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KNOWLEDGE STORAGE AND EXTRACTION IN LAN-
GUAGE MODELS (PART A)∗

ABSTRACT

Large language models can store extensive world knowledge, often extractable
through question-answering (e.g., “What is Abraham Lincoln’s birthday?”). How-
ever, it’s unclear whether the model answers questions based on exposure to ex-
act/similar questions during training, or if it genuinely extracts knowledge from
the source (e.g., Wikipedia biographies). In this paper, we conduct an in-depth
study of this problem using a controlled set of semi-synthetic biography data. We
uncover a relationship between the model’s knowledge extraction ability and dif-
ferent diversity measures of the training data. We conduct (nearly) linear probing,
revealing a strong correlation between this relationship and whether the model
(nearly) linearly encodes the knowledge attributes at the hidden embedding of the
entity names, or across the embeddings of other tokens in the training text.

1 INTRODUCTION

Knowledge is crucial for human cognition and communication, allowing us to comprehend and
utilize information. For humans, this often involves memorization, the process of storing and re-
trieving information in the brain. For example, after reading a biography of Abraham Lincoln, we
can memorize the information and later answer questions like “Where was Lincoln born?” or “What
is Lincoln’s birthday?” Memorization enables us to extract and manipulate knowledge from the
sentences we read or hear, recognize the entities, relations, and facts expressed in the text, and apply
logical and causal reasoning to infer new information or answer queries.

In this paper, we explore how transformer based language models memorize knowledge during
training and extract it during inference. This is distinct from in-context learning or RAG (Lewis
et al., 2020), where the model is given a paragraph during inference and immediately answers ques-
tions about it. We focus on factual knowledge (e.g., knowledge graph) that a language model needs
to memorize from the training corpus, encode in its weights, and extract later during inference.

We stress that memorizing all sentences in the training data does not ensure that the model can ex-
tract or manipulate the factual knowledge from the sentences during inference. Language models
can reproduce the exact input during inference, but this doesn’t necessarily mean they can use these
sentences to answer factual questions related to them. Hence, we differentiate between “memoriza-
tion of knowledge” in language models and traditional memorization in machine learning, which
merely means the model can fit the exact training data, but doesn’t imply the model can extract the
knowledge flexibly from the data after training.

For example, if the training data includes Lincoln’s biography, the model can memorize and re-
produce the sentence “Abraham Lincoln was born in Hodgenville, K.Y.” when given the prompt
“Abraham Lincoln was born in”, but it might not be able to answer the question “Which city was
Abraham Lincoln born in?” Therefore, a key question is:

How do language models memorize knowledge during training, and extract it later to answer
questions or perform logical reasoning during inference?

Previous works have demonstrated that language models can “memorize” a lot of knowledge by
probing the model to answer questions related to different entities and attributes, see Omar et al.

∗Since “knowledge” is a broad subject, we have to write separate papers to cover its different aspects. This
Part A addresses how knowledge is stored, the conditions under which knowledge can be extracted through
instruct fine-tuning, and introduces probing techniques. A natural subsequent question concerns how such
knowledge can be further manipulated for downstream tasks. This is explored in our Part B (Anonymous,
2023). We’ve anonymously submitted both to ICLR 2024 as standalone papers, ensuring no result overlap and
making each self-contained. Our Part B is also in the supplementary material for interested readers.
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(2023); Singhal et al. (2022); Sun et al. (2023) and the citations therein. However, these studies
use models trained on internet data, leaving it unclear whether the model answers questions like
“Which city was Abraham Lincoln born in?” by extracting knowledge from Abraham Lincoln’s
biography (our focus) or if it encountered a similar, or even the same question during training and
simply memorized the answer (traditional memorization).

Given the challenges of conducting controlled experiments with internet data, we propose studying
this question using well-controlled, synthetically generated data,1 examining the models’ mathe-
matical properties that characterize their knowledge representation and extraction. We construct a
synthetic dataset of 100k biographies, including their birthday, birth city, major of study, etc. We
also use LLaMA (Touvron et al., 2023) to rewrite them to make them close to real-life biography
styles. We pretrain the language model on the biography dataset of all the 100k people. We ask:

After training a language model on the biography dataset, can the model be finetuned to extract the
knowledge to answer questions like “Where is the birth city of [name]” or “What did [name]

study?”, and if so, how does the model achieve so?

We evaluate our model’s knowledge extraction ability by finetuning it on question and answers
(QAs) for a p fraction of individuals and testing its ability to answer QAs about the remaining 1− p
fraction. This training and testing process ensures that the model sees enough data to understand
the QAs, and also isolates the effect of knowledge extraction from other factors like seeing the exact
same question during training. The paper is structured as follows:

1. In Section 3, we demonstrate that training a model on all biographies and QAs for a p fraction
of individuals together in pretraining time enables it to (apply knowledge to) answer questions
about the remaining 1−p fraction. We call this process mixed training. We also observe in mixed
training, the model learns in an unconventional way: it first uses QAs to encode knowledge about
the p fraction, then correlates this encoded knowledge with the biography to infer generalization
to the remaining 1− p fraction. This learning process deviates from typical human learning and
is less frequently used in large language model training.

2. In Section 4, we examine a model pre-trained on biographies and fine-tuned on QAs for a p frac-
tion of individuals. It struggles to answer questions for the remaining 1−p fraction, regardless of
model size, pre-train time, and finetune parameters. However, accuracy significantly improves
with knowledge augmentations like varying writing styles or sentence permutations. Even if this
augmentation is applied to a subset of individuals, what we call celebrities, test accuracy for oth-
ers also increases significantly. The mere inclusion of celebrity data in pre-training enhances the
model’s knowledge extraction for minorities. One of our work’s key contribution is establishing
this strong link between knowledge augmentation in pre-training data and model’s improved
knowledge extraction after fine-tuning.

3. In Section 5, as another main contribution, we use (nearly) linear probing techniques to show
that knowledge augmentation compels the model to encode a person’s knowledge almost lin-
early in the model’s hidden embedding of the person’s name tokens. Without augmentation, the
model encodes the person’s knowledge across all biography words/tokens, making knowledge
extraction during finetuning nearly impossible. We summarize this as:

no knowledge augmentation in data ⇐⇒ attribute is not entirely stored on person’s names
⇐⇒ knowledge cannot be extracted via instruct finetune

4. In Appendix B, we show that BERT-like models, pre-trained on biography data and finetuned
on QAs, cannot extract a person’s knowledge after finetuning, regardless of the bio-data knowl-
edge augmentation used during training, unless the knowledge is a single word or multiple but
independent words (like birth month, day, and year).

Related work. LINEAR PROBING OF KNOWLEDGE. Linear probing is a recognized method to
examine how a model encodes knowledge (Aspillaga et al., 2021; Conneau et al., 2018; Dai et al.,
2021; Geva et al., 2020; Li et al., 2021; Meng et al., 2022; Sun et al., 2023). Contrary to previous
studies that suggest models trained on internet data can linearly encode knowledge in the hidden

1One could suggest filtering the data to eliminate such questions and retraining the model. However, this
doesn’t rule out the presence of similar sentences “Which city did Abraham Lincoln grow up in?”, more com-
plex ones in French, or grammatically incorrect versions like “Where Abraham Lincoln birth in?” in the data.
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embeddings of entity names, we find that such encoding is only possible with knowledge augmen-
tations like permutation/rewriting of entity-attribute knowledge during pretraining. Without these
augmentations, the language model can still memorize the training data, but it is not linearly en-
coded in the entity’s hidden embeddings, making knowledge extraction via QAs quite hard, if not
impossible, even with instruct fine-tuning. This implies that diverse internet data on the same entity
is vital for pre-training the language model for knowledge extraction during inference. The use-
fulness of augmentations of pretraining data for language models was also empirically observed in
literature Berglund et al. (2023); Cai et al. (2020); Eldan & Li (2023); Kobayashi (2018), but they
did not explore where the knowledge is nearly-linearly encoded in a sentence and its correlation
with knowledge augmentation, a process we refer to as P-probing in Section A.1.

PROBING LANGUAGE MODELS’ KNOWLEDGE VIA QAS. Question answering (QA) is a common
method to probe the knowledge encoded in language models pretrained on internet data (Hernandez
et al., 2023; Naseem et al., 2021; Omar et al., 2023; Peng et al., 2022; Petroni et al., 2019; Richard-
son & Sabharwal, 2020; Singhal et al., 2022; Sun et al., 2023). However, it’s unclear whether
these models answer questions by extracting knowledge from the training source or by recognizing
exact/similar questions from training. We use semi-synthetic data in a controlled experiment for
out-of-distribution testing on individuals whose QAs were not part of training. This approach also
allows us to study the correlation between knowledge extraction and the diversity of pretrain data.

ENCODER VERSUS DECODER FOR QAS. While BERT-based models Kenton & Toutanova (2019)
are also used for knowledge extraction through QAs (Choi et al., 2022; Sushil et al., 2021), our work
indicates that they are less effective at extracting knowledge compared to GPT models.

2 PRELIMINARIES

In this paper, we analyze synthetic human biography datasets and near-real datasets generated by
LLaMa-30B (v1) (Touvron et al., 2023; Zhou et al., 2023). Detailed descriptions are in the appendix,
with a brief overview here.

BIO dataset bioS. The synthetic dataset, bioS, generates profiles for N = 100, 000 individuals.
Each individual’s details are randomly and independently selected from a uniform distribution. The
birth dates offer 200× 12× 28 possibilities, while other categories offer 100 ∼ 1, 000 choices. We
also add a “company city” attribute which depends on the employer’s headquarters location. We
ensure uniqueness in each individual’s full name.

We generate a six-sentence biographical text entry for each individual, highlighting six distinct as-
pects. For diversity, each sentence is randomly chosen from approximately 50 distinct templates.
In the basic configuration, we generate a single biographical entry for each person, maintaining a
consistent order for the six sentences. We use “bioS single” to denote this basic configuration. See
an example entry below:
Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty
members at Massachusetts Institute of Technology. She completed her education with a focus on Communications. She had a professional
role at Meta Platforms. She was employed in Menlo Park, CA.

(2.1)
We also explore 3 types of knowledge augmentations: (1) multiM , generating M biography entries
for an individual using varied templates, (2) fullname, substituting he/she/they with the person’s full
name; and (3) permute, shuffling the six sentences randomly. Examples are given in Section 4.2.

BIO dataset bioR. We examine a “close-to-real” dataset produced by LLaMA-30B (Touvron
et al., 2023; Zhou et al., 2023). For the set of N = 100, 000 individuals, we provide an instructive
prompt to LLaMA to generate a biographical entry. Here’s an example:

Anya Briar Forger is a renowned social media strategist and community manager. She is currently working as a Marketing Manager at
Meta Platforms. She completed her graduation from MIT with a degree in Communications. She was born on 2nd October 1996 in
Princeton, NJ and was brought up in the same city. She later moved to Menlo Park in California to be a part of Facebook’s team. She is
an avid reader and loves traveling.

We diversified our instructive prompts by drawing from a pool of templates and employed rejection
sampling to guarantee the inclusion of all six attributes. In the basic configuration, we produce a
single biographical entry for each person (denoted as “bioR single”). For comparison, we also con-
sider multiM augmentation which generates M entries per person and the fullname augmentation.
Additional examples can be found in Appendix C.
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(b) training on bioS dataset
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(c) training on bioR dataset

Figure 1: Accuracies and loss curves for mix training. b date,b city,c name,c city stand for birth date, birth
city, company name, company city, and mean acc stands for the mean accuracy of the six attributes.
Baseline is majority-guessing (c city has large accuracy because many companies are based in NYC).

QA dataset. This paper explores the effectiveness of a trained language model in retaining knowl-
edge from BIO data. As discussed in the introduction, memorization is more than just predicting
the next token when given exact sentences from BIO. It includes the model’s ability to truly extract
knowledge from the BIO. We assess this knowledge extraction using a question and answer (QA)
framework. For each individual, we pose six questions targeting their six unique attributes:

1. What is the birth date of Anya Briar Forger?
Answer: October 2, 1996.

2. What is the birth city of Anya Briar Forger?
Answer: Princeton, NJ.

3. Which university did Anya Briar Forger study?
Answer: Massachusetts Institute of Technology.

4. What major did Anya Briar Forger study?
Answer: Communications.

5. Which company did Anya Briar Forger work for?
Answer: Meta Platforms.

6. Where did Anya Briar Forger work?
Answer: Menlo Park, CA.

For each question, we use it as a prompt for the model to generate a response. QA accuracy is
measured by the proportion of answers that match the correct response.

Model architectures. The standard GPT2-small architecture comprises 12 layers with 12 heads
and 768 dimensions Radford et al. (2019). Due to GPT2’s limitations from its absolute positional
embedding, we use its modern rotary positional embedding variant Black et al. (2022); Su et al.
(2021), referred to as GPT2 for brevity. We retain the GPT2 small architecture (124M) for pre-
training on the bioS data, but use a larger 12-layer, 20-head, 1280-dim GPT (302M) for the bioR
data to accommodate its increased complexity. The default GPT2 tokenizer is used, which converts
simple words into single tokens, but names and most other attributes into tokens of varying lengths.2

Training. We investigate two types of autoregressive training, detailed in Appendix D.

PRETRAIN + INSTRUCT FINETUNE. Here, we pre-train the language model on the BIO data,
randomly sampling and concatenating them into 512-token sentences, separated by a standard
<|EOS|> token. The model is then fine-tuned using half of the QA data and evaluated on the
remaining half, mirroring the typical instruct finetune process.

MIX TRAINING. In mix training, we pre-train the model on all BIO data and half of the QA data.
BIO and QA entries are randomly sampled without requiring them to be from the same individual.
We use a parameter QAr to control the QA data amount, primarily setting QAr = 0.8 (a 2 : 8 BIO
to QA entry ratio). The model’s generation accuracy is evaluated using the remaining QA data.3

LoRA finetune. In full finetuning a pretrained model is tuned for a downstream task such as QAs.
LoRA finetuning (Hu et al., 2021) improves upon this by freezing all pretrained model parameters
and adding low-rank updates to a subset of the weight matrices for fine-tuning. We apply a low-rank
update to the query/value matrices of the transformer model and the embedding layer to account for
input data distribution shifts. Full finetuning is also included when presenting negative results.

3 MIX TRAINING

Mix training involves training the model using BIO data for all individuals and QAs for half of them.
The group of individuals whose QAs are included in the training set is referred to as in-distribution
or Ptrain. The model’s generative accuracy is then tested on the QAs from the remaining individuals
(Ptest) to assess its out-of-distribution generalization capability.

As shown in Figure 1(a), a mix-trained model exhibits strong out-of-distribution generalization,
answering most QAs with mean accuracies of 86.6% for bioS and 77.7% for bioR. This indicates

2Only in Figure 2 when presenting a negative result, we tried a 12-layer, 32-head, 2048-dim GPT (682M).
3See Appendix E for a comparison of how QAr affects performance.
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(b) 302M model, pre-trained 1000 passes on bioR
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(d) 682M model, pre-trained 1350 passes on bioR

Figure 2: BIO pretrain + QA finetune (train acc) / test acc. Bold number indicates QA generation accuracy on
Ptest, and the smaller number in bracket represents QA (first-token) accuracy on Ptrain. For LoRA
fine-tune we consider a rank r = 2, 4, 8, 16, 32 update on the query/value (q/v) matrices and a rank
r′ = 0, 16, 32, 64, 128 update on the word embedding matrix. More details are in Appendix F.

that the model can extract and utilize knowledge from the BIO data, addressing queries about an
individual’s attributes even when no QA about that person was used in training; only their BIO
entry was provided. However, our detailed analysis reveals that the model employs a somewhat
unconventional method to extract knowledge through mix training.

3.1 MODEL’S ABNORMAL LEARNING BEHAVIOR

We examine the model’s mixed training process for knowledge storage and extraction by monitoring
its accuracies on the BIO/QA data and for Ptrain/Ptest separately. Specifically,4

- BIO first-token accuracy: we track the model’s next-token-prediction accuracy on the first token
of each of the six attributes (birthdate, birthcity, etc.) in the BIO data, separately for Ptrain/Ptest.
This measures the model’s BIO data memorization performance. (Despite all individuals’ BIO
data appearing in training, we still separately track them for Ptrain/Ptest.)

- QA first-token accuracy: we track the model’s next-token-prediction accuracy on the first an-
swer token in the QA data, separately for Ptrain/Ptest. This loosely estimates the model’s QA
generation performance.

- QA generation accuracy: we track the model’s whole-attribute generation accuracy on Ptest.

From Figure 1(b) and 1(c), we find that the model employs an unconventional learning strategy.

• Initially, the model uses the QA data from the training set to encode knowledge for people in
Ptrain, as indicated by the rapid increase in QA in-dist accuracy. This also aids in memorizing
in-dist BIO data, as shown by the subsequent rise of the BIO in-dist accuracy.

• The model then gradually aligns the encoded knowledge with the BIO data to learn to extract
knowledge and generalize it to Ptest. Notably, it takes a while before the BIO out-dist accuracy
catches up, followed by an increase in the QA out-dist accuracy.

This is akin to the “study to pass the test” approach in schools, where students prepare using past
exam questions and textbooks for answers. While this may yield high scores, it doesn’t reflect the
natural progression of human knowledge acquisition. To address this, we explore a scenario in the
next section where the model is pretrained on the BIO data without exposure to the questions. 5

4 BIO PRETRAIN + QA INSTRUCT FINETUNE

We now examine a scenario where the model is pre-trained solely on the BIO data of all individuals.
It is then fine-tuned using QAs from half of these individuals, denoted as Ptrain, without further use

4Interested readers may consider “whole-attribute” accuracies instead of “first-token” accuracies. They are
similar, so we omit them here.

5In mixed training, we selected QAr = 0.8, maintaining a 8 : 2 QA to BIO ratio as outlined in Section 2.
We found a higher QA ratio improves QA test accuracy (Figure 10 in Appendix E), further supporting our
observation of the model’s abnormal behavior: it first learns knowledge from QA and then associates it with
BIO. For comparison, LLaMA was trained using only 2% of tokens from StackExchange (Touvron et al., 2023).
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Figure 3: Comparison of BIO pretraining + QA finetuning (left) versus their mixed training counterparts (right)
under various knowledge augmentations on the bioS data. Displayed values indicate QA generation
accuracies for six attributes in Ptest. Refer to Figure 12 for bioR data and Appendix F for more
details. Observation. Knowledge augmentation in pretraining data improves model generalization
to out-of-distribution QAs after finetuning. Accuracy increases with more augmentations introduced;
while mixed training is minimally impacted by knowledge augmentation.

of biographies. The model’s generalization is evaluated on questions related to the remaining half,
denoted as Ptest, whose BIO/QA data were not used during fine-tuning. This process mirrors human
knowledge acquisition, where learning from textbooks is applied to later answer exam questions.

4.1 MODEL MAY FAIL TO EXTRACT KNOWLEDGE AFTER PRETRAINING ON BIO DATA

We first pretrain on the basic bioS and bioR datasets, each containing a single biography per person.
The QA finetune generalization accuracies (on Ptest) are reported in Figure 2, using both full and
LoRA finetuning (Hu et al., 2021). The model’s QA finetune training accuracy on Ptrain is also
included for comparison.

Despite a 99+% first-token accuracy during pretraining (see Appendix E), the model exhibits near-
zero QA accuracy on Ptest for all finetuning parameters. This suggests that while the model can
memorize the BIO data token-by-token, it struggles to extract the underlying knowledge. Full-
finetuning achieves high in-distribution QA finetune accuracy (nearly perfect on Ptrain), indicating
it can memorize the QAs for individuals in the finetuning set. However, it is largely ineffective for
QAs concerning individuals in Ptest. In sum, we observe:

perfect BIO token memorization + perfect QA answers for half the people
̸=⇒ correct QA answers for the other half. (knowledge extraction does not come for free)

This holds true even when the model size is approximately 7000 times larger than N = 100k, the
number of individuals, each individual is observed 1350 times during pretraining, and numerous
finetune parameters have been explored. Despite memorizing all knowledge from the BIO data
during pretraining, the model encodes it in a disorganized manner within the transformer, preventing
knowledge extraction during finetuning.6

Figure 2 seems to contradict the success of large models like GPT3.5, trained on internet data such
as Common Crawl and known for effective knowledge extraction upon fine-tuning. Why is this?
Analyzing the test accuracy breakdown for the six attributes on the bioS data (Figure 3, the “bioS
single” row), we see that QA fine-tuning in fact achieves a 33% generalization accuracy on the
“birthdate” attribute but fares poorly on others. This is because our bioS single data consistently
places birthdate as the first attribute after a person’s name, unlike internet data which presents infor-
mation variably, often repeating it with diverse wordings and orderings.

4.2 KNOWLEDGE AUGMENTATION

We explore how knowledge augmentation enhances a model’s capacity to store and efficiently re-
trieve knowledge from training data. We focus on three augmentations: adding multiplicity, intro-
ducing permutations, and repeating full names, typically found in internet data. The original datasets
without augmentation are referred to as bioS single and bioR single.

6This is not a result of catastrophic forgetting, a common issue during heavy fine-tuning where the model
forgets the pretraining data. Even with LoRA fine-tuning, which introduces minimal low-rank updates to model
weights while preserving the pretrained model, test accuracy only slightly improves.
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• MULTIPLICITY. We denote the method of creating M distinct biography entries for each indi-
vidual, using varied language but retaining the same information, as multiM .7 An example of
adding multiplicity to the biography in (2.1) is:
Anya Briar Forger came into this world on October 2, 1996. She originated from Princeton, NJ. She pursued advanced coursework at
Massachusetts Institute of Technology. She dedicated her studies to Software Engineering. She developed her career at Meta Platforms.
She gained work experience in Menlo Park, CA.

• PERMUTATION. We denote adding random permutations to the biography sentences as per-
mute.8 For instance, the example above can be permuted as follows:
Anya Briar Forger originated from Princeton, NJ. She dedicated her studies to Communications. She gained work experience in Menlo
Park, CA. She developed her career at Meta Platforms. She came into this world on October 2, 1996. She pursued advanced coursework
at Massachusetts Institute of Technology.

• FULLNAME. We denote the augmentation where all pronouns or partial names in bioS/bioR are
replaced with the person’s full name as fullname.

Results. In Figure 3, we present our results for the bioS dataset. (Parallel results for the bioR
dataset are in Figure 12.) We implemented each knowledge augmentation individually and in com-
binations, then compared the model’s QA finetune accuracy on Ptest using LoRA. The model ar-
chitecture and training parameters remained consistent, but the pre-training datasets varied based on
the applied augmentations. Further details are in Appendix F.

We find that adding multiplicity, permutations, or repeating full names all improve the model’s
ability to memorize the person’s information during pretraining, making knowledge extraction easier
later.9 Notably, pretraining on a dataset where each individual has five diverse biography entries
(i.e., different wording, different sentence shuffling) boosts the QA fine-tune accuracy (on Ptest)
from 9.7% to 96.6%. Moreover, such accuracy increases as data multiplicity or permutation number
increases, highlighting the model’s improved ability to store and extract knowledge when presented
with repeated information during pretraining.

One might infer that exposing the model to varied expressions of identical knowledge encourages it
to focus on the underlying logical structure of the information, rather than its superficial presentation.
This could foster a more direct link between an individual’s name and their attributes. We will
introduce probing techniques to substantiate this hypothesis in Section 5.

4.3 CELEBRITY CAN HELP MINORITY

The previous subsection highlighted the significant benefits of knowledge augmentation. However,
in practice, we may not have augmented data for all individuals. This subsection explores whether
partially augmenting data can improve knowledge extraction for non-augmented data. In our biog-
raphy dataset, the augmented subset is akin to a “celebrity” group with plentiful online biographical
information, potentially included in the fine-tuning dataset as well. The non-augmented subset is
comparable to a “minority” group with limited biographical data.

For comparison, we introduce an additional set of N = 100, 000 individuals, the celebrity group
Pcel, while the original N individuals form the minority group Pmin. We test both synthetic bioS
and more realistic bioR data. For bioS, the celebrity group’s biographies use the multi5+permute
augmentation, simulating varied expressions found on internet. For bioR, the celebrity group uses
the multi5 augmentation, generating their biographies five times using LLaMA.

The language model is pretrained on the combined set Pcel ∪ Pmin biographies and then fine-tuned
using QAs from the celebrity group Pcel. We evaluate the model’s QA accuracy on the Pmin group.10

Our results are presented in Figure 4.
7For bioS data, each of the six sentences is selected from around 50 templates, with a new template resam-

pled for each sentence in the M entries. For bioR data, we recreate the biography using LLaMA for each of
the M entries.

8For bioS single, we denote random permutation of the same six sentences P times as permuteP . For
bioS multiM , we denote random permutation of each of the M biography entries as permute. The bioR data,
generated by LLaMA, already has some randomness in sentence ordering, so no extra permutations are added.

9An exception is when permutation is directly added to the single data without multiplicity (see “bioS
single + permute1”), this hurts the QA performance as it makes knowledge extraction harder.

10Other fine-tuning variations, such as QA fine-tuning with half of Pmin as training and half as testing, show
negligible differences.
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QA mean acc

QA b_date
QA b_cit

y
QA univ

QA major

QA c_n
ame

QA c_c
ity

baseline
bioS single + permute1
bioS single + permute1 + CEL
bioR single                   
bioR single                    + wiki
bioR single                    + CEL

2.7 0.0 0.5 0.3 1.0 0.4 13.7
4.4 0.5 3.3 2.4 5.0 3.5 13.7
86.8 98.3 96.8 90.7 90.2 71.7 80.1
10.0 25.1 13.9 2.4 5.5 2.0 14.1
7.3 18.4 5.2 2.6 4.3 1.8 14.1
76.3 94.3 85.3 82.9 79.4 67.0 56.6

Figure 4: QA finetune accuracy on the minority group with vs. without celebrity data in the pretraining process.
Experiment details are in Appendix I, where we also include additional experiments in Figure 16.

Results. In the synthetic bioS case, introducing celebrity data boosts the minority group’s QA
accuracy from 4.4% to 86.8%. This is significant because:

- the minority group’s BIO pretrain data remains unchanged in both cases, with Pmin using bioS
single+permute1 for biographies, and

- the minority group’s QA data is not used during fine-tuning.

This highlights that simply including celebrity data during pretraining significantly improves
the model’s ability to store and extract knowledge from the minority group. Similarly, in the more
realistic bioR case, introducing celebrity data also increases the minority group’s QA accuracy from
10.0% to 76.3%. We believe this strongly suggests that this phenomenon also occurs in real-world
scenarios. We will introduce probing techniques to validate the above findings in Section 5.
Remark 4.1. Using the bioR dataset, we find the positive impact of celebrity data is not universal.
Substituting it with the WikiBook dataset improves the model’s English comprehension, yet it still
struggles with biographical knowledge extraction. This suggests that only celebrity data of similar
form truly aids knowledge extraction for minority groups. In Figure 16 in Appendix I, we further
investigate different celebrity data types and instances of minor format differences between minority
and celebrity knowledge.

5 KNOWLEDGE PROBES ON THE BIO PRETRAINED MODEL

We investigate how a pretrained language model on BIO data encodes knowledge in its hidden
representations using two probing techniques: position-based probing (P-probing) and query-based
probing (Q-probing). Both techniques employ simple (nearly-linear) probes to extract a person’s
attributes from the model’s hidden representations. Detailed findings are in Appendix A.

In P-probing, we input biography entries into the pretrained model and train a linear classifier on
the last hidden layer to predict six target attributes. To accommodate varied data lengths, we identify
six special token positions preceding the first occurrences of the six attributes in each biography
entry. We use the transformer’s last hidden layer at these positions to (linearly) predict the six
target attributes (Figure 5).11 Our results (Figure 6) show that increased knowledge augmentation
in the pretrain data improves P-probing prediction accuracies from earlier token positions. In the
basic bioS single setup, P-probing accuracy remains low until the token immediately preceding the
target attribute. This suggests the model memorizes BIO data but encodes knowledge in a complex
manner, revealing a person’s attribute only after encountering all prior attributes. This prevents
knowledge extraction during QA finetuning, particularly when only the person’s name is given. In
Appendix A, we use a Venn diagram to precisely illustrate which attribute is stored after observing
another, further confirming this finding.

Anya Briar Forger is a renowned social media strategist and community manager. She is currently working as a Marketing
Manager at Meta Platforms. She completed her graduation from MIT with a degree in Communications. She was born on
2nd October 1996 in Princeton, NJ and was brought up in the same city. She later moved to Menlo Park in California to be a
part of Facebook’s  team. She is an avid reader and loves traveling.

predict major / b_date / b_city / c_citypredict c_name / univ / major / b_date / b_city / c_city

predict univ / major / b_date / b_city / c_city
predict b_city / c_city

predict c_city
predict b_date / b_city / c_city

Figure 5: Illustration of the P-probing. Underscore prepositions are the special token positions where we prob.
The task is to predict all attributes following these positions. Given the attribute ordering, there can
be up to 6× 6 = 36 tasks across all data.

11For each target attribute prediction task, we freeze the pretrained network but add a trainable rank-2 update
on the embedding layer to account for the task change.
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8.3 8.3 8.3 8.3 8.3 8.3 2.5 2.5 2.5 2.5 2.5 2.5 37.0 37.0 37.0 37.0 37.0 37.0 4.0 4.0 4.0 4.0 4.0 4.0 1.5 1.5 1.5 1.5 1.5 1.5 14.8 14.8 14.8 14.8 14.8 14.8
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58.8 64.3 69.6 74.4 82.9 100 37.4 41.6 47.9 56.1 69.7 99.9 54.9 59.1 64.0 70.1 79.0 98.9 42.0 47.2 52.7 60.1 71.8 100 43.2 54.2 65.3 76.8 88.3 99.8 49.5 61.8 74.6 85.1 95.6 100
81.5 85.0 86.7 88.2 92.1 100 57.7 63.2 65.9 71.1 78.2 100 69.7 72.4 75.5 78.0 83.6 99.7 65.3 69.6 72.8 76.6 82.2 100 91.9 93.9 94.8 96.0 97.4 100 96.3 97.4 98.2 98.8 99.6 100
88.8 90.4 91.5 92.3 94.6 100 63.5 67.3 69.9 73.6 80.4 100 76.8 80.0 81.8 83.8 88.1 99.9 70.4 72.9 75.1 78.2 83.9 100 98.0 98.0 98.3 98.7 99.0 100 99.9 100 100 100 100 100
100 70.7 100 47.8 74.8 99.9 18.9 30.1 60.1 99.6 3.0 3.8 8.4 34.6 99.3 15.0 14.6 13.9 21.8 66.9 100
100 100 100 99.6 100 100 99.7 99.9 100 100 99.6 99.9 99.9 99.9 100 66.2 71.4 72.7 74.5 76.5 99.9
100 100 100 100 100 100 99.9 100 100 100 100 100 99.9 100 100 100 100 100 99.5 99.7 99.8 99.9 100 100 93.3 95.3 96.8 98.0 98.8 99.9 90.2 92.8 95.0 96.8 98.6 100
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100 100 100 98.7 99.8 100 99.3 99.9 99.9 99.9 98.1 99.6 99.7 99.7 100 58.8 65.1 67.2 68.6 72.0 99.9
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99.9 99.9 99.9 100 100 100 99.8 99.8 99.9 100 100 100
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Figure 6: P-probing accuracies for various pretrained models on bioS data. Each row represents a pretrained
model using a different knowledge augmentation, and each column labeled “i-field” shows the ac-
curacy of predicting the first token of field from position i. Details are in Section 5 and Appendix G
(where we also include experiments for the bioR data and for predicting the full-attribute field.)
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Figure 7: Q-probing accuracies. Each row denotes a pretrained model with its specific knowledge augmen-
tation. The left block reiterates QA finetune accuracies from Figure 3. The middle showcases Q-
probing accuracies on the first-token prediction for the six attributes, and the right focuses on Q-
probing for the whole-attribute prediction. (Further details for bioR and more are in Appendix G.
Note: For birth date, first token predicts the whole birth month; we do not have whole-attribute pre-
diction for it since it has too many choices.)

In Q-probing, we focus on the knowledge directly linked to a person’s name. We evaluate input
sentences containing only the person’s full name and train a linear classifier on the last layer’s hidden
states to predict the person’s six attributes.12 Our results (Figure 7 in Appendix A.2) show that
the knowledge-extraction finetune accuracy is directly linked to whether the knowledge is (nearly-
)linearly stored on the person’s name in the pretrained model. This is a property independent of the
finetune parameters, and suggests that the model does not utilize contextual or global information
from the biographies to extract knowledge about the individual.

6 CONCLUSION

This study explores the ability of pre-trained language models to store and extract knowledge dur-
ing inference using question-answering tasks. We created a semi-synthetic biography dataset and
utilized probing techniques to examine the effect of knowledge augmentation on the storage and
extractability of knowledge in pre-trained transformers. Synthetic data offers increased control over
model training and fine-tuning inputs, which is crucial for understanding the influence of different
data sources on the internal mechanisms of transformers. This could potentially be a significant
future direction for unraveling the complexities of transformers. The paper also highlights the im-
portance of rewriting essential but infrequently occurring data during pre-training to ensure its
effective storage for subsequent tasks. This should be achieved using tools like ChatGPT before
pre-training, as rectification during the fine-tuning stage might be too late if the pre-training data
has not been fully augmented. While our primary focus was on autoregressive language models, our
techniques are also applicable to bidirectional models like BERT, as discussed in Appendix J.

12We freeze all transformer layers (acquired through pretraining), except the embedding layer, to which we
apply a rank-16 update. This adjustment is arguably the minimal change necessary since we are tackling a
notably different input distribution.
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APPENDIX
A KNOWLEDGE PROBES ON THE BIO PRETRAINED MODEL

We investigate how a language model, pretrained on BIO data, encodes knowledge in its hidden
states. We propose two probing methods: position-based (P-probing) and query-based (Q-probing).
Both methods employ simple, nearly-linear probes to extract personal attributes from the model’s
hidden states.

A.1 POSITION-BASED PROBING

In P-probing, we feed biography entries into a pretrained model and train an additional linear clas-
sifier on the model’s final hidden layer to predict six target attributes (e.g., university, major, etc.).
This probing provides insight into how these attributes are encoded during pretraining.

The model, already well-pretrained on biography data, is expected to encode the target attribute with
100% accuracy at positions immediately preceding the attribute. However, our goal is to determine
if the model retains this information at positions far before the corresponding attribute.

For instance, if the linear classifier shows high accuracy right after the person’s full name, it implies
that the model is directly learning “Anya’s employer is Meta Platforms”. If high accuracy is only
achieved at the biography’s end, the model might be using flawed logic, such as “the birthday is
October 2, 1996, the university is MIT, hence the employer is Meta.”

Our P-probing technique. To manage data of varying lengths, we identify six special token
positions immediately before the first occurrences of the six attributes in each biography entry. We
then train a linear classifier on the transformer’s final hidden layer at these positions to predict each
of the six target attributes.13 Refer to Figure 5 for an illustration. This results in 6× 6 classification
tasks. For each prediction task, we freeze the entire pretrained network but add a trainable rank-2
update on the embedding layer to accommodate the task change.14

A.1.1 P-PROBING MAIN RESULTS

Our results, shown in Figure 6 and further detailed for the bioR data in Appendix G, indicate that
P-probing prediction accuracies (on the BIO-pretrained model) are typically higher at earlier special
positions in models with high out-of-distribution QA accuracy (after QA finetuning). Specifically,

• In the bioS single setup, P-probing accuracy remains low until the token immediately preceding
the target attribute. The accuracy is around 2% when predicting the company name from earlier
token positions, but it increases to 99.5% when evaluating on the token position right before the
company name. This suggests that the model memorizes all the BIO data during pretraining,
but encodes knowledge in a complex manner, only revealing a person’s attribute after encoun-
tering all prior attributes for that individual. This prevents knowledge extraction during QA
finetuning, especially when only the person’s name is provided.

• In the heavily augmented setup like bioS multi5+permute, the P-probing accuracy for all six
attributes rises to nearly 100% from the first special position, which is before all of the attributes.
This indicates that the model not only memorizes the BIO data but also identifies the person’s
complete attributes solely upon seeing the person’s name, facilitating knowledge extraction
during the QA finetuning process.

• For intermediate setups, the results are mixed. For example, comparing bioS single with multi5,
we find that adding multiplicity (without permutation) results in earlier attribute storage, account-
ing for the increase in QA finetune accuracy from 9.7% to 41% as seen in Figure 3. Similarly,
comparing bioS single+permute1 with single+permute5, we observe that permuting the six
sentences five times (without diversifying the sentences) also leads to earlier knowledge storage,
explaining the rise in QA finetune accuracy from 4.4% to 70%.

13For GPT2-small with 768 hidden dimensions, this trainable linear classifier is of dimension 768 ×M for
each target attribute with M possibilities, regardless of the context length.

14For GPT2-small with 768 hidden dimensions and vocab size V , this rank-2 update has 2V + 2 × 768
trainable parameters. More details can be found in Appendix G.
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(a) accuracy to predict birth city (b) accuracy to predict major (c) accuracy to predict company
city

Figure 8: Closer P-probing on bioS couple data. The Venn diagram shows prediction accuracy for the target
attribute at specific token positions, based on whether each of the remaining five attributes has been
seen or not. Observation: Predicting “birth city” improves with “birth date”; “major” with “univer-
sity”; and “company city” with “company name.”

A.1.2 CLOSER P-PROBING AT KNOWLEDGE DEPENDENCY

As noted earlier, the model may infer attribute relationships based on their order in pretraining data.
For instance, if a birth date always precedes a company city, the model might infer “the person born
on October 2, 1996 works in Menlo Park” instead of “Anya’s work city is Menlo Park”. This can
occur if the pretraining data isn’t adequately augmented, and the model may even favor linking one
attribute to another, rather than to the person’s name, if two attributes are closely correlated (such as
company city and company name).

To investigate this, we created a variant of the bioS dataset, grouping the 6 sentences into 3 pairs
with a consistent order: birthdate before birth city, university before major, and work company
before work city. We allowed random permutations among these pairs and sentence diversities. We
refer to this dataset as bioS couple (see Appendix C for details).

We examined our P-probing on this dataset as 25 × 6 classification tasks, predicting each of the six
target attributes from a special token position where only a subset S of the remaining five attributes
has been observed (S has 25 possibilities).15 Our results, visualized in Figure 8, show that the
accuracy in predicting the second attribute in each pair is heavily influenced by whether the model
has encountered the first attribute, even with substantial data diversity.
Remark A.1. This observation relates to Figure 3, where the “company city” attribute consistently
shows the weakest QA finetune performance in the bioS dataset family. This is due to our data
construction approach, where “company city” is determined solely by “company name”. The model
thus associates “company city” with “company name” rather than the person’s name, especially if
the company name is presented earlier. This explains why, in Figure 3, the model shows virtually
“zero” prediction accuracy for an individual’s company city using only their name.16

A.1.3 P-PROBING EXTENSIONS

We could consider alternative P-probing forms, such as introducing a low-rank update to the pre-
trained model’s main body, like a trainable LoRA update with a small rank on the query/value
matrices. While not necessary for our positive results (e.g., the highly augmented data bioS
multi5+permute), it could be interesting to apply this to the negative results (e.g., the basic data
bioS single). However, our experiments showed no significant increase in P-probing accuracies, so
we omit the details.

Our P-probing has focused on the six distinct token positions, likely the preposition words preceding
the six attributes. How about probing other positions, like tokens following each attribute or the

15The P-probing process remains the same as before, using only 6 sets of trainable parameters each for a
target attribute, each with a single classification linear layer and a single rank-2 update on the embedding. The
difference is a more detailed interpretation of the results.

16This dynamic can be explored as a form of knowledge manipulation. For example, if the language model
is good at retaining work company names, can it determine work city locations as a simple classification task
using just company names? We explore this in our parallel paper Anonymous (2023).
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person’s name? We observed that P-probing accuracy might improve as the model processes more
“extraneous” tokens. For instance, the P-probing accuracy for a person’s birth date could increase
after encountering phrases like “was born on” or “has birthday in”. This could be due to the model’s
ability to associate the birthdate information with the sentence’s structure. We chose not to include
these observations for clarity.

In Appendix G, we demonstrate the difference between a rank-2 and a rank-4 update on the em-
bedding layer. The results confirm that a rank-2 update is sufficient for P-probing on our biography
data.

A.2 QUERY-BASED PROBING

P-probing offers a qualitative assessment of early knowledge storage in the model relative to the
original biography entry. However, it can be limiting due to its dependence on the exact context
structure from the biography entry. For instance, in Figure 5, knowledge may be stored in short
phrases like “received mentorship and guidance.”

In query-based probing (Q-probing), we aim for a more precise, context-free value from a pretrained
model, focusing on the knowledge directly associated with a person’s name. We evaluate sentences
containing only the person’s full name and train a linear classifier on the last layer’s hidden states to
predict the person’s six attributes. High accuracy suggests that the model directly links each person’s
attributes to their name.

We consider an input sentence containing only the person’s full name, preceded by a starting to-
ken and followed by an ending token. Like P-probing, we freeze all transformer layers (acquired
through pretraining), except the embedding layer, where we apply a low-rank update (using rank
16, compared to rank 2 in P-probing). This minimal change is necessary as we are addressing a
distinct classification task under a different input distribution. We extract the hidden states from the
last layer on the ending token and place a trainable linear classifier on top to predict the person’s six
attributes. More details are in Appendix H.

Our findings. Our results are in Figure 7. Our main findings are:

• The QA finetune accuracy correlates closely with Q-probing accuracy, indicating that the degree
to which the attribute is directly linked to the person’s name is a crucial factor for effective
knowledge extraction. If the model fails to store knowledge properly during pretraining, QA
finetuning may not rectify this.

• After applying knowledge augmentations to the pretraining data, Q-probing accuracy signifi-
cantly increases. This suggests that the model encodes knowledge almost linearly in the hidden
states directly adjacent to the person’s name. Thus, the linear probes can extract the person’s
attributes from these hidden states as effectively as the model can be adapted through QA fine-
tuning to answer questions related to those attributes.

In conclusion, Q-probing shows that language models create a direct mapping from a person’s name
to their attributes. At the last hidden-layer, the model neither uses complex or nonlinear transfor-
mations nor leverages interactions between hidden states at different token positions to store and
extract knowledge about the person. This implies that the model does not use contextual or global
information from the biographies to extract knowledge about the individual.

A.3 PROBING ON THE CELEBRITY AUGMENTATION

We also use P-probing and Q-probing to assess the impact of including celebrity data on knowledge
storage and extraction for minority groups. This addition enhances the model’s storage efficiency,
even for minority groups, implying that their attributes are more directly and closely associated with
their names. These results are detailed in Figure 17 and Figure 18 in Appendix I.

B KNOWLEDGE STORAGE FOR BIDIRECTIONAL MODELS

This paper primarily explores knowledge storage and extraction in language modeling through an
autoregressive task. One may argue that some knowledge issues, such as the consistent knowledge
ordering in bioS single, are unique to this task due to its unidirectional nature. We thus pose the
question, Could BERT be a solution to this?
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We analyze the BERT model Kenton & Toutanova (2019), similar to GPT2 but with a full attention
matrix, allowing every token to attend to every other token. For a direct comparison, we modify
our GPT2 architecture to replace its triangular attention matrix with a full matrix, keeping the GPT2
tokenizer and rotary embedding. We call this modified model GBERT.

Our pretraining task is now whole-word masked-language modeling (MLM). Each English whole-
word has a 15% chance of being selected, which is then replaced with a <MASK> token (80%
chance), retained (10% chance), or replaced with a random token (10%). The goal is to predict the
original word for these selected tokens.

For GBERT, we modify the QA task to evaluate its knowledge extraction capabilities. For questions
like “What is the birth city of Anya Briar Forger?”, we append them with several <MASK> tokens
(equaling the answer’s length).17 A correct answer requires accurate recovery of all masked tokens.

We display results for both mixed training and BIO pretrain + QA finetune. Half of the QAs are used
for mixed training (or QA fine-tuning), while we test out-of-distribution generalization accuracies
on QAs for the remaining half of the people. Q-probing results for GBERT are also presented,
determining if the model, with minor embedding layer modifications, can linearly predict target
attributes from a person’s full name.

Our findings. Our findings are displayed in Figure 9. Key observations include:

• The QA-finetune and Q-probing accuracies show a strong correlation. This suggests that the
ability to extract knowledge from a BERT-like model depends on whether such information is
nearly linearly stored in hidden states directly adjacent to the person’s name. This reinforces the
idea that our Q-probing technique might be effective for both decoder models like GPT2 and
encoder models like BERT.

• Consistent with Figure 3, mixed training yields slightly superior out-of-distribution QA accura-
cies compared to BIO pretrain + QA finetune.

• Interestingly, the model performs well on “birth date” and “major” attributes but struggles on
others. The reason is simple. In MLM, where each word has an equal chance of being masked,
the model learns to associate knowledge words with the most related unmasked word, preferably
those that are adjacent. For instance, words representing the “birth date” attribute (month, day,
year) are quite independent, making the model more inclined to link them to the person’s name.
For attributes like birth city, where there’s a strong link between the city “Bellevue” and state
“WA”, the model maximizes this association, inhibiting storage of knowledge on person names.18

In conclusion, while bidirectional models like BERT might seem less sensitive to the ordering of
knowledge during MLM pretraining, the MLM task doesn’t necessarily promote proper knowl-
edge storage for subsequent extraction. Unless the knowledge is a standalone word or consists
of independent words (like month, day, year), extracting knowledge after MLM pretraining might
prove challenging, if not impossible.

C DETAILS ON DATA PREPARATION

C.1 BIO DATASET BIOS

In the synthetic dataset labeled as bioS, we generate profiles for N = 100, 000 individuals. Each
individual’s first, middle, and last names, birth date, birth city, university attended, major of study,
and current employer are selected independently and randomly from a uniform distribution.

• First, middle, and last names are drawn from pools of 400, 400, and 1000 English names respec-
tively. We apply rejection sampling to ensure all N individuals have unique full names.

• Birth years range from 1900 to 2099, months are selected from the 12 months, and days are
chosen between 1 and 28.

• Birth cities are selected from 200 US cities, with their respective state abbreviations, such as
Princeton, NJ and Cambridge, MA.

17Revealing the answer’s token count might seem unfair. However, given our aim to highlight GBERT’s
limitations, this extra information doesn’t hinder our intentions.

18Similarly, many majors are single words so this explains its high QA test accuracy. In contrast, the words
representing universities or company names/cities are more dependent.
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Figure 9: Additional results on the GBERT model pretrained via masked language modeling (MLM). Mix
training (left) versus BIO pretrain + QA finetune (middle left) versus Q-probing (middle right and
right).

Observation. MLM doesn’t necessarily promote proper knowledge storage for subsequent extrac-
tion; unless the knowledge is a single word or consists of independent words (like month, day, year),
extracting knowledge after MLM pretraining might still be nearly impossible. (Further details are in
Appendix J, and note we have pretrained trained the model twice longer comparing to GPT.)

• Universities are drawn from a list of 300 US institutions. Some may have similar prefixes, like
University of California, Berkeley/Irvine/Davis/etc.

• Majors are selected from 100 common college disciplines, including Computer Science, Physics,
and Music.

• Employers are chosen from a list of 263 companies, featuring names like Meta Platforms, Mi-
crosoft, and Google.

Additionally,

• We introduce a “company city” attribute that depends on the US location of the employer’s
headquarters. For instance, an employee of Meta would list Menlo Park, CA as their company
city. Notably, 13.7% of the companies are headquartered in New York, NY. Thus, defaulting to
New York, NY when predicting a person’s work city yields a base accuracy of 13.7%.

In the bioS dataset, we craft a biographical text entry for each individual, distilling their profile into
six sentences. Each sentence illuminates a distinct attribute of the individual. To increase diversity,
we select each sentence randomly from a set of pre-defined templates. Specifically, we have 46
sentence templates for birth dates, 49 for birth cities, 49 for universities, 52 for majors of study, 47
for employers, and 48 for company cities. Beyond (2.1), we provide several more examples below:

Carlos Jameson Stokes has his annual celebration on November 12, 2088. He celebrates his birth in San Francisco, CA. He gradu-
ated from Oklahoma State University. He explored the theoretical aspects of Information Systems. He contributed his expertise to
United Airlines Holdings. He acquired industry knowledge while working in Chicago, IL.

Alondra Bennett Rooney celebrates their life journey every year on April 1, 1909. They owe their roots to Durham, NC. They benefited from
the resources and facilities provided by University of South Alabama. They developed a strong foundation in Data Science. They had a job at
The Southern Company. They were involved in the industry of Atlanta, GA.

Aidan Alexa Dennis’s birth is celebrated annually on July 17, 1968. She calls Palmdale, CA her birthplace. She specialized in her field of
study at Stevens Institute of Technology. She completed a rigorous program in International Business. She had employment prospects at
Johnson & Johnson. She gained work experience in New Brunswick, NJ.

(We assign a random pronoun (he/she/they) to each person.)19

In the basic configuration, we produce a single biographical entry for each individual, maintaining
a consistent order for the six sentences as previously outlined. In average, a biographical entry
has 73.0 tokens using GPT2 tokenization. We denote this configuration as “bioS single.” For
comparison, we delve into 15 knowledge augmentations:

• bioS single+fullname: Pronouns are replaced with the person’s full name.
• bioS single+permute1/2/5: The six sentences in the biography entry are randomly permuted

1/2/5 times for each person. However, the full name only appears in the first sentence, with
subsequent sentences using pronouns. This results in 1/2/5 biography entries for each person.

• bioS single+permute1/2/5+fullname: As with the previous augmentation, but the full name is
used in all six sentences.

19Given that we are not employing a pretrained model sourced from the internet, we did not do fact-checking.
For instance, a person’s major may not align with the business of the company they work for, and their birth
year might largely precede the company’s establishment date.
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• bioS multi2/5: 2 or 5 biographical entries are generated for each person, with each generation
employing a re-sampled set of sentence templates.

• bioS multi2/5+permute: Building on bioS multi2/5, the six sentences within each biographical
entry are randomly permuted. However, the full name appears only once in the first sentence.

• bioS multi2/5+fullname: Building on bioS multi2/5, pronouns are replaced with the individ-
ual’s full name across all sentences.

• bioS multi2/5+permute+fullname: Incorporating features from both bioS multi2/5+permute
and bioS multi2/5+fullname, the pronouns are replaced with the individual’s full name and the
six sentences are randomly permuted.

C.1.1 BIOS COUPLE

In Section A.1.2, when delving deeper into P-probing, we also introduced a partial knowledge aug-
mentation on the bioS dataset, which we termed bioS couple.

Specifically, we initially generate six sentences, each derived from a set of sentence templates similar
to those in bioS single. We then group these six sentences into three pairs. The sentence describing a
person’s birthdate always precedes the one discussing the person’s birth city. Similarly, the sentence
detailing the person’s university consistently comes before the one about their major, and the one
about their employer invariably precedes the sentence regarding their work city. Subsequently, we
permute the order of these three pairs of sentences, resulting in 3! = 6 potential arrangements. The
individual’s full name is restricted to appear only in the first sentence. For each individual, we create
such a biographical entry five times, designating this dataset as bioS couple.

C.2 BIO DATASET BIOR

We also examine a “close-to-real” dataset produced by LLaMA Touvron et al. (2023); Zhou et al.
(2023). Specifically, for the previously mentioned set of N = 100, 000 individuals, we provide
an instructive prompt to LLaMA, directing it to generate a biographical entry for us. To promote
diversity in our results, we draw our instructive prompts from a collection of sentence templates.
Three examples are presented below.

LLaMA prompt: Write a 50 words biography about a person whose name is Nicole Kevin Pratt. The person studied at Haverford College. The
person studied Management there. The person was born and raised in Baltimore, MD. The person worked in Cincinnati, OH for Procter &
Gamble. The person’s birthday falls on January 25, 1977.

LLaMA prompt: Write a 50 words biography about a person whose name is Hunter Bennett Kenny. The person attended Queens College, City
University of New York for education. The person pursued a degree in Political Science there. The person originated from Augusta, GA. The
person worked in Menomonee Falls, WI for Kohl’s. The person was born on March 25, 2033.

LLaMA prompt: Write a 50 words biography about a person whose name is Johnathan Charles Wade. The person attended Colorado State
University for education. The person pursued a degree in Sociology there. The person was brought up in New York City, NY. The person
worked in Northbrook, IL for Allstate. The person’s birthday falls on January 7, 2098.

Here are the generated outputs from LLaMA Touvron et al. (2023); Zhou et al. (2023):
Nicole Kevin Pratt is an American business executive. She is currently the Vice President of P&G Global Business Services at
Procter & Gamble. She was born on January 25, 1977, in Baltimore, Maryland. She graduated from Haverford College with a degree in
Management. P&G recruited her as an Assistant Brand Manager in 2000. She held various leadership positions in brand management, market-
ing, and sales across different business units and categories. She was named Vice President of P&G Global Business Services in 2019. Nicole
currently lives in Cincinnati, Ohio with her husband and three children.

Hunter Bennett Kenny is a talented political science graduate from Queens College, City University of New York. He hails from
Augusta, Georgia and was born on March 25, 2033. During his time at college, he was an active member of the student council and served
as its president in his senior year. He interned at the office of New York Senator Chuck Schumer. After graduating cum laude, he worked for
Kohl’s in Menomonee Falls, Wisconsin. He currently resides in Brooklyn, New York.

Johnathan Charles Wade is a successful insurance agent who works for Allstate. He was born on January 7, 2098, in New York City, NY. He
graduated from Colorado State University, where he majored in Sociology. He currently resides in Northbrook, IL.

We observed that LLaMA might not always generate a biographical entry that includes all six at-
tributes. To address this, we repeat the sampling process until LLaMA’s output ensures the inclusion
of all attributes. Typically, the entry begins with the individual’s full name, and the oder in which
the six attributes appear can vary. In average, a biographical entry has 72.3 tokens using GPT2
tokenization.

17



Under review as a conference paper at ICLR 2024

In the basic configuration, we produce a single biographical entry for each person, denoted as “bioR
single.” For comparison, we also introduce the multiM augmentation, which creates M entries per
person, and the fullname augmentation.

D DETAILS ON MODEL ARCHITECTURE

The classic GPT2-small architecture Radford et al. (2019) comprises 12 layers, with 12 attention
heads per layer, and has 768 = 12 × 64 hidden dimensions (124M). Recent research Black et al.
(2022); He et al. (2020); Su et al. (2021) has shown that transformers can achieve a significant per-
formance improvement by utilizing attentions based on the relative positional differences of tokens.
Consequently, in this paper, we omit the positional embedding from the GPT2 architecture and in-
corporate a rotary embedding, following the standard GPT-NeoX implementation Black et al. (2022)
available on Huggingface (with the default frequency base of 10,000 and rotary dimension set to a
quarter of the embedding dimension). We continue to refer to this as GPT2 for simplicity.

In our bioS experiments, we employ the above architecture. For the bioR experiments, we opt for
a larger GPT model with 12 layers, 20 attention heads each 64-dimensional (302M), tailored to its
increased difficulty.

Only when presenting our negative result in Figure 2, we also tried a 12-layer, 32-head (each 64-
dimensional) GPT model (682M).

Additionally, we evaluate the BERT model Kenton & Toutanova (2019). BERT is similar to GPT2
but features a complete attention matrix, enabling every token to attend to all others. For a side-by-
side comparison, we modify our GPT2 architecture to swap its triangular attention matrix for a full
matrix, while keeping the GPT2 tokenizer and rotary embedding (removing positional embedding).
We label this revised model GBERT. A primary distinction is that GBERT adopts pre-layernorm
(inherited from the base GPT2 architecture), whereas BERT utilizes post-layernorm.

Throughout pretraining, mixed training, and QA finetuning, we maintain a context window length
of 512.

E DETAILS ON PRETRAIN AND MIX TRAINING

0.1 0.2 0.3 0.4 0.6 0.8 0.9
QAr - ratio of QA data in mix training

bioS multi5 + permute 
bioS multi2 + permute 
bioS single + permute2
bioS single + permute1
bioS single

96.6 96.3 95.9 96.2 95.8 95.2 93.9
94.3 95.1 95.5 95.3 95.3 91.3 91.9
87.1 91.4 91.5 90.1 93.2 91.6 84.6
11.7 25.5 55.1 69.3 85.1 82.4 83.8
24.5 53.6 70.5 77.5 87.1 85.7 81.8

(a) bioS

0.1 0.2 0.3 0.4 0.6 0.8 0.9
QAr - ratio of QA data in mix training

bioR multi5
bioR multi3
bioR single + permute5
bioR single + fullname
bioR single

94.3 94.0 93.9 94.7 94.5 93.7 93.2
93.8 93.9 94.0 93.4 93.4 93.0 91.5
58.3 68.2 74.3 81.5 82.9 86.6 84.5
63.8 70.2 75.2 78.3 80.3 81.9 80.1
14.7 22.4 28.3 35.1 71.4 78.7 78.4

(b) bioR

Figure 10: QA test accuracy for mix training across various choices of QAr .

Observation: Particularly with more challenging data (i.e., with less knowledge augmentation), a
greater QA ratio during training results in enhanced out-of-distribution QA (test) accuracy. This
lends further credence to our assertion about the model’s unusual behavior: it initially acquires
knowledge from QA rather than BIO and subsequently seeks to link BIO with QA.

During BIO pretraining, we randomly sample biographical entries of individuals and concatenate
them to form sequences of 512 tokens, using a standard <EOS> token to separate individual entries.

In mix training, we pre-train the model with BIO data from all individuals and QA data from half
of them. Specifically, each training sequence of 512 tokens is either sourced entirely from the BIO
entries (as previously mentioned) or entirely from the QA entries (again, from randomly sampled
individuals and concatenated). We define a parameter QAr to dictate the frequency of using QA
entries. Predominantly in this paper, we set QAr = 0.8, which implies a 2 : 8 ratio between BIO
and QA entries in terms of the number of pre-trained tokens. We subsequently assess the model’s
generation accuracy using QA data from the other half of the individuals. Refer to Figure 10 for an
analysis of how the parameter QAr impacts mix-training performance.
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For both BIO pretraining and mix training, we employed a conventional set of optimization param-
eters: the AdamW optimizer with a weight decay of 0.1, ε = 10−6, an initial learning rate of 0.001,
a 1000-step linear warmup, and cosine learning rate decay (from 0.001 decreasing to 0.0001). We
used a batch size of 96.

There were a total of 80,000 training steps for bioS (utilizing the GPT2 small architecture) and
150,000 training steps for bioR (which employs a larger 12-layer, 20-head GPT2). Only when using
the 12-layer, 32-head GPT2 to present our negative result in Figure 2, we used 200,000 training
steps.
Remark E.1. Our training time is long enough to ensure next-token prediction accuracy well above
99% for both BIO pretraining and mix training, when focusing on tokens describing six attributes
per individual. These numbers are not included in this paper’s figures.

F DETAILS ON QA FINETUNE

In our QA finetuning tasks, we first use a BIO pretrained model checkpoint and then apply either
full finetuning or LoRA finetuning.

For full finetuning, we employ the AdamW optimizer with ε = 10−6. We use weight decays of
0.01 and 0.001, and initial learning rates of 0.001, 0.0003, and 0.0001. There is no warmup, and
we implement cosine learning rate scheduling (reducing to 10% of the initial learning rate), a batch
size of 48, and a total of 50,000 training steps. Given that we are presenting a negative result for full
finetuning (as seen in Figure 2), we display the best QA test accuracy among all the lr/wd parameter
combinations.

For LoRA finetuning, we maintain the aforementioned AdamW configuration but set a consistent
weight decay of 0.01 and an initial learning rate of 0.0003 for all tasks.

The results in Figure 11 suggest that for the purpose of QA finetuning, LoRA is generally a better
option compared to full finetuning. While a large rank-r update on the query/value matrices isn’t
essential, it appears beneficial to have a significant rank-r′ update on the embedding layer to address
the distribution shift from the BIO data to the QA data.

For this reason, in all subsequent experiments in this paper (notably Figure 3 and 12), when con-
ducting QA finetuning, we use r′ = 128 and either r = 8 or r = 16, presenting the best accuracy
from the two runs.

G DETAILS ON P-PROBING

In our P-probing experiments, we freeze the BIO pretrained GPT model and append a limited set of
trainable parameters. Using the GPT2-small as an example, we introduce:

• a trainable rank-2 update for the embedding layer, having dimensions of 50256× 2 and 2× 768,

• for each prediction task that is an M -class classification problem, a trainable linear layer with
dimensions of 768×M ,

• preceding the linear layer, a layer normalization layer furnished with trainable affine parameters.

In the context of Q-probing, recall that we considered six classification sub-tasks (from 6 special lo-
cations) for every attribute prediction task. Specifically, for the birthdate attribute, we solely address
its first-token prediction task, which is equivalent to predicting the individual’s birth month.20 For
the remaining five attributes, both the first-token and whole-attribute prediction tasks are examined.
In sum, this results in 11 prediction tasks, each comprising 6 sub-tasks. For every one of these 11
tasks, we incorporate a distinct set of trainable parameters.

For optimization, the AdamW optimizer is employed with ε = 10−6, weight decay of 0.3, an initial
learning rate of 0.001, no warmup, and a linear learning rate decay (down to 0 in the end). We set
the batch size of 50 and trained for 30,000 steps. During this P-probing training phase, we have
turned on the dropout on the (frozen) pretrained GPT model to prevent overfitting.

20This is because a birthdate encompasses 200× 12× 28 potential choices, surpassing N/2, the number of
training individuals.
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(l) bioS multi5+permute+fullname

Figure 11: BIO pretrain + QA finetune (train acc) / test acc for various choices of fine-tuning settings. Bold
number indicates QA generation accuracy on Ptest, and the smaller number in bracket represents QA
(first-token) accuracy on Ptrain. For LoRA fine-tune we consider a rank r = 2, 4, 8, 16, 32 update
on the query/value (q/v) matrices and a rank r′ = 0, 16, 32, 64, 128 update on the word embedding
matrix. This is an extension of Figure 2.
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Figure 12: Comparison of BIO pretraining + QA finetuning (left) versus their mixed training counterparts
(right) under various knowledge augmentations. This is analogous to Figure 3 but for the bioR
data family.

We perform experiments on both bioS and bioR data families (refer to Figure 13 and Figure 14),
evaluating the P-probing accuracy of first-token and whole-attribute predictions. These figures also
compare rank-2 and rank-4 updates on the embedding layer, demonstrating that a large modification
to this layer is not crucial for P-probing attribute values.

H DETAILS ON Q-PROBING

Recall that in Q-probing, we freeze the pretrained GPT model and append a small set of trainable
parameters on top for probing purposes. Using GPT2 small as an example, we add:

• a trainable rank-r update on the embedding layer with dimensions of 50256× r and r × 768,

• a trainable linear layer with dimensions of 768 ×M for each prediction task that is an M -class
classification problem,

• a batch normalization layer before the linear layer, with trainable affine parameters.

We consider an input sentence that only contains a person’s full name, preceded by a starting token
and followed by an ending token. After applying all 12 layers of GPT, we extract the hidden states
from the last layer at the ending token. For instance, in the GPT2-small model, this is a 768-
dimensional vector. We then apply a linear classifier on top to predict the person’s attributes. Similar
to P-probing, we adopt a separate set of trainable parameters for each of the 11 classification tasks.

We employ the AdamW optimizer with ε = 10−6, a weight decay of 0.3, an initial learning rate of
0.001, no warmup, and a linear learning rate decay schedule (reducing to 0 by the end). The batch
size is set to 200, and we run a total of 30,000 training steps. During training, we allow the frozen
GPT model to use dropout.

Experiments are conducted on both the bioS and the bioR data families, as shown in Figure 15, for
first-token prediction and whole-attribute prediction. We compare rank-16 versus rank-64 updates
on the embedding layer for the bioS data (or rank-32 versus rank-128 updates for the bioR data).
This demonstrates that for Q-probing, a larger modification to the embedding layer is not necessary
to probe the desired attribute values.

I DETAILS ON CELEBRITY AUGEMENTATION

Recall that in the celebrity knowledge augmentation, we introduced an additional set of N =
100, 000 individuals and designated them as the celebrity group, Pcel. In contrast, the original
N individuals represent the minority group, Pmin. There is no overlap between these two sets of
individuals; specifically, they have distinct full names.

In the main body of this paper (specifically in Figure 4), we considered two choices:

• The minority uses bioS single+permute1, and the celebrity uses bioS multi5+permute.
We denote this combination as bioS single+permute1+CEL and compare it to bioS sin-
gle+permute1.

• The minority uses bioR single, and the celebrity uses bioR multi5. We denote this combination
as bioR single+CEL and compare it to bioR single.

(We also compare the latter to bioR single+wiki. By this, we mean that during BIO pretraining,
half of the training sentences come from the WikiBook dataset, while the other half come from
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(a) P-probing first-token prediction accuracy; LoRA embedding layer rank = 2
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(b) P-probing first-token prediction accuracy; LoRA embedding layer rank = 4
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(c) P-probing whole-attribute prediction accuracy; LoRA embedding layer rank = 2
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(d) P-probing whole-attribute prediction accuracy; LoRA embedding layer rank = 4

Figure 13: P-probing accuracies on the bioS data (extension of Figure 6). Each row represents a different
pretrained model using its associated knowledge augmentation on the bioS data. For every
i ∈ {0, 1, . . . , 5} and field ∈ {bmonth,bcity,. . .}, the column labeled “i-field” shows the
accuracy when predicting the first token / whole attribute of field from the special position i.

Observation. Comparison between LoRA rank 2 and 4 shows that a rank-2 update on the em-
bedding layer is sufficient for P-probing purposes. The P-probing results for the whole-attribute
scenario largely align, but when predicting longer attributes, like “university”, the classification
accuracy falls short of 100%. This outcome is consistent with expectations: extracting partial
knowledge from subsequent tokens in a lengthy attribute can be difficult, as further detailed in our
companion paper Anonymous (2023).
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(a) P-probing first-token prediction accuracy; LoRA embedding layer rank = 2
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(b) P-probing first-token prediction accuracy; LoRA embedding layer rank = 4
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(c) P-probing whole-attribute prediction accuracy; LoRA embedding layer rank = 2
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(d) P-probing whole-attribute prediction accuracy; LoRA embedding layer rank = 4

Figure 14: P-probing accuracies on the bioR data (extension of Figure 6). Each row represents a different
pretrained model using its associated knowledge augmentation on the bioR data. For every
i ∈ {0, 1, . . . , 5} and field ∈ {bmonth,bcity,. . .}, the column labeled “i-field” shows the
accuracy when predicting the first token / whole attribute of field from the special position i.

Observation. P-probing results on the bioR data family closely mirror those on bioS. Incorporat-
ing additional knowledge augmentations in the pretrain data enables the P-probing accuracies to
improve at earlier special positions.
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(a) Q-probing for the bioS data family; LoRA embedding layer rank = 16
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(b) Q-probing for the bioS data family; LoRA embedding layer rank = 64
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(c) Q-probing for the bioR data family; LoRA embedding layer rank = 32
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(d) Q-probing for the bioR data family; LoRA embedding layer rank = 128

Figure 15: Q-probing accuracies (extension of Figure 7). Each row denotes a pretrained model with its specific
knowledge augmentation. The left block reiterates QA finetune accuracies from Figure 3 and
Figure 12. The middle showcases Q-probing accuracies on the first-token prediction for the six
attributes, and the right focuses on Q-probing for the “whole-attribute” prediction.

Observation. Comparison between LoRA ranks show that a rank-16 (resp. rank-32) update on
the embedding layer is sufficient for Q-probing purposes on bioS (resp. bioR). Q-probing
results on the bioR data family closely mirror those on bioS. Incorporating additional knowledge
augmentations in the pretrain data enables the Q-probing accuracies to significantly improve.
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the bioR single data.)21

Note that in both cases, each individual in the minority group has only one biographical entry, while
each individual in the celebrity group has five biographical entries. Thus, during BIO pretraining,
the BIO data on Pcel appear with a 1/6 chance.

In this appendix, we explore a broader set of augmentation options.

• The minority uses bioS single and the celebrity uses bioS multi5+permute, denoted as bioS
single+CEL. We compare this to bioS single. In this scenario, the celebrity and minority groups
have biographical entries in different formats: the entries of the celebrity group are randomly
shuffled, while those of the minority group follow a fixed order (see (2.1)). The QA test accuracy
on the minority group increases with the addition of the celebrity group, but not to the same
extent as in the bioS single+permute1+CEL case.

• The minority uses bioS single+permute1+fullname and the celebrity uses bioS
multi5+permute, denoted as bioS single+permute1+fullname+CEL. We compare this to
bioS single+permute1+fullname. In this scenario, the celebrity and minority groups have
their biographical entries in different formats: the minority group uses the fullname aug-
mentation, repeating the individual’s full name in each sentence, while the celebrity group only
mentions the fullname once. The QA test accuracy on the minority group increases with the
assistance of the celebrity group, but not as much as in the bioS single+permute1+CEL case.

• The minority uses bioR single+fullname and the celebrity uses bioR multi5+fullname, denoted
as bioR single+fullname+CEL. We compare this to bioR single+fullname. In this case, the
celebrity and minority groups have their biographical entries in the same format, leading to
a significant increase in QA test accuracy to 82.2%.

(We also compare this to bioR single+fullname+wiki, where during BIO pretraining, half of
the training sentences come from the WikiBook dataset, and the other half from the bioR sin-
gle+fullname data. C.f. Remark 4.1)

The transformer model is pretrained on the combined set of biographies Pcel ∪ Pmin and then fine-
tuned using QAs from the celebrity group Pcel. We evaluate the model’s QA generation accuracy on
the Pmin group.22 Our findings are reported in Figure 16.
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Figure 16: QA finetune accuracy on the minority group with versus without celebrity data in the pretraining
process. This is an extension to Figure 4, and the details are given in Appendix I.

Observation. The augmentation effect from the celebrity data may be weakened if the minority
group uses differently formatted BIO data, such as using full names when the celebrity does not (see
bioS single+permute1+fullname+CEL), or maintaining a fixed sentence order when the celebrity
does not (see bioS single+CEL). We also conducted an experiment where both the celebrity and
minority used bioR data with full name augmentation. In all cases, incorporating celebrity data
significantly improved QA test accuracy for the minority group.

21Recall that BERT and RoBERTa were trained on a combination of BookCorpus (Zhu et al., 2015) and
English Wikipedia, which totals 16GB of uncompressed text (Kenton & Toutanova, 2019; Liu et al., 2019). We
use this same 16GB WikiBook dataset.

22We also considered other fine-tuning variations, such as QA finetuning with half of Pmin as training and
half as testing, but found negligible differences.
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P-probing and Q-probing. We incorporate P-probing and Q-probing results for our celebrity
case. The inclusion of celebrity data enhances the model’s structural knowledge storage, even for
minority groups. Figure 17 demonstrates that knowledge about minority groups is often stored in
earlier tokens. This confirms that for minority groups, individual full names can more directly
encode the six target attributes, due to the introduction of celebrity data. This accounts for the high
knowledge-extraction QA accuracies.
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(a) P-probing first-token prediction accuracy; LoRA embedding layer rank = 2
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(b) P-probing whole-attribute prediction accuracy; LoRA embedding layer rank = 2

Figure 17: P-probing accuracies on the minority group with or without celebrity data. Each row represents a
different pretrained model using its associated knowledge augmentation on the bioS data (with or
without celebrity data). For every i ∈ {0, 1, . . . , 5} and field ∈ {bmonth,bcity,. . .}, the column
labeled “i-field” shows the accuracy when predicting the first token / whole attribute of field from
the special position i, among individuals in the minority group.
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Figure 18: Q-probing accuracies on the minority group with or without celebrity data. Each row denotes a
pretrained model with its specific knowledge augmentation. The left block reiterates QA finetune
accuracies on the minority group (same as Figure 16). The middle showcases Q-probing accuracies
on the first-token prediction for the six attributes of individuals in the minority group, and the right
focuses on Q-probing for the “whole-attribute” prediction. Recall we have used a LoRA embedding
rank 16 for the bioS data and rank 32 for the bioR data (see Appendix H).

J DETAILS ON BERT EXPERIMENT

Recall that GBERT is a bi-directional variant of GPT2, using the same tokenizer, as detailed in
Appendix D. It is similar to BERT, but its architecture closely resembles GPT2 for direct compar-
ison. We use GBERT for the following tasks: (1) BIO pretrain, (2) BIO+QA mix training, (3) QA
finetune from BIO pretrain, and (4) Q-probing from BIO pretrain. Since we only apply GBERT
to the bioS data family to demonstrate a negative result, we utilize the same architecture size as
GPT2-small.

For BIO pretrain and BIO+QA mix training, we use the AdamW optimizer with weight decay 0.1,
ε = 10−6, an initial learning rate of 0.0003, a 1000-step linear warmup, and cosine learning rate
decay (from 0.0003 to 0.00003). We use a batch size of 96 for 150000 training steps on the bioS
dataset. This is twice the training time compared to the 80000 steps used for GPT2 small on the same
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dataset, as we are presenting a negative result on GBERT. For BIO+QA mix training, we tested both
QAr = 0.2 and QAr = 0.8 and report the best test accuracy.

For QA finetune, we tested four LoRA variants and report their best accuracy.23 We use the AdamW
optimizer with weight decay 0.01 and an initial learning rate of 0.0003 for all tasks, with linear
learning rate decay (down to 0). We use a batch size of 48 for 50000 training steps.

For Q-probing, we use the AdamW optimizer with ε = 10−6, weight decay 0.3, an initial learning
rate of 0.001, no warmup, linear learning rate decay (down to 0), a batch size of 200, and 30000
training steps. This is identical to the procedure outlined in Appendix H.

All of our results were presented in the same Figure 9.

23Specifically, we tested rank-8 or rank-32 update on the query/value matrices, and rank-128 update or full
fine-tuning on the embedding layer.
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