
Under review as a conference paper at ICLR 2024

A CONSISTENT AMPLITUDE ESTIMATION

In this subsection, we review the consistent phase estimation and amplitude estimation procedure and give a proof for
Theorem 2.3. We first recall the phase estimation procedure.

Theorem A.1. There exists a quantum algorithm PhaseEst(U, ε, δ) such that, for δ ∈ (0, 1) and ε ∈ (0, 1), and an
n× n unitary matrix U such that

U =
∑
j∈[n]

exp(2πiλj)|vj⟩⟨vj |,

where λj ∈ [0, 1), it holds that:

• On input any state
∑

j∈[n] aj |vj⟩|0⟩, the algorithm outputs a state
∑

j∈[n] aj |vj⟩|φ̃j⟩.

• If measuring |φ̃j⟩ on the computational basis, then with probability at least 1−εwe will get the approximation
φ̃j that satisfies |φ̃j − λj | ≤ δ.

Moreover, the algorithm uses O(ε−1δ−1) queries to U and in O(ε−1δ−1) time. gates

To describe and use the quantum phase estimation procedure more precisely, following Ta-Shma (2013), we introduce
the following notations:

Denote t to be the number of ancilla qubits and T = 2t. Then define

Farδ,T (λ) :=
{
j ∈ Z ∩ [0, T − 1] :

∣∣∣∣(jT − λ
)

mod 1

∣∣∣∣ ≥ δ}
Using the above notation, we can write the quantum phase estimation algorithm (without measurement) to be the
following unitary:

PhaseEst(U, ε, δ) :
∑
j∈[n]

aj |vj⟩|0⟩ 7→
∑
j∈[n]

aj |vj⟩|φ̃j⟩,

where

|φ̃j⟩ =
T−1∑
k=0

βj,k|k⟩,

and ∑
k∈Farδ,T (λj)

|βj,k|2 ≤ ε.

In the consistent phase estimation algorithm, we need to divide the interval [sδ′ − δ′, 1 + sδ′ + δ′) into consecutive
sections of length δ. The following function indicates which intersection the estimation result falls in:

Sec(x) =

⌊
x− sδ′ + δ′

δ

⌋
.

Let Sec be the associated unitary of this function that works as follows:

Sec = I ⊗
∑
k

(
|k⟩⟨k| ⊗

∑
l

|l + Sec(k/T)⟩⟨l|

)
.

We are now ready to state the consistent phase estimation algorithm with a theorem for its correctness.

Theorem A.2 (Adapted from Ta-Shma (2013)). Let U be an n× n unitary matrix such that

U =
∑
j∈[n]

exp(2πiλj)|vj⟩⟨vj |, (3)

where λj ∈ [0, 1). Let V ⊆ [n], and S = {λj : j ∈ V } with cardinality |S|. There exists a quantum algorithm,
namely Algorithm 4, such that for δ ∈ (0, 1) and ε ∈ (0, 1), on input O(log(|S|ε−1))-bit random string s, it holds
with probability at least 1− ε that:

12

Under review as a conference paper at ICLR 2024

Algorithm 4 Consistent Phase Estimation
Input: A unitary U of the form Equation (3) , δ > 0, and ε > 0. State |ψ⟩ =

∑
j∈V aj |vj⟩ where V ⊆ [n]. A random

string s with ⌈log(⌈2|S|/ε⌉)⌉ bits, where |S| is the cardinality of the set S = {λj : j ∈ V }.
Output: A state that is O(

√
ε)-close to the state

∑
j∈V aj |vj⟩|f(s, λj)⟩ in trace distance, where f(s, λ) is the esti-

mation result.
1: Set ζ = ε/|S|, δ′ = ζδ/2, L = ⌈δ/δ′⌉.
2: Treat s as a random number in {0, . . . , L− 1}. Modify the unitary U as U ′ = exp(2πisδ′)U .
3: Divide the interval [sδ′ − δ′, 1 + sδ′ + δ′) into consecutive sections of length δ.
4: Prepare (PhaseEst(U ′, ε, δ′))† · Sec · PhaseEst(U ′, ε, δ′)|ψ⟩|0⟩|0⟩.
5: Discard the second to last register and output the state.

• On input any state |ψ⟩ =
∑

j∈V aj |vj⟩, the algorithm outputs a state that is O(
√
ε)-close to the state∑

j∈V aj |vj⟩|f(s, λj)⟩ in trace distance,

where f(s, λ) is a function only of s and λ such that |f(s, λ) − λ| ≤ δ. Moreover, the algorithm uses O(|S|ε−2δ−1)
queries to U and in O(|S|ε−2δ−1) time.

Proof. We know for
|ψ⟩ =

∑
j∈V

aj |vj⟩,

we have:

Sec · PhaseEst(U ′, ε, δ′)|ψ⟩|0⟩|0⟩ = Sec · PhaseEst(U ′, ε, δ′)

∑
j∈V

aj |vj⟩|0⟩|0⟩


= Sec

∑
j∈V

T−1∑
k=0

ajβj,k|vj⟩|k⟩|0⟩


=
∑
j∈V

T−1∑
k=0

ajβj,k|vj⟩|k⟩|Sec(k/T)⟩.

Let λ be an eigenvalue of U . After shifting, the eigenvalue becomes λ + s. Consider the interval division in Algo-
rithm 4; suppose a typical section is of the form [c, d) where d = c + δ. If λ + s falls in some section [c, d) with
the additional property that c + δ′ ≤ λ + s < d − δ′, then we say s is a good shift for λ. Equivalently, this means
c ≤ λ+ s− δ′ and λ+ s+ δ′ < d. Thus, we find that for all j /∈ Farδ′,T (λ), j/T will fall into the same section [c, d).
Denote the result as f(s, λ).

So, if s is a good shift for all eigenvalues in S, we have:

∑
j∈V

T−1∑
k=0

ajβj,k|vj⟩|k⟩|Sec(k/T)⟩

=
∑
j∈V

aj |vj⟩

 ∑
j /∈Farδ′,T (λ)

βj,k|k⟩|f(s, λj)⟩+
∑

j∈Farδ′,T (λ)

βj,k|k⟩|Sec(k/T)⟩

.
Thus, the state has fidelity at least 1− ε with the following state:

∑
j∈V

aj |vj⟩ ⊗

(
T−1∑
k=0

βj,k|k⟩

)
⊗ |f(s, λj)⟩ = PhaseEst(U ′, ε, δ′)

∑
j∈V

aj |vj⟩ ⊗ |0⟩ ⊗ |f(s, λj)⟩

.
Then after reversing the phase estimation procedure, i.e., applying (PhaseEst(U ′, ε, δ′))†, the fidelity between two
states will be still at least 1 − ε. Thus, we get a state that is O(

√
ε)-close to the state

∑
j∈V aj |vj⟩|f(s, λj)⟩ in trace

distance.

13

Under review as a conference paper at ICLR 2024

Now, we compute the probability that the particular shift s we choose is a good shift. Notice that Lδ′ < δ, we know
that for every eigenvalue λ ∈ S, there exists at most 2 shifts that are not good. Thus the probability that s is not good
for an eigenvalue in S is no more than 2/L ≤ ζ. Then, applying union bound, we know that, with probability at most
|S|ζ = ε, s is not good for all eigenvalues in S. The claim in our theorem thus follows.

The term “consistent” means that, with high probability, the algorithm can choose a good shift, and thus the phase
estimation result does not depend on the measurement. This is crucial for the later construction of the oracle for
quantum maxima finding.

Theorem A.3. Let U be an n× n unitary matrix. Suppose that:

U |0⟩|0⟩ = √p|0⟩|ϕ0⟩+
√

1− p|1⟩|ϕ1⟩,

where p ∈ (0, 1), |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum states. Then there exists a quantum algorithm such that,
for every ε > 0 and δ > 0, on input O(log(ε−1))-bit random string, with probability at least 1 − ε, the algorithm
outputs f(s, p) such that

|f(s, p)− p| ≤ δ,
using O(ϵ−4δ−1) queries to U and O(ε−4δ−1 log(n)) one- and two-qubit quantum gates.

Proof. Denote
Q = −U(I − 2|0⟩⟨0| ⊗ |0⟩⟨0|)U†(I − 2|0⟩⟨0| ⊗ I).

Then we can compute
Q|0⟩|ϕ0⟩ = (1− 2p)|0⟩|ϕ0⟩ − 2

√
p(1− p)|1⟩|ϕ1⟩,

and
Q|1⟩|ϕ1⟩ = 2

√
p(1− p)|0⟩|ϕ0⟩+ (1− 2p)|1⟩|ϕ1⟩.

To simplify the above equations, let θp be the unique number in (0, π/2) such that

sin2(θp) = p,

then Q has two eigenvectors in the following form:

|ψ±⟩ =
1√
2
(|0⟩|ϕ0⟩ ± i|1⟩|ϕ1⟩),

such that
Q|ψ±⟩ = exp(±i2θp)|ψ±⟩.

Now, notice that:

U |0⟩|0⟩ = −i√
2
(exp(iθp)|ψ+⟩ − exp(−iθp)|ψ−⟩),

we can apply our Algorithm 4 with oracle query to Q , precision parameter being δ′ = δ/π, error parameter being ε′
(ε′ is a fixed parameter that will be decided later), the input state being U |0⟩|0⟩, and a log(4/ε′)-bit random string s.

Using Theorem A.2, with probability 1− ε′, we can obtain a state that is O(
√
ε′)-close to

−i√
2

(
exp(iθp)|ψ+⟩ ⊗

∣∣∣∣f(s, θpπ
)〉
− exp(−iθp)|ψ−⟩ ⊗

∣∣∣∣f(s, 1− θp
π

)〉)
in trace distance. Thus, measuring the last register, with probability at least 1−

√
ε′ we will get the result γ, which is

either f(s, θp/π) or f(s, 1− θp/π). Then output sin2(γπ) as the estimate of p. Notice that

sin2(θp) = sin2(π − θp) = p,

and sin2(·) is 2-Lipschitz and even, we know the additive error is bounded by

|sin2(γπ)− p| ≤ |πγ − θp| ≤ πδ′ = δ.

Thus, by choosing ε′ = Θ(ε2) we can have (1− ε′)(1−
√
ε′) ≥ 1− ε, and thus the result follows.

14

Under review as a conference paper at ICLR 2024

Then we state and prove the error-reduced version of consistent amplitude estimation.
Theorem A.4 (Restatement of Theorem 2.3). Let U be an n× n unitary matrix. Suppose that:

U |0⟩|0⟩ = √p|0⟩|ϕ0⟩+ |1⟩|ϕ1⟩,

where p ∈ (0, 1), |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum states. Then there exists a quantum algorithm such
that, for every ε > 0 and δ > 0, on input an O(r)-bit random string s, with probability at least 1− exp(−Ω(r)), the
algorithm outputs f(s, p) such that

|f(s, p)− p| ≤ δ,
using O(rδ−1) queries to U and O(rδ−1 log(n)) one- and two-qubit quantum gates.

Proof. Split the input random string s into r strings s1, s2, . . . , sr of length Θ(1). For each i ∈ [r], we use the
algorithm described in the Theorem A.3 with input string si and error parameter ε = 1/10. Thus, we have, for each
i ∈ [r],

P(|f(si, p)− p| ≤ δ) ≥
9

10
.

Now we set f∗(s, p) to be the median of the estimations f(si, p) for i ∈ [r] to be the output estimation. We claim
that, with high probability it will be the desired estimation. To show that, we define random variables Xi for i ∈ [r] as
follows:

Xi =

{
1, if |f(si, p)− p| ≤ δ,
0, otherwise.

Noticing that E[
∑r

i=1Xi] ≥ 9r/10, by Chernoff bound, we have:

P

(
r∑

i=1

Xi <
r

2

)
≤ exp

(
−8r

45

)
.

Thus with probability at least 1 − exp(−8r/45), we know that at least half of the estimations fall into the interval
[p− δ, p+ δ], and then the median f∗(s, p) must return a result in this interval.

B PROOF OF THE PRE-PROCESSING ALGORITHM

Proof of Theorem 3.1. Since V is a β-amplitude encoding of the vector u ∈ Rn
≥0, we know that

(XORD,C)
†
(V ⊗ ID)(XORD,C)|i⟩D|0⟩C |0⟩A|0⟩B = |i⟩D ⊗

(√
ui
β
|0⟩C |0⟩A|ψi⟩B +

√
1− ui

β
|1⟩C |g⟩AB

)
,

where |g⟩AB is a normalized pure state, and XORD,C stands for the following unitary gate:

XORD,C |i⟩D|j⟩C = |i⟩D|i⊕ j⟩C .

Thus, by applying Theorem 2.3 to the unitary (XORD,C)
†
(V ⊗ ID)(XORD,C), with δ = 1/2β and r to be decided

later, we know that there exists a quantum algorithm such that, on input an O(r)-bit random string s and the state
|i⟩D|0⟩ABC , the algorithm outputs f(s, ui/β) with probability at least 1− exp(−Ω(r)) such that∣∣∣∣f(s, uiβ

)
− ui
β

∣∣∣∣ ≤ 1

2β
,

using O(rδ−1) = O(rβ) queries to V and O(rβ log(n)) one- and two-qubit gates.

Thus, by setting

ũi = βf

(
s,
ui
β

)
+

1

2
,

we know ui ≤ ũi ≤ ui + 1. Thus, by storing ũi into a new quantum register, we can obtain a unitary Uũ that is
exp(−Ω(r))-close in operator norm to the following unitary Oũ:

Oũ|i⟩|0⟩ = |i⟩|ũi⟩,

and Uũ uses O(rδ−1) = O(rβ) queries to V and O(rβ log(n)) one- and two-qubit gates.

15

Under review as a conference paper at ICLR 2024

Then, Theorem 2.1 implies that with probability 2/3−
√
nℓ exp(−Ω(r)), FindMax(Uũ, n, ℓ) finds a set S containing

the indices of the largest ℓ elements of ũi using O(
√
nℓ) queries to Uũ. Thus, by choosing r = Θ(log(nℓ/ε)) and a

fixed O(r)-bit random string s, the probability that the algorithm outputs the correct set is Ω(1). Finally, by repeating
FindMax(Uũ, n, ℓ) for Θ(log(1/ε)) times (using the same random string s), we can output the correct set S with
probability at least 1− ε/2. The above procedure uses in total O(β

√
nℓ log(nℓ/ε) log(1/ε)) queries to V .

After successfully getting S, we again use Theorem 2.3, with the same r = Θ(log(nℓ/ε)), the same string s and δ =
1/2β, to obtain and store ũi classically for all i ∈ S with success probability at least 1− ε/2, using O(ℓβ log(nℓ/ε))
queries to V . Noting that 0 < ℓ ≤ n, we get the desired theorem.

C PROOF OF THE MAIN THEOREM

In this part, we give a proof for Theorem 3.2. We first notice the following propositions.
Proposition C.1. Let S ⊆ [n] be a set with cardinality ℓ. Suppose that there is an instance Texp of SamplerTree
specified in Lemma 2.9 which maintains an n-dimensional vector ũexp ∈ Rn

≥0, where ũexpi = exp(ũi)/W for i ∈ S,
and ũexpi = exp(ũmin)/W for i /∈ S, with W = (n− ℓ) exp(ũmin) +

∑
i∈S exp(ũi). Then for ε1 ∈ (0, 1/2) we can

implement the unitary Uguess which satisfies∥∥∥∥∥Uguess|0⟩ −

(∑
i∈S

√
exp(ũi)

W
|i⟩+

∑
i/∈S

√
exp(ũmin)

W
|i⟩

)∥∥∥∥∥ ≤ ε1,
in O(log2(n) log5/2(n/ε1)) time.

Proof. This is direct by the state preparation operation specified in Lemma 2.9.

Lemma C.2. Let S ⊆ [n] be a set with cardinality ℓ. Let V be a (β, ⌈log2(n)⌉, O(1), O(1))-amplitude-encoding
of u ∈ Rn

≥0. Suppose that there is an instance T of SamplerTree specified in Lemma 2.9 which maintains an n-
dimensional vector ǔ ∈ Rn

≥0, where ǔi = ũi for i ∈ S, and ǔi = ũmin for i /∈ S, with ũi and ũmin defined in Theo-
rem 3.1. Define wi = (ǔi− ui)/(2β)− 1. Then for εq ∈ (0, 1/2), t = O(β+ log(1/εq)), and d = O(

√
t log(1/εq)),

we can implement Uq that is a (1, O(1), εq)-block-encoding of diag(qβ,t,d(w)/4) where qβ,t,d(·) is the polynomial
defined in Theorem 2.8, using O(

√
t log(1/εq)) queries to V , in O(

√
t log(1/εq)(log(n) + log5/2(βt/εq))) time.

Proof. From the assumption and Lemma 2.9, we know that using the query operation for T of SamplerTree, we can
implement we can implement Uǔ that is a (1, O(1), ε2)-block-encoding of diag(ǔ/β) in O(log(n) + log5/2(β/ε2))
time, for some ε2 ∈ (0, 1/2).

From our assumption that V is a (β, ⌈log2(n)⌉, O(1), O(1))-amplitude-encoding of u, using Lemma 2.10, we can im-
plement Uu that is a (β,O(1), 0)-block-encoding of diag(u), using O(1) queries to V . Note that Uu is a (1, O(1), 0)-
block-encoding of diag(u/β).

By the technique of linear combination of unitaries (Lemma 2.5), with the (2
√
6, 2, 0)-state-preparation-pair (PL, PR)

for the vector (1,−1,−2) satisfying

PL|0⟩ =
1√
6
|0⟩ − 1√

6
|1⟩ −

√
2√
3
|2⟩,

PR|0⟩ =
1

2
|0⟩+ 1

2
|1⟩+ 1

2
|2⟩+ 1

2
|3⟩,

we can implement a (2
√
6, O(1), 2

√
6ε2)-block-encoding ULCU of

diag(ǔ/β)− diag(u/β)− 2I = 2diag(w),

using O(1) queries to Uǔ and Uu. Note that ULCU is a (
√
6, O(1), 2

√
6ε2)-block-encoding of diag(w). Using

Lemma 2.4, we can implement a (1, O(1), O(ε2))-block-encoding Uw of diag(w), using O(1) queries to ULCU.

To summarize the above discussions, Uw can be constructed using O(1) queries to V and O(log(n) + log5/2(β/ε2))
time.

Now, noting that by the choice of t and d, by Theorem 2.8, we have:

16

Under review as a conference paper at ICLR 2024

sup
x∈[−1,1]

|qβ,t,d(x)− exp(−β − βx)| ≤ εq.

Thus, for εq ∈ (0, 1/2),

sup
x∈[−1,1]

|qβ,t,d(x)| ≤ sup
x∈[−1,1]

|exp(−β − βx)|+ εq ≤ 1 + εq < 2.

Therefore, the polynomial qβ,t,d(·)/4 satisfies the requirement of Theorem 2.6. By using Theorem 2.6 with δ = εq/2,
we can implement a (1, O(1), εq/2+O(d

√
ε2))-block-encoding of diag(qβ,t,d(w)/4), using O(d) queries to diag(w)

and in O(d) time. Thus by choosing ε2 = Θ(ε2q/d
2), we can implement UET using O(

√
t log(1/εq)) queries to V , in

O(
√
t log(1/εq)(log(n) + log5/2(βt/εq))) time.

Using similar techniques in Hamoudi (2022); Gao et al. (2023), we can prove the following lemmas:
Lemma C.3. For vector u ∈ Rn

≥0, β > 0 that satisfies β ≥ ∥u∥1. Let W,S, ũi and ũmin be the same as defined

in Algorithm 2, then for t = O(β + log(ε−1
q)) and d = O(

√
β log(ε−1

q)), where εq ∈ (0, 1/2) is an approximation
parameter that will be decided later, let

|upost⟩ =
1

4

(∑
i∈S

qβ,t,d

(
ũi − ui
2β

− 1

)√
exp(ũi)

W
|i⟩+

∑
i/∈S

qβ,t,d

(
ũmin − ui

2β
− 1

)√
exp(ũmin)

W
|i⟩

)
,

and E =
∑n

j=1 exp(ui). Then

ℓ

16en
− εq

8
≤ E

16W
− εq

8
≤ ∥|upost⟩∥2 ≤

E

16W
+

3εq
16

.

Proof. Notice that ui ≤ ũi ≤ ui + 1, we have:

W = (n− ℓ) exp(ũmin) +
∑
i∈S

exp(ũi) ≤ e

(
(n− ℓ) exp(umin) +

∑
i∈S

exp(ui)

)
.

Note that:
(n− ℓ) exp(umin) +

∑
i∈S exp(ui)

E
≤ n− ℓ

ℓ
+ 1 =

n

ℓ
.

Thus, combining the above two inequalities, we have:

E

W
≥ ℓ

ne
.

Now, by our choice of t and d, using Theorem 2.8, we know

sup
x∈[−1,1]

|qβ,t,d(x)− exp(−β − βx)| ≤ εq.

Therefore, we have, for i ∈ S: ∣∣∣∣qβ,t,d(ũi − ui2β
− 1

)
− exp

(
ui − ũi

2

)∣∣∣∣ ≤ εq;
and for i /∈ S: ∣∣∣∣qβ,t,d(ũmin − ui

2β
− 1

)
− exp

(
ui − ũmin

2

)∣∣∣∣ ≤ εq.
We have (

qβ,t,d

(
ũi − ui
2β

− 1

))2

≥ exp(ui − ũi)− 2εq,

for all i ∈ S as ui ≤ ũi. Similarly, for all i /∈ S, we have(
qβ,t,d

(
ũmin − ui

2β
− 1

))2

≥ exp(ui − ũmin)− 2εq.

17

Under review as a conference paper at ICLR 2024

Thus we can deduce

∥|upost⟩∥2 =
1

16

(∑
i∈S

(
qβ,t,d

(
ũi − ui
2β

− 1

))2
exp(ũi)

W
+
∑
i/∈S

(
qβ,t,d

(
ũmin − ui

2β
− 1

))2
exp(ũmin)

W

)

≥ 1

16

(∑
i∈S

(exp(ui − ũi)− 2εq)
exp(ũi)

W
+
∑
i/∈S

(exp(ui − ũmin)− 2εq)
exp(ũmin)

W

)

=
E

16W
− εq

8

≥ ℓ

16en
− εq

8
.

For the other side, note that for all i ∈ S, we have:(
qβ,t,d

(
ũi − ui
2β

− 1

))2

≤ exp(ui − ũi) + 3εq,

and for all i /∈ S, we have: (
qβ,t,d

(
ũmin − ui

2β
− 1

))2

≤ exp(ui − ũmin) + 3εq.

Thus we have:

∥|upost⟩∥2 =
1

16

(∑
i∈S

(
qβ,t,d

(
ũi − ui
2β

− 1

))2
exp(ũi)

W
+
∑
i/∈S

(
qβ,t,d

(
ũmin − ui

2β
− 1

))2
exp(ũmin)

W

)

≤ 1

16

(∑
i∈S

(exp(ui − ũi) + 3εq)
exp(ũi)

W
+
∑
i/∈S

(exp(ui − ũmin) + 3εq)
exp(ũmin)

W

)

=
E

16W
+

3εq
16

.

Lemma C.4. Let

|upost⟩ =
1

4

(∑
i∈S

qβ,t,d

(
ũi − ui
2β

− 1

)√
exp(ũi)

W
|i⟩+

∑
i/∈S

qβ,t,d

(
ũmin − ui

2β
− 1

)√
exp(ũmin)

W
|i⟩

)
,

and

|uGibbs⟩ =
n∑

i=1

√
exp(ui)

E
|i⟩,

where E =
∑n

j=1 exp(ui).

Then the trace disance between the states |uGibbs⟩ and |upost⟩/∥|upost⟩∥ is no more than√
15εqn

ℓ
.

18

Under review as a conference paper at ICLR 2024

Proof. Notice that

⟨upost|uGibbs⟩ =
1

4

(∑
i∈S

qβ,t,d(wi)

√
exp(ũi)

W

√
exp(ui)

E
+
∑
i/∈S

qβ,t,d(wi)

√
exp(ũmin)

W

√
exp(ui)

E

)

≥ 1

4

(∑
i∈S

(
exp

(
ui − ũi

2

)
− εq

)√
exp(ũi)

W

√
exp(ui)

E

)

+
1

4

(∑
i/∈S

(
exp

(
ui − ũmin

2

)
− εq

)√
exp(ũmin)

W

√
exp(ui)

E

)

=
1

4

(∑n
i=1 exp(ui)√

WE
− εq

(∑
i∈S

√
exp(ũi)

W

√
exp(ui)

E
+
∑
i/∈S

√
exp(ũmin)

W

√
exp(ui)

E

))

≥
√

E

16W
− εq

4
.

The last step is by using Cauchy’s inequality to bound the coefficient of εq .

Using Lemma C.3, we have:

∥|upost⟩∥2 ≤
E

16W
+

3εq
16

.

This means
1

∥|upost⟩∥2
≥ 16

E
W + 3εq

≥ 16W

E
− 48εqW

2

E2
,

for εq > 0.

Noting that, by definition, we have E ≤W . Thus, we have:

|⟨upost|uGibbs⟩|2

∥|upost⟩∥2
≥ 1

∥|upost⟩∥2

(
E

16W
− εq

8

)
≥ 1− 5εqW

E

≥ 1− 15εqn

ℓ
.

Thus, the trace disance between the states |uGibbs⟩ and |upost⟩/∥|upost⟩∥ is no more than√
15εqn

ℓ
.

We need the following lemma for vector norms to bound error.
Lemma C.5. For two non-zero vectors |u⟩ and |v⟩ with ∥|u⟩ − |v⟩∥ ≤ ε for some ε ≥ 0, then∥∥∥∥ |u⟩∥|u⟩∥ − |v⟩

∥|v⟩∥

∥∥∥∥ ≤ 2ε

∥|u⟩∥
.

Proof. ∥∥∥∥ |u⟩∥|u⟩∥ − |v⟩
∥|v⟩∥

∥∥∥∥ ≤ ∥∥∥∥ |u⟩∥|u⟩∥ − |v⟩
∥|u⟩∥

∥∥∥∥+ ∥∥∥∥ |v⟩∥|u⟩∥ − |v⟩
∥|v⟩∥

∥∥∥∥
=

1

∥|u⟩∥
∥|u⟩ − |v⟩∥+ ∥|v⟩∥

∣∣∣∣ 1

∥|u⟩∥
− 1

∥|v⟩∥

∣∣∣∣
≤ ε

∥|u⟩∥
+

ε

∥|u⟩∥
=

2ε

∥|u⟩∥
.

19

Under review as a conference paper at ICLR 2024

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Using Proposition C.1, we know that after initialization and assignment of the instance Texp of
SamplerTree in O(ℓ log(n)) time, we can implement Uguess in O(log2(n) log5/2(n/ε)) time. Then using Lemma C.2
with εq = ℓε2/120n, we know we can implement UET using O(

√
β log(n/ℓε) + log(n/ℓε)) queries to V , in

O((
√
β log(n/ℓε) + log(n/ℓε)) log5/2(nβ/ℓε)) time. In addition, we know

UET(Ia ⊗ Uguess)|0⟩|0⟩ = |0⟩|ûpost⟩+ |1⟩|g⟩,
where

∥|ûpost⟩ − |upost⟩∥ ≤ 2εq,

and |g⟩ is an unnormalized garbage state.

In Lemma C.3, it is proved that

∥|upost⟩∥ ≥
√

ℓ

16en
− εq

8
= Ω

(√
ℓ

n

)
.

Thus, we can deduce that:

∥|ûpost⟩∥ ≥ ∥|upost⟩∥ − 2εq = Ω

(√
ℓ

n

)
.

Therefore, by applying Theorem 2.2, with probability at least 1− ε/k, we can get the normalized state
|ûpost⟩
∥|ûpost⟩∥

using O(
√
n/ℓ log(k/ε)) queries to UET and Uguess. To summarize, the above procedures uses

O(
√
n/ℓ log(k/ε)(

√
β log(n/ℓε) + log(n/ℓε))) queries to V , and in O(

√
n/ℓ log(k/ε)((

√
β log(n/ℓε) +

log(n/ℓε)) log5/2(nβ/ℓε) + log2(n) log5/2(n/ε))) time.

By Lemma C.5, we have: ∥∥∥∥ |upost⟩
∥|upost⟩∥

−
|ûpost⟩
∥|ûpost⟩∥

∥∥∥∥ ≤ 4εq
∥|upost⟩∥

≤ 4εq√
ℓ/(16en)− εq/8

.

Using Lemma C.4, we know that for the state defined as follows:

|uGibbs⟩ =
n∑

i=1

√
exp(ui)

E
|i⟩,

where E =
∑n

j=1 exp(ui), we have:

1

2

∥∥∥∥∥|uGibbs⟩⟨uGibbs| −
|upost⟩⟨upost|
∥|upost⟩∥2

∥∥∥∥∥
1

≤
√

15εqn

ℓ
.

Note that for any two normalized pure states |ϕ⟩ and |ψ⟩, we have:
1

2
∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥1 ≤ ∥|ψ⟩ − |ϕ⟩∥.

Therefore, we have

1

2

∥∥∥∥∥|uGibbs⟩⟨uGibbs| −
|ûpost⟩⟨ûpost|
∥|ûpost⟩∥2

∥∥∥∥∥
1

≤ 1

2

∥∥∥∥∥|uGibbs⟩⟨uGibbs| −
|upost⟩⟨upost|
∥|upost⟩∥2

∥∥∥∥∥
1

+
1

2

∥∥∥∥∥ |upost⟩⟨upost|
∥|upost⟩∥2

−
|ûpost⟩⟨ûpost|
∥|ûpost⟩∥2

∥∥∥∥∥
1

≤
√

15εqn

ℓ
+

∥∥∥∥ |upost⟩
∥|upost⟩∥

−
|ûpost⟩
∥|ûpost⟩∥

∥∥∥∥
≤
√

15εqn

ℓ
+

4εq√
ℓ/(16en)− εq/8

≤ ε.

20

Under review as a conference paper at ICLR 2024

The last inequality is by our choice of εq = ℓε2/120n.

Thus by measuring the state
|ûpost⟩
∥|ûpost⟩∥

,

we will get a sample that is from a distribution which is ε-close to Gibbs(u) in total variation distance. This can be
done by amplitude amplification to boost the success probability to 1− ε/2k.

After repeating the state preparation and measurement procedure k times, the algorithm will output all the measure-
ment results. The cost except the pre-processing step is

O
(
ℓ log(n) + k

√
n/ℓ log(k/ε)

((√
β log(n/ℓε) + log(n/ℓε)

)
log5/2(nβ/ℓε) + log2(n) log5/2(n/ε)

))
time, and using

O
(
k
√
n/ℓ
(√

β log(n/ℓε) + log(n/ℓε)
)
log(k/ε)

)
queries to V .

Therefore, by setting:

ℓ =
k log(k/ε)

β1/2 log1/2(n/ε) log(1/ε)
,

we can achieve the best query complexity of V being

O
(√

nk
(
β3/4 + β1/4 log1/2(n/ε)

)
log1/2(1/ε) log3/4(n/ε) log1/2(k/ε)

)
.

D FROM MATRIX ZERO-SUM GAMES TO LINEAR PROGRAMMING

In this part, we explain reducing solving linear programming to solving matrix zero-sum games. The outline of
reduction follows van Apeldoorn & Gilyén (2019b). We assume that the linear programming problem is formulated
as the following standard form:

minimize
x ∈ Rn

c⊺x

subject to Ax ≤ b,
x ≥ 0

(4)

The dual of the above program can be written as follows:

maximize
y ∈ Rm

b⊺y

subject to A⊺y ≤ c,
y ≥ 0

(5)

Let R be a prior bound on the ℓ1-norm of the optimal dual solution and r be a prior constant bound on the ℓ1-norm of
the optimal primal solution. Consider the matrix A′ defined as follows:

A′ =

 1 1 −1
−1 1 1
−b⊺ 0 α/R
A⊺ 0 −c/R

 (6)

By the strong duality theorem, the optimal values of the above primal (Equation (2)) and dual programs (Equation (5))
are equal. We have the following theorem for the reduction:
Theorem D.1 ((van Apeldoorn & Gilyén, 2019b, Lemma 12)). Determining the ε′ = ε/(6R(r + 1))-approximate
value of the game A′ suffices to decide whether the optimal value Opt for the linear programming problem defined in
Equation (2) satisfies Opt ≥ α or Opt ≤ α− ε.

Notice that in Corollary 4.3, the quantum algorithm only returns an ε-approximate optimal strategy pair of the game,
rather than the optimal value. Thus, we need the following proposition to estimate the value of the matrix game. For
completeness, we first recall Hoeffding’s inequality here.

21

Under review as a conference paper at ICLR 2024

Theorem D.2 (Hoeffding’s inequality, Hoeffding (1963)). Let 0 ≤ Xi ≤ 1 be independent random variables for every
1 ≤ i ≤ n. Let X =

∑n
i=1Xi/n and ε > 0. Then,

Pr[X ≤ E[X]− ε] ≤ exp
(
−2nε2

)
.

Proposition D.3. Given d-sparse vectors u ∈ Rm
≥0, v ∈ Rn

≥0 and query access to A ∈ Rm×n with ∥u∥1 = ∥v∥1 = 1
and 0 ≤ Ai,j ≤ 1, we can estimate u⊺Av within additive error ε with success probability at least 1− δ in randomized
time O(d+ log(1/δ)/ε2).

Proof. We regard u and v as probability distributions. Consider the following procedure.

1. Sample a row i ∈ [m] from the probability distribution u, and a column j ∈ [n] from the probability
distribution v;

2. Output X = Ai,j .

Then,
E[X] =

∑
i∈[m]

∑
j∈[n]

uivjAi,j = u⊺Av.

We repeat the above procedure for k = ⌈ln(2/δ)/2ε2⌉ = Θ(log(1/δ)/ε2) times, and let X̄ be the mean value of the
outputs. Then, by Theorem D.2, we have

Pr
[∣∣X̄ − u⊺Av∣∣ ≤ ε] ≥ 1− 2 exp(−2kε2) ≥ 1− δ.

We note that after a simpleO(d)-time deterministic pre-processing procedure according to u, we can generate a sample
from the probability distribution u in randomized O(1) time. Therefore, we can estimate u⊺Av within additive error
ε with success probability at least 1− δ in randomized time O(d+ log(1/δ)/ε2).

22

	Consistent Amplitude Estimation
	Proof of the Pre-processing Algorithm
	Proof of the main theorem
	From matrix zero-sum games to linear programming

