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KNOWLEDGE MANIPULATION IN LANGUAGE MODELS
(PART B)∗

ABSTRACT

Language models can store vast amounts of factual knowledge, but their abil-
ity to use this knowledge for logical reasoning remains questionable. This paper
explores a language model’s ability to manipulate its stored knowledge during in-
ference. We focus on four manipulation types: retrieval (e.g., “What is person
A’s attribute X”), classification (e.g., “Is A’s attribute X even or odd?”), compar-
ison (e.g., “Is A greater than B in attribute X?”) and inverse search (e.g., “Which
person’s attribute X equals T?”) We observe that pre-trained language models like
GPT2/3/4 excel in knowledge retrieval but struggle with simple classification or
comparison tasks unless Chain of Thoughts (CoTs) are employed during both
training and inference. They also perform poorly in inverse knowledge search,
irrespective of the prompts. Our primary contribution is a synthetic dataset for a
controlled experiment that confirms these inherent weaknesses: a language model
cannot efficiently manipulate knowledge from pre-training data, even when such
knowledge is perfectly stored and fully extractable in the models, and despite ad-
equate instruct fine-tuning.

1 INTRODUCTION

Knowledge is a fundamental component of human civilization and intelligence. Throughout our
lives, we accumulate a vast amount of knowledge and learn to use it flexibly. Recently, large lan-
guage models like GPT4 (OpenAI, 2023) have demonstrated an impressive capacity to memorize
extensive amounts of knowledge, arguably more than any human can. These models also show signs
of being able to manipulate this knowledge to solve various problems.

In this work, we aim to understand how transformer based language models manipulate the knowl-
edge they have memorized during pretraining and use it flexibly to solve different tasks at inference
time. For instance, can the language model answer questions like “Is Joe Biden older than Donald
Trump” based on its memorization of the two presidents’ birthdays? Can it infer whether Princeton
is ranked higher than MIT based on its stored 2023 US News university ranking knowledge?

In this paper, we consider a language model’s ability to answer questions during inference time,
where those questions are some functions of specific knowledge in its pretraining. These questions
or their equivalent forms may not be in the model’s training data, but the same function for other
knowledge should have been (so the model understands the function). For instance, can the model
answer “Was Joe Biden born in an even year?” if it hasn’t encountered this sentence or its equiv-
alents during pretraining (such as “Is Joe Biden’s birth year divisible by 2”), but inferring from
“Biden was born in 1942” and “1942 is even”? Answering such questions necessitates the model to
both memorize and comprehend the knowledge.

Knowledge manipulation is a form of logical reasoning. To answer questions like “Is Person A’s
attribute X Good?”, a language model not previously exposed to this sentence in its pretraining data
may draw from other training data such as “person A’s attribute X equals T” and “T is Good”.

In this paper, “knowledge” refers to factual knowledge (e.g., knowledge graph), and we examine
if a language model can logically manipulate such knowledge stored in the model weights. Other
studies may investigate in-context knowledge or RAG (Cai et al., 2022; Jiang et al., 2023; Komeili

∗Since “knowledge” is a broad subject, we have to write separate papers to cover its different aspects. Our
Part A (Anonymous, 2023) addresses how knowledge is stored, the conditions under which knowledge can be
extracted through instruct fine-tuning, and introduces probing techniques. This Part B is built on it to study
how such knowledge can be further manipulated for downstream tasks. We’ve anonymously submitted both
Part A and B to ICLR 2024 as standalone papers, ensuring no result overlap and making each self-contained.
Our Part A is also in the supplementary material for interested readers.
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Given question “Was Joe Biden born in an even year?”

C: The model does not know the 
birth year of Joe Biden

answers correctly answers incorrectly

D: model does not know 
what “even” means

E: model knows what “even” means 
and can answer questions like 

“Is 1946 even?”, but cannot answer 
“Was Joe Biden born in an even year?”

A: model infers from “1946 is even” and 
“Biden was born in 1946”, making final 
answer based on a function of certain 

knowledge it sees during training

B: model sees training data of 
equivalent form such as 

“Is Joe Biden’s birth year even?”

out of scope of this paper (see Part A)

out of scope (we study models 
finetuned on such tasks)

This is the knowledge manipulation we care about

out of scope (this is memorization)

Figure 1: We study (A) vs (E) as knowledge manipulation. With a pre-trained model over internet data, it is
very hard to determine whether (B,C,D) has happened due to the uncontrollability of internet data.

et al., 2021; Lewis et al., 2020; Liu et al., 2020; Mao et al., 2020; Parvez et al., 2021; Ram et al.,
2023; Siriwardhana et al., 2023), where the model, given a paragraph during inference, immediately
answers logic questions about it.

Research has extensively explored language models’ question-answering abilities during inference
time (Hernandez et al., 2023; Naseem et al., 2021; Omar et al., 2023; Peng et al., 2022; Petroni
et al., 2019; Richardson and Sabharwal, 2020; Singhal et al., 2022; Sun et al., 2023). However,
these studies primarily focus on models trained on internet data. A key challenge in understanding
whether these models can manipulate knowledge is discerning whether the internet data already
includes the exact or equivalent sentence, or if the models have correctly stored such knowledge and
retrieved it from inference time. Refer to Figure 1.

To address the unpredictability of internet data, our concurrent study (Anonymous, 2023) created
synthetic pretraining data containing a controlled biography of N = 100k individuals and pretrained
a language model on this data. This prior work investigates when and how the model can store and
retrieve knowledge about these 100k individuals during inference time after pretraining. Here is an
example of the biography data:
Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty
members at Massachusetts Institute of Technology. She completed her education with a focus on Communications. She had a professional
role at Meta Platforms. She was employed in Menlo Park, CA.

(1.1)
Our concurrent work (Anonymous, 2023) suggests that a pretrained model may struggle to extract
stored knowledge from biographical data unless the data is sufficiently augmented, such as when
English sentences exhibit ample diversity and are sufficiently permuted (see Section 2). This facil-
itates knowledge extraction for questions like “Which city was Anya Briar Forger born in?” While
we recommend reading our concurrent work first, this paper can be read independently.

This paper further explores whether the model, pre-trained on the already augmented biography
data, can manipulate its stored (and extractable) knowledge after instruction finetune. For instance,
can it answer questions requiring reasoning based on a person’s attributes, such as “Was Anya born
in a southern city?” or “Is Anya’s university better than Sabrina’s?” using information from their
biographies. During training, we expose the model to the biographies of all N people and the
knowledge manipulation question-answer (QA) texts from a subset of individuals (the in-distribution
set Ptrain). We test the model’s out-of-distribution generation accuracy on correctly answering such
manipulation questions for the remaining subset (the out-of-distribution set Ptest), where the model
sees the biographies during training, but not the QAs. The existence of the set Ptrain in the training
data ensures that the model is exposed to enough training examples to understand the QAs.

1.1 OVERVIEW OF THE KNOWLEDGE MANIPULATION TASKS

Our paper explores four types of knowledge manipulation: retrieval, classification, comparison, and
inverse search, which we believe encompass most real-world knowledge manipulation scenarios.
Each manipulation task is discussed separately below.

RETRIEVAL. We extend our work on knowledge extraction (Anonymous, 2023) to a more general
setting. After pretraining on biographical data, we finetune the model to (1) retrieve part of an
attribute or (2) retrieve multiple attributes simultaneously. We find that retrieving multiple attributes
is nearly as easy as extracting individual ones. However, in this broader context, partial retrieval can
be significantly more challenging. For instance, a language model may correctly answer “What is
the birth date of Anya” as “June 27th, 1997”, but struggle with “What is the birth year of Anya”.
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Figure 2: GPT4 struggles to answer simple manipulation questions based on a person’s attributes during infer-
ence, despite knowing the knowledge. When a Chain of Thoughts (CoT) approach is used, where the
person’s attributes are first explicitly spelled out, GPT4 can correctly answer the manipulation tasks.
More ChatGPT examples and details are in Figure 5, Figure 7, Figure 10, and Appendix E.

CLASSIFICATION. Classification tasks involve determining the validity of a statement based on
individual attributes. For instance, answering “What degree did Anya receive?” requires a ternary
response (art, science, engineering) based on her major of study. After training on the biography
data, we find that language models often struggle with such tasks unless they generate answers in
a Chain of Thought (CoT) manner or are finetuned with a much larger number of samples of such
tasks than information theoretically necessary. For example, a model might correctly answer “What
is Anya’s birth month,” but fail to determine if it’s even without first generating the birth month and
then assessing its parity. This remains true even after the model can answer one’s birth month with
nearly 100% accuracy, and further trained/finetuned with 25,000 individuals on birth-month parity
questions (both with direct answers like “Alice’s birth month is even” and with Chain of Thoughts
like “Alice’s birth month is 12, 12 is even”), far exceeding the number needed to classify 12 months
into 2 classes. Our findings suggest that the model can not be trained/finetuned efficiently to
perform even a single step of basic knowledge manipulation during inference time without using
CoT, even if it sees a lot of such single-step (either non-CoT or CoT!) knowledge manipulation
training data.

COMPARISON. Comparison involves determining whether one attribute is greater or smaller than
another, based on a predefined ranking or order. For example, “Is Anya’s university better than
Sabrina’s?” requires a “Yes” or “No” response based on the universities and their ranking. Similar
to classification, we find that language models cannot be trained/finetuned efficiently to perform
this type of knowledge manipulation unless they generate answers in a CoT manner.

INVERSE SEARCH. This involves identifying a person based on their attributes, such as “Who was
born in 1996 in Princeton, NJ?” or “Who studied Communications at MIT and worked for Meta?”.
We find that language models cannot perform this task, regardless of training methods or the
volume of training examples, unless the knowledge is presented inversely in the training data, such
as “Born in 1991 in New York was Anya” or “Studied at MIT and worked for Meta was Anya”.
Merely having forward knowledge data like “Anya was born in 1996 in Princeton, NJ” or “Anya
studied at MIT and worked for Meta” in the training is unsufficient, irrespective of augmentation or
finetuning strategies. A concurrent study (Berglund et al., 2023) also observed a similar “reversal
curse”. This strongly suggests that language models cannot function as databases.

Our contribution. We demonstrate that pre-trained language models, using synthetic biography
data, perform poorly at knowledge manipulation. Regardless of the pretraining/finetuning, they
still struggle with simple functions about a person’s attributes, such as “Is person A’s birth month
even?” unless the function of the same person is in the training data. This can be mitigated by
training/prompting the model to answer in a Chain of Thought (CoT) manner. However, the model
fails at inverse knowledge search, regardless of prompting/training. It can generate all attributes of
a person given the person’s name, but not vice versa. Even large models like GPT-4 (see Figure 2)
perform poorly at these tasks, suggesting these limitations may be inherent to generative lan-
guage models and not resolved by scaling up, but require novel techniques to improve the model’s
knowledge manipulation ability. Our synthetic setting serves as a simple, yet important testbed for
future work on enhancing language models’ knowledge manipulation abilities.

2 PRELIMINARIES

To ensure that this paper is self-contained, we briefly summarize some of the datasets, terminologies,
models, and training methods introduced in Anonymous (2023).
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BIO datasets bioS. In Anonymous (2023), we presented a synthetic biography (BIO) dataset,
bioS, consisting of N = 100, 000 individuals with six attributes: birth date, birth city, university,
major, employer, and working city.1 Six randomly chosen English sentences describe each individ-
ual’s attributes as in (1.1). This basic setup, that we call “bioS single”, has one biographical entry
per individual with six sentences in the order of (1.1).

We also explored knowledge augmentation in Anonymous (2023), including: (1) multiM , gener-
ating M equivalent entries per person (using different wordings); (2) permute, random sentence
shuffling; and (3) fullname, replacing pronouns with full names. We considered 15 augmentations,
combinations of the above. For instance, “bioS multi5+permute” denotes five biographical entries
per individual with shuffled sentences. (Refer to Figure 3 or Appendix A for a complete list of such
augmentations.)

BIO dataset bioR. We also introduced a realistic bioR dataset in Anonymous (2023), created using
LLaMA-30B (Touvron et al., 2023; Zhou et al., 2023) to write entries similar to real biographies.
This paper uses bioS for negative results and both bioS and bioR for positive results.

QA dataset and single knowledge extraction. In Anonymous (2023), we analyzed QAs like
“What is the birth city of Anya Briar Forger?” corresponding to six individual attributes. We split
the N individuals into two equal parts: a training set Ptrain and a testing set Ptest. We then explored
two training methods:

• In BIO+QA mixed training, we simultaneously trained the language model on the BIO for ev-
eryone and QA data for Ptrain, using a high ratio QAr to control the percentage of QA data.

• In BIO pretrain + QA finetune, we initially pretrained the language model with the BIO data,
then fine-tuned it using the QAs for individuals in Ptrain.

In both cases, we assessed the model’s accuracy to answer questions about individuals in Ptest,
referred to as QA test accuracy. Key findings from our parallel paper Anonymous (2023) include:

• The success of QA finetune largely depends on pretraining data augmentation. For instance,
pretraining on bioS multi5+permute yields a mean knowledge extraction accuracy over 96.6%,
while bioS single results in just 9.7% accuracy (see right block of Figure 3).2

• In BIO+QA mixed training, knowledge augmentation is less critical, with the model achieving
over 85% QA test accuracy on bioS single. However, as shown in (Anonymous, 2023), this
method mirrors a “study to pass the test” approach, where the knowledge is first learned from
QAs, unlike typical human knowledge acquisition and is also less practical.

Language models. The standard GPT2-small architecture comprises 12 layers with 12 heads and
768 dimensions (Radford et al., 2019). However, its performance can be limited by its absolute
positional embedding. Thus, we use its rotary positional embedding variant (Black et al., 2022; Su
et al., 2021), still referred to as GPT2 for short. We train GPT2-small on bioS, but use a larger 12-
layer, 20-head, 1280-dim GPT2 for bioR to handle the increased data complexity. A fixed context
window length of 512 is used throughout this paper.

3 WARM-UP ON KNOWLEDGE RETRIEVAL

We examine two partial knowledge retrieval tasks that involve extracting either the person’s birth
day or year from the complete birth date information.

1. What is the birth day of Anya Briar Forger? 2. 2. What is the birth year of Anya Briar Forger? 1996.

We consider six dual knowledge retrieval tasks:
1. Where was Anya Briar Forger born and which company did this this person work for? Princeton, NJ; Meta Platforms.
2. Which company did Anya Briar Forger work for and where was this person born? Meta Platforms; Princeton, NJ.
3. Which university and what major did Anya Briar Forger study? Massachusetts Institute of Technology; Communications.
4. What major and which university did Anya Briar Forger study? Communications; Massachusetts Institute of Technology.
5. Where and which company did Anya Briar Forger work for? Menlo Park, CA; Meta Platforms.
6. Which company and where did Anya Briar Forger work for? Meta Platforms; Menlo Park, CA.

1All fields, except the working city (determined by the employer’s headquarters), are randomly selected.
2In Anonymous (2023), we used probing to explain this phenomenon. Essentially, knowledge augmentation

in the BIO pretraining data ensures that knowledge is more closely tied to an individual’s name.
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QA bday
QA byear

QA bcity
+cname

QA cname+bcity

QA univ+major

QA major+univ

QA cname+ccit
y

QA ccit
y+cname

QA bdate
QA bcity

QA univ
QA major

QA cname
QA ccit

y

baseline
bioS single                   
bioS single                    + fullname
bioS single + permute1
bioS single + permute2
bioS single + permute5
bioS single + permute1 + fullname
bioS single + permute2 + fullname
bioS single + permute5 + fullname
bioS multi2                   
bioS multi2                    + fullname
bioS multi2 + permute 
bioS multi2 + permute  + fullname
bioS multi5                   
bioS multi5                    + fullname
bioS multi5 + permute 
bioS multi5 + permute  + fullname

3.6 0.5 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.5 0.3 1.0 0.4 13.7
37.2 15.6 0.2 0.3 0.2 0.2 1.0 1.1 33.5 6.3 2.3 4.0 1.1 13.8
58.5 43.5 27.6 29.1 41.1 36.3 55.2 11.2 56.2 58.8 63.0 55.7 50.5 14.1
8.5 2.6 0.2 0.2 0.3 0.3 3.6 1.9 0.5 3.3 2.4 5.0 3.5 13.7
62.1 16.6 27.1 27.1 32.1 31.9 52.5 51.2 57.3 48.3 53.1 55.0 51.8 58.3
67.6 18.8 49.1 49.1 42.0 42.7 94.9 91.8 56.4 57.7 58.3 64.9 90.5 97.7
43.9 30.5 9.5 10.4 12.3 11.0 32.0 28.5 26.6 29.3 36.9 31.1 31.4 37.9
70.1 65.0 54.3 53.9 43.0 44.2 91.1 90.2 69.0 60.6 64.2 64.0 87.9 95.0
82.4 68.7 65.5 63.9 49.7 54.6 95.9 96.6 83.7 67.8 72.6 69.1 93.0 98.6
90.6 47.1 5.2 3.1 19.8 9.6 3.4 2.6 100 71.7 33.1 26.1 5.2 14.0
97.6 77.1 94.0 97.5 93.8 94.3 98.5 19.4 100 97.7 89.5 97.6 91.3 35.3
95.7 46.5 85.2 88.2 93.8 95.1 87.9 80.4 99.3 98.7 89.8 96.7 83.3 83.5
96.2 67.2 95.1 97.0 95.3 94.3 97.4 96.1 100 98.8 91.3 98.1 93.7 97.8
85.0 37.3 6.9 4.6 31.5 16.7 9.7 3.6 100 50.8 30.9 43.5 10.2 13.8
97.4 68.0 94.0 95.4 92.0 94.6 94.9 17.4 100 98.6 88.4 96.1 91.9 26.8
82.3 20.4 96.5 97.6 94.8 94.6 97.0 96.9 100 99.0 91.3 97.7 95.1 98.7
97.6 76.7 95.6 98.6 95.1 95.1 98.7 97.7 100 98.7 90.6 97.9 93.7 99.0

Figure 3: Partial (left) and dual (middle) knowledge retrieval, versus the single knowledge extraction (right).

Each row denotes a unique pretrained model with its corresponding knowledge augmentation on the
bioS data. The left, middle, and right blocks depict QA finetune test accuracies for partial, dual,
and single knowledge retrieval tasks, with the right block from Anonymous (2023). Details on the
knowledge augmentations and additional experiments on the bioR dataset are in Appendix A and B.

Methodology. We aim to determine if a model pretrained on BIO data can be fine-tuned to address
the eight questions related to partial or dual knowledge retrieval. We divide the N individuals
equally into training set Ptrain and testing set Ptest. The model is fine-tuned using the above eights
QA tasks for individuals in Ptrain and evaluated on its out-of-distribution generation accuracy by
testing its responses to the questions for individuals in Ptest. We use LoRA fine-tuning Hu et al.
(2021) to enhance performance, as suggested by Anonymous (2023) (see Appendix B for details).

Our findings. For dual knowledge retrieval, the fine-tuning accuracy largely depends on the ex-
tractability of knowledge related to the two individual tasks from the retrained model.

• If a language model is pretrained on sufficiently augmented data, such as bioS multi5+permute,
which generates five biographical entries per person and permutes the six sentences randomly,
the accuracy for dual knowledge retrieval is nearly perfect. In other words, dual knowledge
retrieval is straightforward when the individual tasks are.

• However, if the pretraining data exhibits spatial dependency between the two knowledge pieces,
the sequence of their retrieval can impact accuracy. For example, with bioS multi5+fullname,
where biographical entries always maintain the same order (specifically, the company name al-
ways precedes the company city, and recall company city is uniquely determined by the company
name as noted in Footnote 1), answering the company name first yields near-perfect accuracy,
but answering the company city first drastically reduces accuracy.

Even with near-perfect extraction of an attribute (e.g., a birth date), partial retrieval (e.g., the birth
year) may still be poor. The model may fail to answer questions like “What is the birth year of
person Anya”, despite correctly answering “What is the birth date of person Anya”.

• This is preliminary evidence that the model requires Chain of Thoughts (CoTs) for knowledge
manipulation. For instance, during inference, the model must state the birth month before the
birth year, adhering to the data order in pretraining. It may not necessarily be able to “skip”
tokens to directly generate subsequent knowledge from pretraining.

4 OUR RESULTS ON KNOWLEDGE CLASSIFICATION AND COMPARISON

This section illustrates that a generative model, despite its ability to extract knowledge effectively,
may struggle with downstream tasks requiring basic operations to manipulate such knowledge. This
is unless the Chain of Thought (CoT) is implemented during both training and testing phases.

Classification QA. We investigate classification tasks related to a person’s birth month and field
of study. For the birth month, we use modular arithmetic with p = 2, 6, 12:

1. Was Anya Briar Forger born in an even month? Answer: Yes.
2. What is Anya Briar Forger’s birth month mod 6? Answer: 4.
3. What is Anya Briar Forger’s birth month in numerics? Answer: 10.

We assigned a “luckiness” index to 100 unique majors in our BIO dataset.3 We then queried “What
is the luckiness of Anya Briar Forger’s major modulo m?” for m = 5, 20, 100. Classifying birth

3For instance, Computer Science is 0, Communications is 28, and Music is 99.
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50.0 60.4 77.8 65.2 64.5 61.9 80.4 65.2 69.1
50.0 67.3 87.3 72.7 80.3 68.0 89.5 72.8 83.9
50.0 75.9 94.2 80.3 91.0 76.4 95.0 79.9 92.8
50.0 86.4 98.6 91.1 97.8 87.1 98.8 90.9 98.4
50.0 95.3 99.5 97.5 99.2 96.3 99.7 97.5 99.5
8.3 51.5 61.5 53.7 61.5 58.3 64.1 53.8 64.0
8.3 74.2 79.0 70.1 79.0 80.3 82.5 75.0 82.4
8.3 91.6 92.0 86.8 92.0 93.5 94.7 91.2 94.7
8.3 97.9 98.5 96.8 98.5 98.9 99.2 98.3 99.2
8.3 99.4 99.5 99.4 99.5 99.6 99.8 99.7 99.8

54.2 53.7 65.4 59.6 44.2 57.3 65.5 57.6 44.9
54.2 59.2 75.5 63.4 63.6 62.5 75.1 63.1 62.6
54.2 65.4 87.7 67.0 82.7 65.9 88.9 66.3 83.9
54.2 75.6 96.7 75.8 95.4 78.3 97.4 72.5 96.3
54.2 85.6 99.0 86.7 98.5 88.6 98.9 82.9 98.3
20.0 23.6 86.4 24.1 84.5 22.8 89.6 23.9 87.9
20.0 24.6 96.7 26.8 96.3 24.8 97.7 27.0 97.2
20.0 31.6 99.3 34.2 99.2 30.0 99.5 33.9 99.4
1.0 30.1 78.7 34.6 79.0 8.9 75.8 22.2 76.1
1.0 79.3 96.0 74.4 96.0 80.0 95.6 77.1 95.3
1.0 91.7 99.0 90.7 99.1 91.8 98.3 92.5 98.1

50.5 52.5 88.8 54.1 86.2 52.4 90.3 54.1 88.3
50.5 52.2 96.4 53.7 97.3 52.6 96.9 53.6 97.5
50.5 53.9 99.6 55.0 99.5 53.6 99.4 55.0 99.3
1.0 1.1 21.6 1.1 82.5 1.0 23.2 1.1 84.3
1.0 1.1 89.1 1.2 96.7 1.2 84.7 1.2 97.0
1.0 1.1 98.4 1.2 99.3 1.1 97.3 1.2 99.0

baseline

pretrained model QA finetuned model
trained
w/o hint trained with hint trained

w/o hint trained with hint

test acc test acc
(with hint)

test acc
(w/o hint) hint acc test acc test acc

(with hint)
test acc

(w/o hint) hint acc

birthmonth classify %2 (2.5k)
birthmonth classify %2 (5k)
birthmonth classify %2 (10k)
birthmonth classify %2 (25k)
birthmonth classify %2 (50k)
birthmonth classify %12 (2.5k)
birthmonth classify %12 (5k)
birthmonth classify %12 (10k)
birthmonth classify %12 (25k)
birthmonth classify %12 (50k)
birthmonth ranking (2.5k)
birthmonth ranking (5k)
birthmonth ranking (10k)
birthmonth ranking (25k)
birthmonth ranking (50k)

major classify %5 (10k)
major classify %5 (25k)
major classify %5 (50k)
major classify %100 (10k)
major classify %100 (25k)
major classify %100 (50k)
major ranking (10k)
major ranking (25k)
major ranking (50k)
major subtraction (10k)
major subtraction (25k)
major subtraction (50k)

field task #train
individuals

Figure 4: Knowledge classification and comparison tasks on a BIO pretrained model vs a QA finetuned model.
The #train individuals column shows the size |Ptrain|. The trained w/o hint column indicates the
model finetuned on the classification/comparison tasks without adding hints. The trained with hint
block shows the model finetuned with hints added with a probability of 0.5. Test acc (with hint) and
test acc (w/o hint) represent the accuracy for individuals in Ptest with or without hints, while hint
acc shows the model’s hint generation accuracy. See Figure 9 and Appendix C for more experiments.

month with p = 12 or major with p = 100 is a form of transfer learning, similar to tasks in
(Anonymous, 2023), but with altered question phrasing and response format.

Knowledge comparison QA. We examine tasks related to ranking and subtraction based on a
person’s birth month and major of study. The questions include:4

1. Was Anya Briar Forger born in a month in a year later than Sabrina Eugeo Zuberg? [Yes/No].
2. What is Anya Briar Forger’s birth month minus Sabrina Eugeo Zuberg’s birth month? [-11..11].
3. Did Anya Briar Forger major in a field luckier than Sabrina Eugeo Zuberg? [Yes/No].
4. How luckier is Anya Briar Forger’s major compared with Sabrina Eugeo Zuberg’s major? [-99..99]

Methodology. We evaluate knowledge manipulation using a model proficient in knowledge extrac-
tion, ensuring any difficulties arise from manipulation, not extraction. We utilize our knowledge-
augmented biographical data, bioS multi5+permute, which allows nearly 100% test accuracy for
extracting birth date/month and 97.9% for major of study.

We employ either a model pretrained from this BIO data (the BIO pretrained model), or one that
is BIO pretrained + QA finetuned for single knowledge extraction tasks, such as “What is the birth
date of Anya Briar Forger?” (the QA finetuned model). Given the QA finetuned model’s proven
extraction ability, one might anticipate a better performance in knowledge manipulation.

TRAIN WITHOUT HINT. Our BIO data comprises biographical entries of N = 100k individuals.
We reserve half (i.e., 50k) as the testing set Ptest, and select a separate subset Ptrain as the training
set, with |Ptrain| = 2.5k, 5k, . . . 50k.

Starting from one of the two aforementioned models, we perform additional LoRA fine-tuning using
the classification or comparison QA tasks described earlier, trained using individuals fromPtrain. We
then evaluate the model’s out-of-distribution generation accuracy by assessing its performance on
the classification/comparison tasks for individuals in Ptest.

TRAIN WITH HINT. To enhance the model’s knowledge manipulation capabilities, we LoRA fine-
tune it using knowledge hints. These hints state a person’s attributes in English before answering the
manipulation question. For example, in our tasks, the underlined sentences serve as hints:5

1. Was Anya Briar Forger born in a month in a year later than Sabrina Eugeo Zuberg? October; September. No.
2. How luckier is Anya Briar Forger’s major compared with Sabrina Eugeo Zuberg’s major? Communications; Music. -71.
3. What is the luckiness of Anya Briar Forger’s major modular 20? Communications. 8.

4These questions have practical relevance: our luckiness index could be replaced with, for instance, the
popularity of majors from US News.

5For context, apart from (1.1), we consider another individual Sabrina Eugeo Zuberg who was born in
September and majored in Music. We have previously assigned specific luckiness values to each major: Com-
munications holds a value of 28, while Music is valued at 99.
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Question:   “Answer me yes or no concisely: for <name> who was a <occupation> and was born in <city> in <year>, was this person born in an even month?” 
  GPT4 correct answer = 50.7%, incorrect answer = 48.5%, I don’t know = 0.7%

Classify 
month % 2

Question:   “Answer me yes or no concisely: was <name1> who was a <occupation1> and was born in <city1> born earlier than <name2> who was a 
<occupation2> and was born in <city2>?”   GPT4 accuracy answer = 52.3% among individuals born in 1900~1910
     GPT4 accuracy answer = 71.1% among individuals born in 1900~1950
     GPT4 accuracy answer = 81.6% among all pairs of individuals

“what's the birthday and year of <name> who is a <occupation> and was born in <city>?” GPT4 accuracy: 99% (among 4779 celebrities on Wikipedia)

Rank birth 
date

Figure 5: Knowledge classification and ranking on WikiBio using GPT3.5 / GPT4. Details are in Appendix E.2.

Including hints in the training data allows the language model to use a chain of thought (CoT) ap-
proach: it can first extract the necessary knowledge and then learn the manipulation task by directly
using this knowledge. Similar to “train without hint”, we train using QAs for individuals in Ptrain

and test on Ptest. For each individual in Ptrain (or each pair for comparison tasks), we include hints
with a 50% probability. Thus, the model sees training data both with and without hints. We then
test the model’s out-of-distribution generation accuracy under both conditions. Our goal is to de-
termine: does the integration of CoT data improve the model’s knowledge manipulation skills,
even without CoT?

Our Findings. As shown in Figure 4, we found significant challenges in knowledge classifica-
tion/comparison unless hints are used consistently throughout training and testing. Specifically, we
observed:

1. The difference between a BIO pretrained and a QA finetuned model is minimal for downstream
knowledge manipulation tasks. Fine-tuning the model to answer questions like “What major
did Anya Briar Forger study” does not necessarily improve its performance on future tasks like
ranking and classification based on the major of study.

2. Without CoT examples, the model’s test accuracy is significantly low, even for simple tasks.
• Determining whether a month is even or odd requires 10,000 training samples to achieve a
75% accuracy, despite theoretically needing a sample complexity on the order of O(12).

• Ranking months requires 50, 000 training samples to reach an 85% test accuracy, even with
a theoretical sample complexity of O(122), provided no hint is given.

• The “transfer learning” task, which involves rephrasing the same knowledge, has a relatively
better test accuracy.

• Classifying or ranking majors from a list of 100 possible majors barely outperforms random
guessing, even with a maximum of 50, 000 training individuals.

3. When CoT examples are included during training:
• The model still struggles to answer without a hint during testing, indicating that including

hints during training does not improve test-time accuracy when hints are removed.
• However, when the model is prompted with a hint during testing, there’s a significant im-

provement in test accuracy, closely aligning with the accuracy achieved when producing the
intermediate steps. For example:
– In the task “birth month classify %2”, with a hint accuracy 91.0%, the test accuracy (with

hint) is 94.2%, nearly aligning with the calculation: 91.0%+(1−91.0%)×50% = 95.5%.
– In the task “birth month subtraction”, a hint accuracy of 78.1% results in a test accuracy

(with hint) of 61.5%, comparable to the value derived from the formula: 78.1%×78.1%+
(1− 78.1%× 78.1%)× 8.3% = 64.2%.

Thus, in scenarios with CoTs, if the model can accurately navigate the intermediate step, it
is highly likely to successfully tackle the subsequent manipulation task, and vice versa.

Connection to GPT4 in practice. Figure 5 illustrates GPT4’s struggle with biographical data
classification and comparison tasks in the absence of CoTs. Figure 2 and Figure 10 show that CoTs
can rectify this. This suggests that scaling up model size may not mitigate the issues discovered
in this section. The GPT4 experiment is included solely for illustrative purposes. Without control
over its pretrained data, distinguishing between Case (A)-(E) from Figure 1 is difficult. In Figure 5,
we ensured the model could accurately identify individuals’ birth dates 99% of the time, thereby
eliminating Case (C). However, we cannot dismiss Case (D) due to uncertainty about the number
of relevant training examples in GPT4’s data. Interestingly, GPT4 has a 71.1% accuracy rate when
comparing birth dates from 1900-1950, but this drops to 52.3% for 1900-1910, suggesting a corre-
lation with the number of samples in its training data. Therefore, our primary focus of this paper is
on a controlled, synthetic experiment to study knowledge manipulation.
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0.6 0.0 1.0 0.0 1.7 0.0 0.9 0.0 1.0 0.0 1.2 0.0 1.0 0.0 0.8 0.0 1.0 0.0 0.7 0.0
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Figure 6: Test accuracy for QA finetune (left) and BIO+QA mixed-training (right) in knowledge inverse search.
Each row denotes a unique pretrained model with its corresponding knowledge augmentation on the
bioS data. The 4 rows with reverse indicate knowledge written in reverse on the pre-training data
for comparison (thus, these rows are no longer inverse search). Refer to Appendix D for more details.

5 OUR RESULTS ON KNOWLEDGE INVERSE SEARCH

We now show that a generative model cannot typically perform a knowledge inverse search, unless
the knowledge was already pretrained in reverse order.

Knowledge inverse search. Remember that our biographical entry in the bioS data always starts
with the person’s name, as shown in (1.1). This enables us to examine the knowledge inverse search
by asking about the individual’s first or full names. We consider 10 such QA tasks (with their task
names provided on the right):

• Give me the [first/full] name of the person born on October 2, 1996? (bdate to first, bdate to full)
• Give me the [first/full] name of the person born on October 2, 1996 in Princeton, NJ? (birth to first, birth to full)
• Give me the [first/full] name of the person who studied Communications at Massachusetts Institute of Technology and worked for Meta

Platforms? (three to first, three to full)
• Give me the [first/full] name of the person who studied Communications at Massachusetts Institute of Technology, was born in Prinecton,

NJ, and worked for Meta Platforms? (four to first, four to full)
• Give me the [first/full] name of the person who studied Communications at Massachusetts Institute of Technology, was born on October

2, 1996 in Prinecton, NJ, and worked for Meta Platforms at Menlo Park, CA? (all to first, all to full)

Note that in our data, some inverse search tasks may not have unique answers (like
bdate to full). However, with N = 100, 000 people and 200× 12× 28 possible birth dates, a
successful inverse search should answer these questions with an accuracy significantly above zero.

Methodology. We split the N individuals equally into training set Ptrain and testing set Ptest.
The model is trained using QA data from Ptrain and evaluated on its out-of-distribution generation
accuracy using 10 inverse knowledge search questions for Ptest.

We consider two approaches: “BIO pretrain + QA finetune”, which fine-tunes a BIO-pretrained
model using the above 10 QA tasks on Ptrain, and “BIO+QA mixed training”, where the model is
concurrently trained on all the BIO data and 10 QA tasks on Ptrain. As per Section 2, the latter
approach yields better out-of-distribution QA generation accuracies. Details are in Appendix D.

We also introduce new knowledge augmentation variants on the pretraining BIO data for comparison
(in addition to the augmentations discussed in Section 2):

• bioS multi5+reverse1, in this case we move the full name of the person to the second sentence:

The person was born on October 2, 1996. Anya Briar Forger spent her early years in Princeton, NJ...

• bioS multi5+reverse2, in this case we move the full name of the person to the third sentence:

The person was born on October 2, 1996. She spent her early years in Princeton, NJ. Anya Briar Forger...

• bioS multi5+reverse6, we move the full name of the person to the end of the biographical entry:

The person was born on October 2, 1996. She spent her early years in Princeton, NJ... The person’s name is Anya Briar Forger.

• bioS multi5+permute+reverse6, in this case on top of bioS multi5+reverse6 we also ran-
domly permute the six sentences. Here is an example.
The person spent her early years in Princeton, NJ. [... 4 more sentences in random order ...] She had a professional role at Meta Platforms.
The person’s name is Anya Briar Forger.
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Inverse search:    “In <Pride and Prejudice>, what’s the sentence before: <sentence2>?”
Forward search: “In <Pride and Prejudice>, what’s the sentence after: <sentence1>?”

Pride & Prejudice Sense & Sensibility Persuasion Northanger Abbey Emma Mansfield Park

forward vs inverse accuracy by GPT3.5 0.5% vs 14.4% 0.3% vs 5.4% 0.07% vs 4.3% 0.6% vs 5.5% 0.8% vs 7.2% 0.7% vs 5.5%
forward vs inverse accuracy by GPT4 0.8% vs 65.9% 0.9% vs 40.2% 0.5% vs 33.9% 0.9% vs 41.0% 0.6% vs 42.7% 0.3% vs 31.7%

Inverse search:   “what‘s the full name of the celebrity born on <date> in <city> who is a <occupation>?” GPT3.5 acc = 23.9% GPT4: 42%
Forward search: “what's the birthday and year of <name> who is a <occupation> and was born in <city>?” GPT3.5 acc = 89.5% GPT4: 99%

Given a common 4-letter Chinese idiom such as 指鹿为马, mask out its i-th letter (for i=1,2,3, or 4) and let GPT fill out the missing letter.
Prompt 1: 成语“X鹿为马”的X是什么字？  GPT3.5 accuracy 9.4%, GPT4 accuracy 17.6%
Prompt 2: 成语“指X为马"的X是什么字？  GPT3.5 accuracy 29.5%, GPT4 accuracy 36.1%
Prompt 3: 成语"指鹿X马"的X是什么字？  GPT3.5 accuracy 32.0%, GPT4 accuracy 76.7%
Prompt 4: 成语"指鹿为X"的X是什么字？  GPT3.5 accuracy 56.7%, GPT4 accuracy 90.6%

Jane Austen 
Novel Task

Wiki Bio 
Task

Chinese Idiom 
Task

Chinese Poem 
Task

Given a famous two-sentence Chinese poem such as 劝君更尽一杯酒, 西出阳关无故人, let GPT answer what’s the sentence before/after <sentence2/1>
Inverse search:   “西出阳关无故人”的上一句是什么？ GPT3.5 accuracy   2.1%, GPT4 accuracy   7.3%
Forward search: “劝君更尽一杯酒”的下一句是什么？ GPT3.5 accuracy 33.0%, GPT4 accuracy 66.5%

Figure 7: Forward search vs inverse search on ChatGPT (GPT3.5 / GPT4).

Our findings. Our results, shown in Figure 6, reveal:

• The model has almost zero accuracy in the inverse knowledge search on the test set Ptest, even
with strong pretraining knowledge augmentation like bioS multi5+permute+fullname,6 even
for the simplest inverse knowledge task, all to first, and even with the BIO+QA mixed
training approach.

• However, when the order of knowledge is reversed during pretraining, presenting some attributes
before the person’s name (see bioS multi5+reverseP or bioS multi5+permute+reverse6), the
QA test accuracies improve. This is for illustration purpose only; once the order is reversed, the
QA task is no longer an inverse knowledge search.

In conclusion, our findings underscore a fundamental limitation of the generative model: it cannot
perform an inverse knowledge search unless the knowledge was pretrained in reverse order. This
is due to its left-to-right autoregressive training design. For instance, if the model learns “A equals
B” during pretraining, it cannot infer “B equals A” unless it was also in the training data. A bidirec-
tional model like BERT can somewhat mitigate this limitation. However, BERT-like models have
their own issues even with forward, single knowledge extraction, even with extensive knowledge
augmentation, as discussed in Anonymous (2023).7

Connection to GPT3.5/4 in practice. Large-scale language models such as GPT3.5/GPT-4 exhibit
huge difficulties with inverse knowledge search (Figure 7). For example, while GPT4 can predict
the next sentence in Jane Austen’s Pride and Prejudice with 65.9% accuracy, it only manages 0.8%
accuracy when tasked with predicting the preceding sentence. This indicates a deficiency in inverse
knowledge search capabilities, regardless of their forward knowledge accuracy and model size.

6 CONCLUSION

In this paper, we design a synthetic biography dataset and use it to perform controlled experiments
showing the fundamental limitation of the language model’s ability to manipulate knowledge during
inference time even under the strongest pretraining setting. Our work sheds light on why extremely
large language models like GPT4 are still bad at knowledge manipulation, and give surprisingly sim-
ple examples (recall “Was Joe Biden born in an even month?”) in which Chain of Thought becomes
necessary. On the other hand, the language model simply can not perform an inverse search, indi-
cating its limitation to be used as a database. Our synthetic dataset can also be used as an important
testbed for designing novel training approaches to mitigate this issue in the future. We believe that
our work gives strong support that the language model should be paired with the knowledge base
during inference time (retrieval augmented generation (Lewis et al., 2020)) to perform knowledge
manipulation efficiently, as it can not be solved efficiently by scaling up the model size/data size.

6This implies the BIO data includes five diverse biographical entries per individual, with the full name in
each sentence, and random shuffling of the six attribute sentences.

7As per Anonymous (2023), BERT-like models already struggle with knowledge extraction due to their
whole-word masked language modeling (MLM) nature — not to say knowledge manipulation. For example,
a company attribute like “Meta Platforms” might lead BERT to correlate the embedding of “Meta” with that
of “Platform”, rather than associating the company information to the individual’s full name. For more details,
see our separate paper (Anonymous, 2023).
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APPENDIX
A MORE DETAILS ON DATA PREPARATION

In (Anonymous, 2023), we introduced a synthetic biography data family bioS and a “close-to-real”
dataset family bioR. For completeness, we provide a summary here, but we encourage interested
readers to find more details in (Anonymous, 2023). We primarily use bioS to present negative results
due to its controllable knowledge order. For positive results, specifically for partial/dual knowledge
retrieval, we also use bioR.

A.1 BIO DATASET BIOS

In the synthetic dataset labeled as bioS, we generate profiles for N = 100, 000 individuals. Each
individual’s first, middle, and last names, birth date, birth city, university attended, major of study,
and current employer are selected independently and randomly from a uniform distribution, out of
400, 400, 1000, 200× 12× 28, 200, 300, 100, 263 choices respectively. Additionally, we introduce
a ‘company city’ field that depends on the US location of the employer’s headquarters. For instance,
an employee of Meta would list Menlo Park, CA as their company city. Notably, 13.7% of the
companies are headquartered in New York, NY. Thus, defaulting to New York, NY when predicting
a person’s work city yields a base accuracy of 13.7%.

In the bioS dataset, we craft a biographical text entry for each individual, distilling their profile into
six sentences. Each sentence illuminates a distinct attribute of the individual. To increase diversity,
we select each sentence randomly from a set of ∼ 50 pre-defined templates. Beyond (1.1), we
provide more examples below:

Carlos Jameson Stokes has his annual celebration on November 12, 2088. He celebrates his birth in San Francisco, CA. He gradu-
ated from Oklahoma State University. He explored the theoretical aspects of Information Systems. He contributed his expertise to
United Airlines Holdings. He acquired industry knowledge while working in Chicago, IL.

Alondra Bennett Rooney celebrates their life journey every year on April 1, 1909. They owe their roots to Durham, NC. They benefited from
the resources and facilities provided by University of South Alabama. They developed a strong foundation in Data Science. They had a job at
The Southern Company. They were involved in the industry of Atlanta, GA.

Aidan Alexa Dennis’s birth is celebrated annually on July 17, 1968. She calls Palmdale, CA her birthplace. She specialized in her field of
study at Stevens Institute of Technology. She completed a rigorous program in International Business. She had employment prospects at
Johnson & Johnson. She gained work experience in New Brunswick, NJ.

In the basic configuration, we produce a single biographical entry for each individual, maintaining a
consistent order for the six sentences as previously outlined. We denote this configuration as “bioS
single.” In (Anonymous, 2023), we delved into 15 knowledge augmentations:

• bioS single+fullname: Pronouns are replaced with the person’s full name.

• bioS single+permute1/2/5: The six sentences in the biography entry are randomly permuted
1/2/5 times for each person. However, the full name only appears in the first sentence, with
subsequent sentences using pronouns. This results in 1/2/5 biography entries for each person.

• bioS single+permute1/2/5+fullname: As with the previous augmentation, but the full name is
used in all six sentences.

• bioS multi2/5: 2 or 5 biographical entries are generated for each person, with each generation
employing a re-sampled set of sentence templates.

• bioS multi2/5+permute: Building on bioS multi2/5, the six sentences within each biographical
entry are randomly permuted. However, the full name appears only once in the first sentence.

• bioS multi2/5+fullname: Building on bioS multi2/5, pronouns are replaced with the individ-
ual’s full name across all sentences.

• bioS multi2/5+permute+fullname: Incorporating features from both bioS multi2/5+permute
and bioS multi2/5+fullname, the pronouns are replaced with the individual’s full name and the
six sentences are randomly permuted.

In this paper, in Section 5 when considering inverse knowledge search, we have also introduced a
few auxiliary knowledge augmentations for comparison purpose:
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• bioS multi5+reverse1, in this case we move the full name of the person to the second sentence:

The person was born on October 2, 1996. Anya Briar Forger spent her early years in Princeton, NJ...

• bioS multi5+reverse2, in this case we move the full name of the person to the third sentence:

The person was born on October 2, 1996. She spent her early years in Princeton, NJ. Anya Briar Forger...

• bioS multi5+reverse6, we move the full name of the person to the end of the biographical entry:

The person was born on October 2, 1996. She spent her early years in Princeton, NJ... The person’s name is Anya Briar Forger.

• bioS multi5+permute+reverse6, in this case on top of bioS multi5+reverse6 we also ran-
domly permute the six sentences. Here is an example.
The person spent her early years in Princeton, NJ. [... 4 more sentences in random order ...] She had a professional role at Meta Platforms.
The person’s name is Anya Briar Forger.

A.2 BIO DATASET BIOR

We also examine a “close-to-real” dataset produced by LLaMA (Touvron et al., 2023; Zhou et al.,
2023). Specifically, for the previously mentioned set of N = 100, 000 individuals, we provide an
instructive prompt to LLaMA, directing it to generate a biographical entry for us. Here are some
generated outputs:
Nicole Kevin Pratt is an American business executive. She is currently the Vice President of P&G Global Business Services at
Procter & Gamble. She was born on January 25, 1977, in Baltimore, Maryland. She graduated from Haverford College with a degree in
Management. P&G recruited her as an Assistant Brand Manager in 2000. She held various leadership positions in brand management, market-
ing, and sales across different business units and categories. She was named Vice President of P&G Global Business Services in 2019. Nicole
currently lives in Cincinnati, Ohio with her husband and three children.

Hunter Bennett Kenny is a talented political science graduate from Queens College, City University of New York. He hails from
Augusta, Georgia and was born on March 25, 2033. During his time at college, he was an active member of the student council and served
as its president in his senior year. He interned at the office of New York Senator Chuck Schumer. After graduating cum laude, he worked for
Kohl’s in Menomonee Falls, Wisconsin. He currently resides in Brooklyn, New York.

Johnathan Charles Wade is a successful insurance agent who works for Allstate. He was born on January 7, 2098, in New York City, NY. He
graduated from Colorado State University, where he majored in Sociology. He currently resides in Northbrook, IL.

In the basic configuration, we produce a single biographical entry for each person, denoted as “bioR
single.” For comparison, we also introduce the multiM augmentation, which creates M entries per
person, and the fullname augmentation.

B MORE DETAILS ON KNOWLEDGE RETRIEVAL

Recall from Section 3 that we examined two partial knowledge retrieval tasks, which involved ex-
tracting either a person’s birth day or year from complete birth date information. We also considered
six dual knowledge retrieval tasks that involved extracting two attributes of a person simultaneously.

Following (Anonymous, 2023), we initially used a BIO-pretrained model checkpoint and then ap-
plied LoRA finetuning on top of it, utilizing the QA texts of the aforementioned eight tasks for half of
the individuals (denoted by Ptrain).8 We then presented its out-of-distribution generation accuracies
for answering those eight tasks on the remaining individuals (denoted by Ptest).

We used the same BIO pretrained checkpoints from (Anonymous, 2023).9

In LoRA fine-tuning, as described by (Hu et al., 2021), one selects certain weight matrices Wd×k

in the transformer and applies a rank-r update on top: W′ ← W + αAB with A ∈ Rd×r and
B ∈ Rr×k for some small number r. Here, α is a constant, and both A and B are trainable
parameters.10 Notably, B is initialized with Gaussians and A is initialized with zeros.

8LoRA finetuning has been proven to be a better choice compared to full finetuning, as it prevents overfitting
and yields higher QA test accuracies. A detailed comparison can be found in (Anonymous, 2023).

9They were obtained using AdamW with weight decay 0.1, ε = 10−6, initial learning rate 0.001, 1000-step
linear warmup, and cosine learning rate decay (decreasing to 0.0001). It was trained using a batch size of 96
with 80,000 steps (for bioS) or with 150,000 steps (for bioR). Recall the context window size was 512.

10In this paper, we choose α = 4. This choice only affects the learning rate and does not require tuning. (Hu
et al., 2021)
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Based on Hu et al. (2021), we applied a low-rank update to the query/value matrices in each trans-
former layer. To account for the input distribution shift (from BIO data to QA data), we also applied
a low-rank update to the embedding layer. We used either a rank 8 or 16 update for the query/value
matrices and a rank 128 update for the embedding layer, presenting the best accuracy from the two
runs.11

We employed the AdamW optimizer with ε = 10−6. The weight decay was set to 0.01, with an
initial learning rate of 0.0003. We did not use warmup, and we implemented cosine learning rate
scheduling (reducing to 10% of the initial learning rate). The batch size was set at 48 with a total of
50,000 training steps.

The results for the bioS data are presented in Figure 3, and we also included the results for the bioR
data in Figure 8.
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QA bcity
+cname

QA cname+bcity

QA univ+major

QA major+univ

QA cname+ccit
y

QA cci
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QA bdate
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QA cname
QA cci

ty

baseline
bioR single                   
bioR single                    + fullname
bioR single + permute5
bioR multi3                   
bioR multi3                    + fullname
bioR multi5                   
bioR multi5                    + fullname

3.6 0.5 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.5 0.3 1.0 0.4 13.7
27.8 19.8 0.3 0.3 0.3 0.3 1.6 1.3 25.1 13.9 2.4 5.5 2.0 14.1
57.3 46.5 16.3 16.7 23.4 20.8 33.4 11.3 61.3 44.8 36.6 47.9 37.4 19.9
67.5 34.0 12.6 13.3 26.3 26.3 38.7 14.3 71.8 29.7 45.7 45.0 43.1 19.3
96.2 74.5 84.9 87.2 90.8 91.0 86.3 70.7 99.5 95.0 88.2 95.0 86.1 71.7
96.7 90.0 94.0 97.0 94.4 94.0 93.0 81.4 99.3 96.9 91.7 97.2 91.9 81.6
98.6 80.5 94.5 95.1 92.7 93.8 92.7 87.7 100 96.3 91.0 96.8 91.9 89.1
95.4 86.0 95.5 97.8 95.1 93.2 93.8 89.9 99.6 97.4 90.5 97.3 94.2 90.9

Figure 8: Partial (left) and dual (middle) knowledge retrieval, versus the single knowledge extraction (right).

Each row denotes a unique pretrained model with its corresponding knowledge augmentation on the
bioS data. The left, middle, and right blocks represent QA finetune test accuracies for partial, dual,
and single knowledge retrieval tasks respectively, the latter from Anonymous (2023). Observations.
On the “close-to-real” data bioR, the results closely resemble those of the synthetic bioS data, as
shown in Figure 3.

C MORE DETAILS ON KNOWLEDGE CLASSIFICATION AND COMPARISON

Recall from Section 4 that we take a model trained on sufficiently augmented BIO data bioS
multi5+permute; it is either simply BIO-pretrained, denoted as M , or already QA finetuned on
six knowledge extraction QA tasks, denoted as M ′.12 We further analyze their performances on
knowledge manipulation, particularly on classification or comparison tasks built on certain knowl-
edge attributes.

Consider knowledge comparison as an example. We examine two types of training. One involves
direct finetuning of M or M ′ using manipulation task QAs, such as

Was Anya Briar Forger born in a month in a year later than Sabrina Eugeo Zuberg? No.

This method is referred to as “train without hint”. Once more, we divide the N individuals into two
halves Ptrain and Ptest, apply LoRA fine tuning using QAs for pairs of individuals in Ptrain, and test
its out-of-distribution generation accuracy on QAs for pairs of individuals in Ptest. These results are
displayed in the “test acc” column of Figure 4 and 9.

The other training type involves finetuning M or M ′ using manipulation task QAs with the addition
of hints, exemplified below:

Was Anya Briar Forger born in a month in a year later than Sabrina Eugeo Zuberg? October; September. No.

This method enables the model to extract relevant knowledge, then learn to manipulate this knowl-
edge directly. We call this “train with hint”, and we again perform LoRA fine tuning using QAs on
pairs of individuals in Ptrain. For each pair of individuals, hints are added with a 50% probability;
therefore, during LoRA fine tuning, the model sees knowledge manipulation QAs both with and
without hints. The model’s out-of-distribution generation accuracy is then tested on the QAs for
individuals in Ptest, again with or without hints. These results are displayed in the “test acc (with
hint)” and “test acc (w/o hint)” columns of Figure 4 and 9.

11Indeed, Anonymous (2023) indicates that a large rank-r update for the query/value matrices is not crucial.
However, a large rank-r′ update on the embedding layer is beneficial to address the input distribution shift.

12This QA finetuning is also performed by leveraging LoRA finetuning with rank 8 on the query/value
matrices and rank 128 on the embedding layer.
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Figure 9: Extension of Figure 4, to give more examples on knowledge classification and comparison tasks.

Additionally, we document the model’s accuracy at correctly generating hints for each individual.
This information is presented in the “hint acc” column of Figure 4 and 9.

Parameters. The BIO-pretrained model M and QA-finetuned model M ′ were directly copied
from Anonymous (2023). There were obtained using the same AdamW parameters as described in
Appendix B.

Throughout the experiment for both “train without / with hint”, we utilize a LoRA finetuning strategy
with the rank-16 update on the query/value matrices and rank-128 update on the embedding layer.
Additionally, we employ the AdamW optimizer with ε = 10−6. The weight decay is set at 0.01, and
the initial learning rate is 0.001. We do not utilize warmup, but we do implement cosine learning
rate scheduling, reducing to 10% of the initial learning rate. The batch size is set at 48 with a total
of 50,000 training steps.

Additional results. Our complete experiments are presented in Figure 9, and a selective set of
them was presented in Figure 4 in the main body. Note that not only have we included more classi-
fication/ranking/subtraction tasks in Figure 9, but we have also added ranking/subtraction tasks on
the birth day attribute, such as “Was [name1] born on a day of the month later than [name2]?”

One may note that unlike birth month or major of study, the knowledge of “birth day” can only be
retrieved with a less perfect test accuracy of 82.3%. Therefore, one should expect that even with
hints added, the knowledge ranking/subtraction accuracy may still be far from perfect. See the last
two rows in Figure 4.

D MORE DETAILS ON KNOWLEDGE INVERSE SEARCH

In Section 5, we examine 10 knowledge inverse search tasks, asking for a person’s first or full
name given (part or all) of their attributes. We consider the bioS data family with all knowledge
augmentation choices as discussed in Appendix A.1.

Similar to knowledge retrieval outlined in Appendix B, given a BIO pretrained model checkpoint,
we apply LoRA finetuning on top of it. We do this by utilizing the QA texts of the 10 inverse knowl-
edge search tasks for half of the individuals and test its out-of-distribution generation accuracies
for answering those QAs on the remaining half. We use the same LoRA settings as discussed in
Appendix B, in particular, rank 8 or 16 for the query/value matrices and rank 128 for the embedding
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layer, among other parameters.

Furthermore, since we are presenting a negative result, we also consider BIO+QA mixed training.
Specifically, we train the model using both the BIO data from all individuals and also the inverse
knowledge search QA data from half of them. For simplicity, each training sequence of 512 to-
kens comes either entirely from the BIO entries or entirely from the QA entries (from randomly
sampled individuals, concatenated using <EOS> tokens). We introduce a parameter QAr to control
the frequency of using QA entries. Both QAr = 0.5 and QAr = 0.8 are tested, and we present
the better result of the two. We evaluate the model’s generation accuracy using inverse knowledge
search questions from the other half of the individuals.13

Our results are detailed in Figure 6.

E MORE DETAILS ON CHATGPT EXPERIMENTS

All of our experiments on GPT-3.5 / GPT-4 were conducted between June and September of 2023
using the latest models gpt-3.5-turbo and gpt-4 at the moment.

E.1 INVERSE KNOWLEDGE SEARCH

In Figure 7 in Section 5, we argued that even massive language models such as GPT-3.5/GPT-4 also
perform poorly in inverse knowledge search. We consider four such tasks.

JANE AUSTEN NOVEL TASK. We select pairs of consecutive sentences in the six novels of Jane
Austen, and let GPT-3.5/4 generate the next/previous sentence given the other in the pair. Here,
generating the previous sentence can be considered inverse knowledge search, and generating the
next sentence can be considered forward knowledge search.

In more detail, we select only those pairs of consecutive sentences when both of them have between
50 and 300 characters (so that we skip short sentences like “What is his name?”). After this filtering,
we consider:

• 2873 sentence pairs in Pride and Prejudice, out of 5909 sentences;
• 2296 sentence pairs in Sense and Sensibility, out of 4897 sentences;
• 2730 sentence pairs in Persuasion, out of 3634 sentences;
• 1446 sentence pairs in Northanger Abbey, out of 3655 sentences;
• 3234 sentence pairs in Emma, out of 8477 sentences;
• 2730 sentence pairs in Mansfield Park, out of 6907 sentences.

We then ask GPT3.5/4, “In [bookname], what’s the sentence before/after: [sentence]?”

WIKIBIO TASK. We use the wikibio dataset Lebret et al. (2016), which contains biographies of
individuals extracted from Wikipedia. Our goal is to have GPT3.5/4 identify people’s names based
on their attribute values.

The wikibio dataset consists of 582,659 individuals. We first select only those individuals who have
fully specified birth dates, birth places, occupations, and death dates. This results in a total of 33,617
individuals. We then query GPT-3.5 once with the prompt “Answer short: what’s the birth day and
year of [name] who is a [occupation] and was born in [birthplace]?” and select 4,779 individuals
whose birth dates can be corrected answer. This ensures that we only consider individuals that
GPT-3.5 has has clearly encountered during its pretraining.

Finally, we test these 4,779 individuals using either GPT-3.5 or GPT-4 with the inverse search ques-
tion “what’s the full name of the celebrity born on [date] in [city] who is a [occupation]?” or the
forward search question “what’s the birthday and year of [name] who is a [occupation] and was born
in [city]?” We assign a score of 1 if the answer is fully correct, and a score of 0.5 if the answer is

13As shown in (Anonymous, 2023), it is deduced that QAr = 0.8 (specifically, a 2 : 8 ratio between BIO
and QA entries in terms of the number of pre-trained tokens) is a good choice for mixed training. However, in
the context of inverse knowledge search, the average length of QAs tends to be longer than that of the original
knowledge extraction QAs. For this reason, we also explore the alternative option of QAr = 0.5 to account for
this discrepancy.
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only partially correct.14

CHINESE IDIOM TASK. We prepared a list of 2,244 four-character Chinese idioms that are com-
monly used in both oral and written texts. We mask one of the four characters in each idiom and
ask GPT3.5/4 to fill in the masked character. In this task, generating the first character given the
remaining three characters is considered an inverse knowledge search. Here are a few examples of
the idioms that we have used:

1.实事求是;2.引人注目;3.成千上万;4.当务之急;5.一如既往; ... 2243.秉公守法;2244.等闲置之

We chose to use Chinese because the idioms are of equal length in characters, making it easy to
calculate per-character accuracy. An average Chinese individual with a middle school education
should be able to achieve an accuracy of over 80% when answering the first character given the
other three.

CHINESE POEM TASK. We prepared a list of 233 Chinese poem sentence pairs that are commonly
used in written Chinese. We mask either the first or second sentence and ask GPT-3.5/GPT-4 to
complete the other. We provide a few examples of the poem sentence pairs below:

1.两岸猿声啼不住，轻舟已过万重山 2.感时花溅泪，恨别鸟惊心 ...

... 232.千山鸟飞绝，万径人踪灭 233.东边日出西边雨，道是无晴却有晴

OTHER TASKS. Though we have only presented four tasks related to inverse knowledge search,
we have also experimented with a few other tasks not included in the paper. We mention these tasks
below for the benefit of interested readers.

• We have tested a wider set of Chinese poems (less frequently used) and Shakespeare’s 154 son-
nets (which consist of 14 lines of poems each). However, we found that ChatGPT is not very
capable at performing even forward search on such tasks. Therefore, it seemed less compelling
to test ChatGPT’s performance on the corresponding inverse search tasks.

• We have also tested ChatGPT on the Bible, asking it to identify the verse preceding each verse in
the same chapter. We found that ChatGPT is capable of performing this task, often with a Chain
of Thought (CoT).
Specifically, remember that the verses in the Bible are properly numbered (for instance, “Gen
15:18” refers to Genesis, chapter 15, verse 18), and the numbers may appear sometimes before
and sometimes after the verse. This allows ChatGPT to determine the chapter/verse numbering
for a given verse (forward knowledge), perform a “subtract by 1” operation (chain of thought),
and then identify the verse using this new number (forward knowledge).
In other words, we believe the task of asking for the verse preceding each verse in the Bible is
actually accomplished by ChatGPT through forward knowledge search + CoT. It is not truly an
inverse knowledge search task.

E.2 KNOWLEDGE CLASSIFICATION AND COMPARISON

For knowledge classification and comparison, we once again utilize the pool of 4779 individuals
selected from the WikiBio dataset (refer to Section E.1). We then perform the following tasks on
GPT4:

• “Answer me yes or no concisely: for [name] who was a [occupation] and was born in [city] in
[year], was this person born in an even month?”
We pose this question for every individual in the pool of 4779 people. The baseline accuracy for
random guessing in this task is 50%.

• “Answer me yes or no concisely: was [name1] who was a [occupation1] and was born in [city1]
born earlier than [name2] who was a [occupation2] and was born in [city2]?”
We pose this question for 1000 randomly selected pairs of individuals from the pool of 4779
individuals who were either (1) born between 1900-1910, (2) born between 1900-1950, or (3)
born in any year. The baseline accuracies for random guessing in these three tasks are: 54.5%,
51.0%, and 50% respectively.

14If only the first or last name is correct, we assign a score of 0.5. If only the birth year is correct, or if both
the birth month and day are correct but the year is wrong, we also assign a score of 0.5.
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GPT4 birth month/day/year even-odd tests

GPT4 birth date comparison

Figure 10: Extension to Figure 2. This figure provides additional examples illustrating GPT4’s difficulty in
answering simple manipulation questions based on a person’s attributes during inference, despite
possessing the necessary knowledge. However, when a Chain of Thoughts (CoT) approach is em-
ployed, in which the person’s attributes are explicitly stated, GPT4 is able to correctly answer the
manipulation tasks.

Note that in all cases, we prefixed the questions with “answer me yes or no concisely” to compel
the model to directly answer with Yes or No without generating a hint first. We present the results
in Figure 5.

In addition to the above experiment on WikiBio, we also present some real-life QA examples to
illustrate the necessity of the Chain of Thought (CoT). We ask GPT4 to tell us whether the birth
months/days/years of certain politicians are even, as well as to compare the birth dates of some
politicians. From the response in Figure 10, it is evident that GPT4 can easily make mistakes when
not using hints (i.e., when answering yes/no without stating the politician’s birthdate first), but is
capable of correcting such errors once CoT is employed.
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