑
i pi.

However, the cost associated with the distribution (p′1, · · · , p′N ) is∑
i

p′ici =
∑
i

pici + ejcj +
∑
i 6=j

eici ≥
∑
i

pici + ejcj − ejcmin =
∑
i

pici,

since ci ≥ cmin, and cj = cmin. That is, the cost is not lower than the one associated with the
distribution (p1, . . . , pN ). This shows that the probability distribution given by (4) is an optimal
solution.

B.9 REMARK 1

It is straightforward to show that all main lemmas and proof steps would remain the same for the
mini-batch SVRG-AS+ algorithm.

C ADDITIONAL DISCUSSIONS AND RESULTS

C.1 RATE MODEL FOR SHARED WIRELESS CHANNEL

Define the so-called offered load ` > 0 as the average number of packets (gradients) that the workers
inject to the wireless channel (Bertsekas et al., 2004). The successful transmission rate model follows
r = r0` exp{−`/r1} for some positive constants r0 and r1 describing the wireless channel and
communication protocol (Bertsekas et al., 2004). Figure A.1 shows the success rate for r0 = r1 = 10.
This rate model implies that the channel can handle the incoming traffic when almost idle. After
a certain point, it becomes “congested” and increasing the number of transmitted packets (offered
loads) would only add to the congestion and packet drops, leading to a lower success rate.

C.2 MINIMUM LATENCY SVRG-AS+ FOR SECTION 4.2

Define the so-called offered load ` > 0 as the average number of packets (gradients) that the workers
inject to the wireless channel (Bertsekas et al., 2004). The successful transmission rate model follows
r = r0` exp{−`/r1} for some positive constants r0 and r1 describing the wireless channel and
communication protocol (Bertsekas et al., 2004). By the definition of pi, ` =

∑
i pi for mini-batch

SVRG-AS+. With the natural assumption of fixed packet size for every gradient vector,1 latency is
inversely proportional to the success rate. Assuming a fixed p for all iterations, the expected cost of

1Assuming 32 bits per coordinate, g has 32d bits. Compression algorithms, reviewed in Section 2, reduce
this number.
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Figure A.1: Illustration of rate model for r0 = r1 = 10.

K iterations of SVRG-AS+ is then Kr−1, after which ∆K ≤ σK∆0. Ensuring ∆k ≤ ε1 for some
constant ε1 > 0 implies σ ≤ (ε1/∆0)1/K , where we have assumed α1 = α2 = . . . = αK = α.
Now, using the definition of σ in Proposition 2, definition of L in Lemma (2), and equivalence in
(A.8), we can show that ∆K ≤ ε1 is equivalent to

pi ≥
2αLi
Nε2

for every i ∈ [N ], where ε2 =

(
(ε1/∆0)1/K

1 + (ε1/∆0)1/K

)(
1 +

1

µTα

)
− 1

µTα
.

Now, we can formulate our minimum latency SVRG-AS+ problem as

minimize
p1,p2,...,pN

KT

exp

{∑
i∈[N ] pi

r1

}
r0
∑
i∈[N ] pi

,

subject to pi ∈
[

2Li
N

max

{
α

ε2
,

1

2Lmax

}
, 1

]
, ∀i ∈ [N ].

C.3 SMOOTHNESS AND STRONG CONVEXITY PARAMETERS FOR LOGISTIC REGRESSION

Consider function

fi(w) =
1

Mi

∑
j∈[Mi]

ln
(

1 + e−w
Txijyij

)
.

Define zij := xijyij . Let eigmax(X) and eigmin(X) denote the largest and smallest eigenvalues of
matrix X . Now, we characterize the geometry of our problem using Li ≥ eigmax

(
∇2fi(w)

)
and

µ ≤ eigmin

(
∇2f(w)

)
inequalities. We have,

• Smoothness parameter Li:

eigmax

(
∇2fi(w)

)
≤ 1

Mi

∑
j∈[Mi]

eigmax

(
∇2fi(w)

)
≤ 1

4Mi

∑
j∈[Mi]

‖zij‖22 := Li .

• Strong convexity parameter µ:

eigmin

(
∇2f(w)

)
≥ 1

Mi

∑
j∈[Mi]

eigmin

(
∇2fi(w)

)
:= µ .

C.4 MINI-BATCH SVRG-AS+ ALGORITHM

Algorithm 2 shows SVRG-AS+ with mini-batch updates.

6
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Algorithm 2 Mini-batch SVRG-AS+

1: Inputs: Maximum epoch length T , number of epochs K, N , step size sequence (αk)k, and
probabilities p1, . . . , pN .

2: for k = 1, 2, . . . ,K − 1 do
3: h̃k ←

∑
i∈[N ] pihi (w̃k)

4: wk,0 ← w̃k

5: Sample ζ := ζk uniformly from {1, 2, . . . , T}
6: for t = 1, 2, . . . , ζ do
7: Every worker i with probability pi, independent of other workers, computes gi (w) and

hi (w) := gi (w) /Npi, and sends it to the master node, for both w = wk,t−1 and w = w̃k.

8: Define ξ := {i | hi(wk,t−1) is sampled}.
9: Compute wk,t ← wk,t−1 − αk

∑N
i=1 1i∈ξ

(
hi (wk,t−1)− hi (w̃k) + h̃k

)
10: Broadcast wk,t

11: end for
12: w̃k+1 ← wk,ζ

13: end for
14: Return: w̃K

Table 3: F1-score of the MNIST test dataset and cost of training the model using a distributed algorithm. Results
are for the two stragglers cost model with (αk = 0.2)k, T = 15, and 20 iterations.

N
SVRG SVRG-AS+

F1-score cost (x1000) F1-score cost (x1000)

10 0.864 103.5 0.859 43.5
50 0.860 269.2 0.861 25.9

100 0.841 476.3 0.839 20.0

C.5 EXTRA EXPERIMENTS ON MNIST DATASET

To evaluate the performance of our final solution on all digits, we have reported in Table 3 the
F1-score, averaged over all classes. In all cases, the convergence of SVRG-AS+ was as fast as that
of SVRG. We should highlight that we did not try to optimize hyper-parameters to achieve a better
F1-score in our experiments.

To further improve the robustness to the stragglers, one may exploit the inherent redundancy of
big datasets (Ghadikolaei et al., 2019). In particular, increasing the number of nodes may raise the
correlation among the local private datasets, leading to lower dependency on the data stored in a
single node. In the example of handwritten digit classification, we can expect less sensitivity of the
training task to the lack of information from one straggler node if the information in its local dataset
(relevant to the training task) can be captured by others. In the case of the MNIST dataset, when we
increase the number of nodes to more than 10, samples of every class will be found in more than one
node. Consequently, we can even further reduce pi for straggler nodes and even ignore their inputs
for the outer loop, knowing that their contributions to the training task can be replaced by others with
low cost. Using a grid search, we can reduce the cost when N = 100 (last row of Table 3) from
476,330 to 20015, leading to 96% less costs to achieve the same solution. We leave the formal design
of this extension of cost-efficient SVRG-AS+ as a future work.

C.6 COMMENTS ON CIFAR10 EXPERIMENTS

Our optimization problems and convergence bounds are obtained for strongly convex surface, such
as (3) and (5). To run non-convex experiments on CIFAR10, we had to hand-tune the constraints,
meaning that the step-size α and maximum epoch length T were manually tuned, as is common for
most gradient descent methods.
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C.7 COST REDUCTION DUE TO EARLY CUT OF INNER-LOOP

In theory, cutting the inner loop early in this way cannot account for more than half of the reduction
in cost (and in practice much less than that). Indeed, every inner loop requires N communications to
initialize the parameters, and our version performs on average T/2 inner loop iterations instead of
T . Since each inner loop iteration requires one communication (considering only the uplink), the
average communications required for each epoch is N + T/2 for our version, instead of the original
N +T . As can be seen, N +T/2 is more than half of N +T . Extra saving in the experiments comes
from a network-aware optimal sampling policy.
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