
Efficient List-Decodable Regression using Batches

Abhimanyu Das 1 Ayush Jain 2 Weihao Kong 1 Rajat Sen 1

Abstract
We demonstrate the use of batches in studying
list-decodable linear regression, in which only
α ∈ (0, 1] fraction of batches contain genuine
samples from a common distribution and the rest
can contain arbitrary or even adversarial samples.
When genuine batches have ≥ Ω̃(1/α) samples
each, our algorithm can efficiently find a small
list of potential regression parameters, with a
high probability that one of them is close to the
true parameter. This is the first polynomial time
algorithm for list-decodable linear regression, and
its sample complexity scales nearly linearly with
the dimension of the covariates. The polynomial
time algorithm is made possible by the batch
structure and may not be feasible without it, as
suggested by a recent Statistical Query lower
bound (Diakonikolas et al., 2021b).

1. Introduction
Linear regression is one of the most fundamental tasks in
supervised learning with applications in various sciences
and industries (McDonald, 2009; Dielman, 2001). In the
standard linear regression setup, one is given m samples
(xi, yi) such that yi = 〈w∗, xi〉 + ni where ni is the ob-
servation noise with bounded variance and the covariates
xi ∈ Rd are drawn i.i.d from some fixed distribution. For
this setup, the commonly used least-squares estimator that
minimizes the square loss

∑
i(yi − 〈w, xi〉)2, provides a

good estimate of the unknown regression vector w∗.

In many applications, some samples are inadvertently or
maliciously corrupted, for example, due to mislabeling or
measurement errors, or data poisoning attacks. For instance,
such corruptions are commonplace in biology (Rosenberg
et al., 2002; Paschou et al., 2010) and machine learning
security (Barreno et al., 2010; Biggio et al., 2012). Even

1Google Research 2UC San Diego. The majority of this work
was completed while Ayush Jain was an intern at Google Research.
Correspondence to: Ayush Jain <ayjain@ucsd.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

a small number of corrupt samples in the data can cause
the least-squares estimator to fail catastrophically. Classical
robust estimators have been proposed in (Huber, 2011;
Rousseeuw, 1991) but they suffer from exponential
runtime. Recent works (Lai et al., 2016; Diakonikolas et al.,
2019a; 2017) have derived efficient algorithms for robust
mean estimation with provable guarantees even when a
small fraction of the data can be corrupt or adversarial.
These works have inspired the efficient algorithms for
robust regression (Prasad et al., 2018; Diakonikolas et al.,
2019b;c; Pensia et al., 2020) under the same corruption
model. (Cherapanamjeri et al., 2020a; Jambulapati et al.,
2021) have obtained robust regression algorithms with
near-optimal run time and sample complexity.

In this paper, we are interested in the setting where a small
fraction α, potentially even less than half, of the data is
considered inlier, and the majority of the data may be
influenced by factors such as adversarial manipulation,
corruption, bias, or being drawn from a diverse distribution.
This setting also encompasses the problem of learning a
mixture of regressions (Jordan & Jacobs, 1994; Zhong
et al., 2016; Kong et al., 2020b; Pal et al., 2022) because
any solution of the former immediately yields a solution to
the latter by setting α to be the proportion of the data from
the smallest mixture component.

However, it is information-theoretically impossible to output
a single accurate estimate of regression parameter when
α < 1/2. Instead, it may be possible to generate a short
list of estimates such that at least one of them is accurate.
This relaxed notion of learning is known as list-decodable
learning and is useful since a learner can identify a single
accurate estimate from the list given a small number of
reliable samples.

For high dimensional mean estimation, Charikar et al.
(2017) derived the first polynomial time algorithm for list
decodable setting. List-decodable linear regression has
been studied in (Karmalkar et al., 2019; Raghavendra &
Yau, 2020) yielding algorithms with runtime and sample
complexity of O(dpoly(1/α)). In contrast to list-decodable
mean estimation, recent work (Diakonikolas et al., 2021b)
has shown that a sub-exponential runtime and sample
complexity might be impossible for linear regression.
These prior results may lead to a pessimistic conclusion for

1

Efficient List-Decodable Regression using Batches

obtaining practical algorithms for the fundamental learning
paradigm of linear regression when less than half of the
data may be inlier or genuine.

However, our work demonstrates that it can be overcome
in various real-world applications such as federated learn-
ing (Wang et al., 2021), learning from multiple sensors (Wax
& Ziskind, 1989), and crowd-sourcing (Steinhardt et al.,
2016). In these and many other applications individual data
sources often provide multiple samples. We refer to a collec-
tion of samples from a single source as a batch. If a fraction
α of the sources follow the underlying distribution we aim
to learn, then α fraction of the batches will contain inde-
pendent samples from that distribution, while the remaining
batches may contain arbitrary samples.

When each batch contains Ω̃(d) samples then one can get the
estimate of the regression vectors for each batch. However,
typically in modern applications the dimension of the data is
high and only a moderate number of samples are available
per batch (Grottke et al., 2015; Park & Tuzhilin, 2008; Kong
et al., 2020b). As we show in this paper, for any α ∈ (0, 1],
as long as the number of samples provided by each genuine
source is more than a small threshold of Ω̃(1/α), we can use
the grouping of samples in batches to develop a polynomial-
time algorithm.

The batch setting has a natural advantage in the context of
list-decodable learning. When there are multiple possible
inlier distributions for the data sources, the list will include
regression vectors for all distributions that underlie more
than α fraction of sources. To determine the best-fitting
solution for a specific source from the short list generated
by the list-decodable algorithm, a small hold-out portion of
the batch provided by that source can be used. This post
hoc identification of the best weight for a source/batch is
naturally not feasible in the single sample setting.

This motivates the problem of list-decodable linear regres-
sion using batches. Formally, there are m batches. Each
batch has a collection of ≥ n regression samples which
can either all come from a global regression model with
true weight w∗ (good batch) and noise variance σ2 or are
arbitrarily corrupted (adversarial batch). The task is to out-
put a small list of regression vectors at least one of which
is approximately correct given that only α fraction of the
batches are good. It is important to highlight that in this
scenario, any algorithm aiming to provide reasonable es-
timation guarantees must return a list of estimates. This
is because the formulation allows for data to stem from
Θ(1/α) different distributions, each of which generates at
least α fraction of the batches. The regression parameters
for each of these distributions can vary arbitrarily. With-
out any method to identify the genuine distribution among
these Θ(1/α) possibilities, any algorithm providing a single
estimate of the regression parameter would fail to offer a

meaningful estimation guarantee.

Our main result is the following theorem:

Theorem 1.1 (Informal). For any α ∈ (0, 1], there ex-
ists a polynomial time algorithm for list-decodable re-
gression, that uses m = Õn,α(d) batches each of size
n = Ω̃(1/α), and outputs O(1/α2) weights such that
with high probability at least one of them, w̃, satisfies
‖w̃ − w∗‖2 = Õ(σ/

√
nα).

We formally state the problem in Section 2, introduce nec-
essary notation in Section 3, and present our main result in
Section 4. In Section 5, we describe the main ideas behind
our algorithm and provide a comprehensive overview of
our technical contributions. We present our algorithm and
prove its performance guarantee in Section 6. We provide a
detailed discussion of related work in Appendix A.

2. Problem formulation
We have m sources. Of these m sources at least α-fraction
of the sources are genuine and provide ≥ n i.i.d. samples
from a common distribution. The remaining sources may
provide arbitrary data. Since, we can use only the first n
samples from each source and ignore the rest, hence, w.l.o.g.
we assume that each source provides exactly n samples.
We will refer to the collection of all samples from a single
source as a batch.

To formalize the setting, let B be a collection of m batches.
Each batch b ∈ B in this collection, has n samples
{(xbi , ybi)}ni=1, where xbi ∈ Rd and ybi ∈ R.

Among these batches B, there is a sub-collection G of good
batches such that for each b ∈ G and i ∈ [n] samples
(xbi , y

b
i) are generated independently from a common distri-

bution D and the size of this sub-collection is |G| ≥ α|B|.
The remaining batches B \G are adversarial batches and
have arbitrary samples that may be selected by an adversary
depending on good batches.

Next, we describe the assumption of distribution D. We
require the same set of general assumptions on the distribu-
tion, as in the recent work (Cherapanamjeri et al., 2020a),
which focuses on the case when n = 1 and 1− α is small,
that is when all but a small fraction of data is genuine.

Distribution Assumptions. For an unknown d-
dimensional vector w∗, the sample noises nbi , the
covariates xbi and the outputs ybi are random variables that
are related as ybi = xbi · w∗ + nbi . Let Σ = ED[xbi (x

b
i)

ᵀ].
For scaling purposes, we assume ‖Σ‖ = 1. We have the
following general assumptions.

1. xbi is L4-L2 hypercontractive, that is for some C ≥ 1
and all vectors u, ED[(xbi · u)4] ≤ C ED[(xbi · u)2]2.

2

Efficient List-Decodable Regression using Batches

2. For some constant C1 > 0, ‖xbi‖ ≤ C1

√
d a.s.

3. The condition number of Σ is at most C3, that is for
each unit vector u, we have uᵀΣu ≥ ‖Σ‖C3

= 1
C3

.

4. Sample noisenbi is independent of xbi , has zero mean
ED[nbi]=0, and bounded covariance ED[(nbi)

2]≤σ2.

5. The distribution of noise nbi is symmetric around 0.

We note that the assumptions 1,3, and 4 are standard in
heavy-tailed linear regression (Cherapanamjeri et al., 2020b;
Lecué & Mendelson, 2016). Assumptions 2 and 5, on the
other hand, are introduced solely for the ease of presentation
and we discuss in Appendix G that these two assumptions
can be eliminated without any impact on our results.

3. Notation
We use hb to denote a function over batches. For a function
hb, we use ED[hb] and CovD(hb) to denote the expected
value and covariance of hb for a random batch b of n inde-
pendent samples from D.1

Next, we define the expectation and covariance w.r.t.
the collection of batches B. When batches are cho-
sen uniformly from a sub-collection B′ ⊆ B, the ex-
pected value and co-variance of a function hb are de-
noted as EB′ [hb] =

∑
b∈B′

1
|B′|h

b and CovB′(hb) =∑
b∈B′

1
|B′| (h

b − EB′ [hb])(hb − EB′ [hb])ᵀ, respectively.

To allow for more general samplings, the definition is ex-
tended to use a weight vector. A weight vector, denoted by
β, is a collection of weights, βb, for each batch, b ∈ B, such
that βb is between 0 and 1. The total weight of the vector is
represented by βB =

∑
b∈B β

b. It can be helpful to think of
β as a soft cluster of batches, with its components denoting
the membership weight of batches in the cluster.

When defining expectation or covariance of a function
w.r.t. a weight vector β, the probability of sampling a
batch, b, is βb

βB
. The expectation of a function, hb, over

batches, when using a weight vector β, is represented by
Eβ [hb] :=

∑
b∈B

βb

βB
hb, and the covariance is represented

by Covβ(hb) :=
∑
b∈B

βb

βB
(hb − Eβ [hb])(hb − Eβ [hb])ᵀ.

For weight vector β, the weight of all batches of a subset
B′ is denoted as βB

′
:=
∑
b∈B′ β

b.

We use f(x) = Õ(g(x)) as a shorthand for f(x) =
O(g(x) logk x), where k is some integer, and f(x) =
Oy(g(x)) implies that if y is bounded then f(x) = O(g(x)).

1With slight abuse of notation, instead of h(b), we use hb to
denote function over batches. Note that hb may be a function of
some or all the samples in the batch b.

Throughout the paper, we use the notation ci, with i ≥ 1, to
represent universal constants.

4. Main Results
Recently there has been a significant interest in the prob-
lem of list decodable linear regression. The prior works
considered only the non-batch setting. The sample and
time complexity of algorithm in (Karmalkar et al., 2019;
Raghavendra & Yau, 2020) are dO(1/α4) and dO(1/α8), re-
spectively. (Raghavendra & Yau, 2020) achieves an error
O(σ/α3/2) with a list of size (1/α)O(log(1/α)), and (Kar-
malkar et al., 2019) obtains an error guaranteeO(σ/α) with
a list of size O(1/α).

(Diakonikolas et al., 2021b) improved the sample complex-
ity. For Gaussian noise and covariates distributed according
to standard Gaussian, they gave an information-theoretic
algorithm that uses O(d/α3) samples and estimates w to an
accuracy O(σ

√
log(1/α)/α) using a list of size O(1/α).

They also showed that no algorithm, even with infinite
samples, can achieve an error � σ/α

√
log(1/α) with a

Poly(1/α) size list.

As these works considered the non-batch setting, they do not
obtain a polynomial time algorithm for this problem, which
may in fact be impossible (Diakonikolas et al., 2021b).

Our main result shows that using batches one can achieve
a polynomial time algorithm for this setting, moreover, the
algorithm requires only Õn,α(d) genuine samples.

Theorem 4.1. For any 0 < α < 1, n ≥ Θ(C3
2C2 log2(2/α)

α)
and |G| = ΩC

(
dn2 log(d)

)
, Algorithm 1 runs in time

poly(|G|, α, d, n) and returns a list M of size at most 4/α2

such that with probability ≥ 1− 4/d2,

minw∈L ‖w − w∗‖ ≤ O
(
C3C log(2/α)√

nα
σ
)
.

Interestingly, for n = Ω̃(1/α), the estimation error of our
polynomial algorithm has a better dependence on α than the
best possible σ/α

√
log(1/α) (Diakonikolas et al., 2021b)

by any algorithm (even with infinite resources) in the non-
batch setting (i.e. n = 1).

We restate the above result as the following corollary, which
for a given ε, d and α characterizes the number of good
batches |G| and n required by Algorithm 1 to achieve an
estimation error O(εσ).

Corollary 4.2. For any 0 < α < 1, 0 ≤ ε ≤ 1,
nmin = ΘC3,C(log2(2/α)

αε2), n ≥ nmin, and |G| =
ΩC
(
dn2

min log(d)
)
, Algorithm 1 runs in time poly(α, d, ε)

and returns a list M of size at most 4/α2 such that with
probability ≥ 1− 4/d2,

minw∈L ‖w − w∗‖ ≤ O(εσ).

3

Efficient List-Decodable Regression using Batches

For ε = Θ(1) in the above corollary, we get n = Ω̃(1
α) and

|G| = Ω̃C
(
d log(d)/α2

)
.

Remark 4.1. As discussed earlier, for the case where a ma-
jority of data is genuine, i.e. α > 1/2, polynomial time
algorithms have been developed in prior works (Prasad et al.,
2018; Diakonikolas et al., 2019b; Cherapanamjeri et al.,
2020b) to estimate the regression parameter even in a non-
batch setting. Since the majority of data is genuine, these
algorithms can return a single estimate of the regression pa-
rameter instead of a list. In particular, the algorithm in (Cher-
apanamjeri et al., 2020b) requires O(d/(1− α)2) genuine
samples, and estimates the regression parameter w∗ to an
`2 distance of O(C3

√
(1− α)σ) for any 1− α = O(1

C3
2),

where C3 is the condition number of the covariance ma-
trix Σ of the covariates. A lower bound of Ω(

√
(1− α)σ)

is also known for the non-batch setting. We note that the
algorithm in (Cherapanamjeri et al., 2020b) for the case
α > 1/2, can easily be extended to the batch setting, where
by using batch gradients instead of sample gradients in their
algorithm, the regression parameter w∗ can be estimated to
a much smaller `2 distance of O(C3

√
(1− α)σ/

√
n).

5. Technical Overview
This section presents the main ideas behind our algorithm.

For a given batch b from B, the square loss of its ith sample
at pointw in the parameter space is represented by f bi (w) :=
(w · xbi − ybi)2/2.

If all batches in B had samples generated from D then the
minimizer of the average loss across all batches, represented
by EB [f bi (w)], would converge to the optimal solution w∗.
However, the presence of even a single outlier sample can
cause this method to fail. In our setting, a majority of
batches may contain potentially outlier samples.

The gradient of the loss function f bi (w) is ∇f bi (w) = (w ·
xbi − ybi) · xbi . For good batches, which has i.i.d. samples
from distribution D, the expected value of this gradient is
ED[∇f bi (w)] = Σ(w − w∗).

When |G| is sufficiently large, then

‖EG[∇f bi (w)]‖ =
∥∥∥ 1
|G|n

∑
b∈G

∑
i∈[n]∇f bi (w)

∥∥∥
≈‖ED[∇f bi (w)]‖ = ‖Σ (w − w∗)‖. (1)

Suppose w̃ is a stationary point of all samples, i.e.
EB [∇f bi (w̃)] = 0. If w̃ is far from w∗, then the above
equation implies that the mean of gradients good samples
will be large. Then norm of the co-variance of the sample
gradients at w̃ will be at least

‖CovB [∇f bi (w̃)]‖ ≥ |G||B|‖EG[∇f bi (w̃)]− EB [∇f bi (w̃)]‖2

= α‖EG[∇f bi (w̃)]‖2
(a)
≈ α‖Σ (w̃ − w∗)‖2. (2)

When the co-variance of good sample points is much smaller
than the overall co-variance of all samples it is possible to
iteratively divide or filter samples in two (possibly over-
lapping) clusters such that one of the clusters is “cleaner”
than the original (Steinhardt et al., 2016; Diakonikolas
et al., 2020b). Hence, if we had ‖CovB [∇f bi (w̃)]‖ �
‖CovG[∇f bi (w̃)]‖ then we could have obtained a “cleaner
version” of B, that had a higher fraction of good batches.

For batch b ∈ G the norm of co-variance of gra-
dients (of a single sample) is ‖CovD[∇f bi (w̃)]‖ =
Θ(σ2 + ‖Σ(w̃ − w∗)‖2) (using L4-L2 hypercontractivity).
Even if we had ‖CovG[∇f bi (w̃)]‖ ≈ ‖CovD[∇f bi (w̃)]‖, it
does not guarantee |CovB [∇f bi (w̃)]| � |CovG[∇f bi (w̃)]|,
as α‖Σ (w̃−w∗)‖2 � σ2 + ‖Σ(w̃−w∗)‖2 , regardless of
how large the difference between the stationary point w∗ for
the distribution D and the stationary point w̃ for all samples
is. We will now see that focusing on batch gradients rather
than single sample gradients can alleviate this problem.

5.1. How Batches Help

In the preceding approach, we didn’t leverage the batch
structure. In fact, the SQ lower bound in (Diakonikolas
et al., 2021b) suggests that it may be impossible to achieve
a polynomial-time algorithm for the non-batch setting.

To take the advantage of the batch structure instead of con-
sidering the loss function and its gradient for each sample
individually, we consider the loss of a batch and the gradient
of the batch loss. The loss function of a batch b is f b(w) =
1
n

∑n
i=1 f

b
i (w) i.e the average of the loss function in its

samples. From the linearity of differentiation, the gradient
of the batch loss function is∇f b(w) = 1

n

∑n
i=1∇f bi (w).

Then from the linearity of expectation, ‖EG[∇f bi (w)]‖ =
‖EG[∇f b(w)]‖ for any w. However, averaging over n
samples reduces the co-variance by a factor n, therefore,
CovD[∇f b(w)] = CovD[∇f bi (w)]/n.

For |G| large enough, we will have population covariance
‖CovG[∇f b(w̃)]‖ ≈ ‖CovD[∇f b(w̃)]‖. Further, as
‖CovD[∇f bi (w̃)]‖ = O

(
σ2 + ‖Σ(w̃ − w∗)‖2

)
, it follows

‖CovG[∇f b(w̃)] = O
(
σ2+‖Σ(w̃−w∗)‖2

n

)
.

If the batch size n = Ω(log2(1/α)/α) and w̃ is stationary
point of average loss of all samples in B, then for a large
value of ‖w̃−w∗‖ = Ω(σ log(1/α)/

√
nα), it can be shown

that α‖Σ (w̃ − w∗)‖2 ≥ log2(1
α)O(σ

2+‖Σ(w̃−w∗)‖2)
n).

Since the expectation of batch and sample gradients
are the same over any batch sub-collection, using a
similar argument as for Equation (2) one can show that
‖CovB [∇f b(w̃)]‖ ≈ α‖Σ (w̃ − w∗)‖2, Combining this
bound with the above bound gives

‖CovB [∇f b(w̃)]‖ ≥ log2(1/α)‖CovG[∇f b(w̃)]‖.

4

Efficient List-Decodable Regression using Batches

Therefore, either the distance between the stationary point of
this cluster and w∗ is ≤ O(σ log(1/α)√

nα
) or the covariance of

gradients for the set of all batches is much larger than that for
good batches. If it is the former, then we have a good approx-
imation of w∗ and if it is the latter, we can divideB into two
(possibly overlapping) clusters, where at least one of the new
clusters contains a majority of good batches and has a higher
proportion of good batches than the initial cluster. The same
argument can be extended from B to any sub-collection of
B that retains a major portion of good batches G.

To divide the clusters, we use the MULTIFILTER routine
from (Diakonikolas et al., 2020b). Instead of hard cluster-
ing, this routine does soft clustering. The soft clustering
produces a membership or weight vector β of length |B|
with each entry between [0, 1] that denotes the membership
weight of the corresponding batch in the cluster.

The above discussion leads to the following algorithm. We
begin with the initial cluster of all batches B. We keep
applying MULTIFILTER routine iteratively on the clusters
(or weight vectors) until, for all the clusters, the covariance
of gradients at the stationary points of the respective clusters
becomes small. MULTIFILTER routine ensures that at least
one of the clusters retains a major portion of good batches
and it doesn’t have more thanO(1/α2) clusters at any stage.

As discussed, for a cluster that retains a major portion of
good batches G, the covariance of batch gradients is small
only if stationary point w̃ of that cluster approximates w∗

with an accuracy of ‖w̃ − w∗‖ = O(σ log(1/α)√
nα

). Since
the final set of O(1/α2) clusters includes at least one such
cluster, the stationary point of at least one of the clusters
should approximate w∗ to the desired accuracy.

However, applying the MULTIFILTER routine for this pur-
pose presents additional challenges, which we address
through various technical contributions in the next section.

5.2. Clipping to Improve Sample Complexity

We would like to obtain a high probability concentration
bound of ‖CovG[∇f b(w)]‖ ≤ O(‖w−w

∗‖2+σ2

n) on the
empirical covariance of the batch gradients in the good
batches. No such bounds for general n are known in
previous literature. And even for n = 1, using known
concentration bounds would require a large number of
good batches or samples. For example, (Diakonikolas
et al., 2019b) needed d5 samples in total, and in fact, a
minimum requirement of d2 samples can be shown for such
a bound to hold. (Cherapanamjeri et al., 2020a) required
O(d) samples (for n fixed to 1) for a related bound, but for
each point w they need to ignore certain samples from the
calculation of empirical covariance. These samples can be
different depending on w. While such guarantees sufficed

for their application where a majority of data was genuine, it
is unclear if it can be extended to the list-decodable setting.

To address these challenges, we use clipped loss instead.
For clipping parameter κ > 0 and any batch b ∈ B, the
clipped loss of its ith sample at point w is given by

f bi (w, κ) :=

{
(w·xbi−y

b
i)

2

2 if |w · xbi − ybi | ≤ κ
κ|w · xbi − ybi | − κ2/2 otherwise.

We specify the choice of clipping parameter κ later. The
clipped loss defined above is known as Huber’s loss in
literature. The gradient of this clipped loss is

∇f bi (w, κ) :=
(xbi · w − ybi)
|xbi · w − ybi | ∨ κ

κxbi . (3)

We refer to the gradient of the clipped loss above as the
clipped gradient.

For a batch b, its clipped loss is simply the average of clipped
loss over all its samples. Clipped loss for a batch b at
point w is f b(w, κ) := 1

n

∑
i∈[n] f

b
i (w, κ). By the linearity

of gradients, the gradient of the clipped loss, or clipped
gradient,∇f b(w, κ) is the average of clipped loss over all
its samples, i.e. ∇f b(w, κ) :=

∑
i∈[n]

1
n∇f

b
i (w, κ).

Ideal choice of Clipping parameter. When κ→∞, the
clipped loss is the same as the squared loss, hence clipping
will have no effect in reducing the number of samples re-
quired. On the other hand, if κ → 0, the loss function
is overly clipped, which can lead to the expected norm
of the clipped gradient being much smaller than that of
the unclipped gradients in Equation (1). Theorem C.2
shows that as long as the clipping parameter is set to
Ω(‖w − w∗‖) + Ωnα(σ), the expected norm of the clipped
gradient will be Ω(‖w − w∗‖)− Õ(σ/

√
nα). This means

that for any point w whose distance from w∗ is greater than
Ω̃(σ/

√
nα), the expected norm of the clipped gradient at

w is ‖ED[∇f bi (w, κ)]‖ = Ω(‖w − w∗‖), which is of the
same order as that of unclipped gradients in Equation (1).

Furthermore, taking advantage of clipping, in Theorem B.1
we show that for all pointsw, and for any clipping parameter
κ = O(‖w−w∗‖) +Onα(σ) the covariance of the clipped
gradients satisfies ‖CovG[∇f b(w, κ)]‖ ≤ O(‖w−w

∗‖2+σ2

n)

with only Õn,α(d) samples. As discussed previously, the
same bound on the covariance of the un-clipped gradients
would instead require Ω(d2) samples.

From the preceding discussion, in order for both the re-
quirements of ‖ED[∇f bi (w, κ)]‖ = Ω(‖w − w∗‖) and
‖CovG[∇f b(w, κ)]‖ ≤ O(‖w−w

∗‖2+σ2

n) to be met using
only Õn,α(d) samples, the clipping parameter must be set
to κ = Θ(‖w − w∗‖) + Θnα(σ). This requires a constant
factor approximation of ‖w − w∗‖ to be obtained.

5

Efficient List-Decodable Regression using Batches

Additionally, when using the MULTIFILTER on a cluster,
a tight approximation of ‖w − w∗‖ is necessary to obtain
a tight upper bound on ‖CovG[∇f b(w, κ)]‖, which is re-
quired by MULTIFILTER as an input parameter.

Furthermore, recall that when applying the MULTIFILTER
on any cluster, we set w to a stationary point of the clipped
loss for that cluster. This stationary point w will depend
on the clipping parameter κ, and the appropriate range for
κ depends on w, creating a cyclic dependence that we must
also overcome when estimating ‖w − w∗‖.

5.3. Estimating Parameters for Multifilter

Recall that our goal is to return a small set of (soft) clusters,
such that at least one of them retains a major portion of
good batches, and its stationary point closely approximates
w∗. When the MULTIFILTER routine is applied to a clus-
ter, it generates sub-clusters. Hence, the sub-clusters that
originate from a cluster that has already lost a majority of
good batches are not relevant for us. Therefore, we will
need accurate parameter estimation only for clusters that
have retained a substantial weight of good batches, and will
only consider such clusters in the remaining section.

Let vb(w) := 1
n

∑
i∈[n] |w · xbi − ybi | denote the mean abso-

lute loss of a batch at point w.

We developed a subroutine called FINDCLIPPINGPPARAM-
ETER (Algorithm 2) that overcomes the cyclic dependence
to find appropriate stationary pointw and clipping parameter
κ for a given soft cluster β. These values ensure that w is a
stationary point for clipped gradients∇f b(w, κ) for batches
in the cluster and κ falls in a range determined by the ex-
pected absolute loss of batches in cluster β at the stationary
point w, specifically, κ = Θ(Eβ

[
vb(w)

]
) + Θnα(σ).

For |G| = Ω̃(d), we prove that w.h.p.

VarG
(
vb(w)

)
≤ EG

[
(vb(w)− ED

[
vb(w)

]
)2
]

= O
(
σ2+ED[vb(w)]2

n

)
. (4)

From the above bound, it follows that for most of the good
batches, vb(w) is very close to ED[vb(w)].

Further, it can be shown that ED[vb(w)] = Θ(‖w−w∗‖)±
O(σ), where ED[vb(w)] is expectation of vb(w) for a batch
sampled from D.

We derive a novel way that given a weight vector β estimates
upper bound θ1 on variance VarG

(
vb(w)

)
. Further, the up-

per bound is tight enough to ensure that if Varβ(vb(w)) =

Õ(θ1) then for most batches b in β, vb(w) will be close to its
expectation E β [vb(w)] over β. As the soft cluster contains
a significant proportion of good batches, and since vb(w)
for most of these good batches is close to ED[vb(w)], then
E β [vb(w)] would also be close to ED[vb(w)]. Furthermore,

since ED[vb(w)] = Θ(‖w − w∗‖)±O(σ), it follows that
E β [vb(w)] = Θ(‖w − w∗‖)±O(σ).

Therefore, if for a certain weight vector β the variance
Varβ(vb(w)), is close to our estimated variance of good
batches, θ1, then we can ensure that κ = Θ(‖w − w∗‖) +
Θnα(σ) and use E β [vb(w)] as an estimate for ‖w − w∗‖.

However, if the variance Varβ(vb(w)) for a β, is signifi-
cantly greater than our estimated variance of good batches,
θ1, then we will not use the MULTIFILTER routine for gradi-
ents on that cluster. Instead, we will apply MULTIFILTER
routine on this cluster w.r.t. average absolute loss vb(w). As
a result, the estimation of ‖w − w∗‖ and ensuring that κ is
within the correct range, which is necessary for using the
MULTIFILTER routine for gradients, is no longer relevant.

Hence, in the estimation part, we either apply MULTIFILTER
routine on the cluster for average absolute loss to obtain
new clusters with one of them being cleaner, or else our
estimate of the parameters is in the desired range to apply
MULTIFILTER routine w.r.t. the gradients.

6. Algorithm and Proof of Theorem 4.1
In subsection 6.2, a triplet (β, κ, w) is defined as nice if
it meets certain criteria: β retains a substantial amount of
weight among good batches, κ falls within a specific range,
w is a stationary point of the clipped loss, and the covariance
of gradients of the clipped loss for the cluster β is bounded
at w. It is noted that any such triplet’s point w is a good
approximation of w∗. In Section 5.1, we provided intuition
for the same without the clipping.

To identify a cluster with bounded covariance of clipped
gradients, we require that the covariance of clipped gradients
forG is bounded. And to estimate the correct range of κ and
an upper bound on the covariance of clipped gradients for
G, as described in Section 5.3, we require that the variance
of mean absolute loss is bounded for the set of good batches.
We formalize these requirements in the next subsection in
form of two regularity conditions.

To specify the range in which the clipping parameter κ
should be set, we define κmax and κmin in Definition B.1
in the appendix, which are functions of w, and other distri-
bution parameters. Finally, in the last two subsections, we
describe the algorithm and show that it finds a nice triplet.

6.1. Regularity Conditions.

The first condition is that for all unit vectors u, all vectors
w and for all κ ≤ κmax,

EG

[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2] ≤ U1,

6

Efficient List-Decodable Regression using Batches

where U1 := c4
σ2+C ED[|(w−w∗)·xbi |

2]
n . The second regular-

ity condition is that for all vectors w,

EG

[(
vb(w)− ED[|w · xbi − ybi |]

)2] ≤ U2,

where U2 := c2
σ2+C ED[|w·xbi−y

b
i |]

2

n . We will repeatedly
refer to the upper bounds U1 and U2 in the regularity
conditions throughout this section.

In Section B, we show that even with a minimal number of
good batches, |G| = Ω̃n,α(d), the two regularity conditions
hold w.h.p.

As a simple consequence, the first regularity condition im-
plies that

‖CovG(∇f b(w, κ))‖ ≤ U1, (5)

and similarly, the second regularity condition implies that

VarG
(
vb(w)

)
≤ U2. (6)

We note that the expressions for U1 and U2 simplify to
Θ(σ2 + ‖w − w∗‖2/n) and the expressions for κmax and
κmin simplify to Θ(‖w − w∗‖+ σ) if one is not concerned
with the dependence on distribution parameters C,C3, Cp.

6.2. Nice Triplet

First, we introduce the notion of nice weight vector. A
weight vector β is considered nice if the total weight as-
signed to all good batches by it is at least βG ≥ 3|G|/4.

We term a combination of a weight vector β, a clipping pa-
rameter κ, and an estimatew as a triplet. Next, we introduce
the concept of a nice triplet.
Condition 1. A triplet (β, κ, w) is considered nice if

(a) β is a nice weight vector, i.e. βG ≥ 3|G|/4.

(b) Clipping parameter is in the range, κmin ≤ κ ≤ κmax.

(c) w is an approximate stationary point, namely mean
clipped loss for weight vector β at w is at most
‖Eβ [∇f b(w, κ)]‖ ≤ log(2/α)σ/8

√
nα.

(d) Covariance of the clipped gradients over β at sta-
tionary point w is at most ‖Covβ(∇f b(w, κ))‖ ≤
c5C

2 log2(2
α)

(σ2+ED[|(w−w∗)·xbi |]
2)

n , where c5 is a pos-
itive universal constant.

According to these conditions, a triplet (β, κ, w) is nice
if weight vector β is considered nice, clipping parameter
κ is within the appropriate range, w is an approximate
stationary point for clipped loss for this weight vector
and covariance of clipped gradient over weight vector
β at this point w is small. As discussed briefly at the
beginning of this section, for a triplet satisfying these
conditions w is a good approximation of w∗. Theorem C.1

formally shows that for any nice triplet (β,w, κ), we have
‖w−w∗‖ ≤ O(C3Cσ log(2/α)√

nα
). Then to prove Theorem 4.1,

it is sufficient to show that the algorithm returns a small list
of triplets such that at least one of them is nice.

In the next two subsections, we will describe the algorithm
and demonstrate that it returns a small list of triplets, at least
one of which is nice.

Algorithm 1 MAINALGORITHM

1: Input: Data {{(xbi , ybi)}i∈[n]}b∈B , α, C, σ.
2: For each b ∈ B, βbinit ← 1 and βinit ← {βbinit}b∈B .
3: List L← {βinit} and M ← ∅.
4: while L 6= ∅ do
5: Pick any element β in L and remove it from L.
6: a1 = 256C

√
2

3 and a2 = a1
4 + 64.

7: κ,w ← FINDCLIPPINGPPARAMETER(B, β, a1, a2

{{(xbi , ybi)}i∈[n]}b∈B)
8: Find top approximate unit eigenvector u of

Covβ(∇f b(w, κ)).
9: For each batch b ∈ B, let vb = 1

n

∑
i∈[n] |w ·xbi−ybi |

and ṽb = ∇f b(w, κ) · u.
10: θ0 ← inf{v : β({b : vb ≥ v}) ≤ α|B|/4 and

θ1 ← c2
n

(
σ2 +

(
8
√
Cθ0
7 + σ

7

)2)
, (7)

θ2 ← c4
n

(
σ2 + 16C2

(
E β [vb] + σ

)2)
. (8)

11: if VarB,β(vb) > c3 log2(2/α)θ1 then
12: NEWWEIGHTS ←MULTIFILTER(B,α, β, {vb}, θ1).

{Type-1 use}
13: Append each weight vector β̃ ∈ NEWWEIGHTS

that has total weight β̃B ≥ α|B|/2 to list L.
14: else if VarB,β(ṽb) > c3 log2(2/α)θ2 then
15: NEWWEIGHTS ←MULTIFILTER(B,α, β, {ṽb}, θ2).

{Type-2 use}
16: Append each weight vector β̃ ∈ NEWWEIGHTS

that has total weight β̃B ≥ α|B|/2 to list L.
17: else
18: Append (β, κ, w) to M .
19: end if
20: end while
21: Return M

6.3. Description of the Algorithm

MAINALGORITHM starts with L = βinit, where the ini-
tial weight vector βinit assigns an equal weight of 1 to
each batch in B. This initial weight vector is nice since
βGinit = |G|. In each iteration of the while loop, the algo-
rithm selects one of the weight vectors β from the list L,
until the list L is empty. Then, it uses the subroutine FIND-
CLIPPINGPPARAMETER on this weight vector β, which

7

Efficient List-Decodable Regression using Batches

returns the values of clipping parameter κ and approximate
stationary point of clipped loss as w.

Next, the algorithm uses the MULTIFILTER subroutine on
β. Given a weight vector and a function over batches, as
well as an estimate of the variance of the function for good
batches, this subroutine divides the cluster to produce new
clusters, such that each of them is shorter than the original.

To apply this subroutine, the algorithm first calculates pa-
rameters θ1 and θ2, which are estimates of the upper bounds
U2 and U1 in the two regularity conditions for the point w.

If the variance of the mean absolute loss at w for batches
in this weight vector β is much larger than the estimate θ1,
namely Varβ

(
vb
)
≥ c3 log2(2/α)θ1, the algorithm applies

the MULTIFILTER subroutine for the function vb(w). This
is referred to as a Type-1 use of this subroutine.

If instead, the variance of vb in the weight vector
is small, the algorithm defines a new function on
batches, ṽb := ∇f b(w, κ) · u, where u is a top approx-
imate unit eigenvector of Covβ(∇f b(w, κ)) such that
uᵀCovβ(∇f b(w, κ))u ≥ 0.5‖Covβ(∇f b(w, κ))‖. This
function ṽb is a projection of clipped batch gradients along
the direction in which covariance is nearly the highest.
From (5), it follows that variance of this new function ṽb in
good batch collection G will be bounded by U1. If the vari-
ance of ṽb over the weight vector β is much larger than es-
timate θ2 of U1, namely Varβ

(
ṽb
)
≥ c3 log2(2/α)θ2, then

the algorithm applies MULTIFILTER subroutine for function
ṽb(w). This is referred to as a Type-2 use of this subroutine.

When MULTIFILTER is applied to a weight vector, it re-
turns a list NEWWEIGHTS of weight vectors as a re-
sult. The MAINALGORITHM appends weight vectors in
NEWWEIGHTS that have total weights more than α|B|/2
to list L and the iteration terminates. The weight vectors
that have total weights less than α|B|/2 are ignored as they
can’t be nice weight vectors and can not result in any nice
weight vector in future iterations.

If the variances of both vb and ṽb are small, then the iteration
ends by appending (β, κ, w) to M . Next, we argue that M
ends up with at least one nice triplet.

6.4. Finding Nice Triplet

We first show that Type-1 application of MULTIFILTER on a
nice weight β only occurs when,

Varβ
(
vb
)
≥ c3 log2(2/α)VarG

(
vb
)
. (9)

Recall that Type-1 application of MULTIFILTER on β
takes place when Varβ

(
vb
)
≥ c3 log2(2/α)θ1. From Equa-

tion (6), we have VarG
(
vb
)
≤ U2 and Theorem E.1 shows

that for a nice weight vector β the parameter θ1 upper
bounds U2. Thus, Type-1 use of MULTIFILTER on a nice

weight β only takes place when Equation (9) holds.

The subroutine FINDCLIPPINGPPARAMETER returns κ and
w for a given weight vector β. Theorem D.1 in the Ap-
pendix D shows that these parameters w and κ satisfy:

1. w is an approximate stationary point for {f b(·, κ)}
w.r.t. weight vector β.

2.
(
a1
2 Eβ [vb(w)] ∨ a2σ

)
≤ κ≤

(
4a2

1 Eβ [vb(w)] ∨ a2σ
)
,

where a1 and a2 are input parameters of FINDCLIP-
PINGPPARAMETER.

The first guarantee implies that if a triplet (β, κ, w) ends in
set M , then it must satisfy condition (c) for a nice triplet.

Theorem E.4 shows that if Type-1 filtering did not occur
for a nice weight vector, then for this weight vector the
range of κ specified in the second guarantee of subroutine
FINDCLIPPINGPPARAMETER is a subset of the desired
range (κmin, κmax). Specifically, if for a nice weight vector
β, Varβ

(
vb
)
≤ c3 log2(2/α)θ1, then κ ∈ (κmin, κmax) and

U1 ≤ θ2 ≤ c5
2c3

C2(σ2+ED[|(w−w∗)·xbi |]
2)

n . (10)

Recall that a triplet (β, κ, w) ends up in M
only when Varβ

(
vb
)

≤ c3 log2(2/α)θ1 and
Varβ

(
ṽb
)
≤ c3 log2(2/α)θ2 are both satisfied.

From the above discussion, it follows that if a triplet
(β, κ, w) is in M such that β is nice then κ ∈ (κmin, κmax)
and it satisfies,

Varβ
(
ṽb
)
≤ c5

2 log2(2/α)
C2(σ2+ED[|(w−w∗)·xbi |]

2)
n .

From the definition of ṽb, it follows that
‖Covβ(∇f b(w, κ))‖ ≤ 2Varβ

(
ṽb
)
. Therefore, for

any triplet (β, κ, w) in M such that β is a nice weight
vector, conditions (b) and (d) are also satisfied. This means
that any such triplet is a nice triplet. Finally, it remains to
be shown that M contains at least one triplet with a nice
weight vector, which we do next.

Recall that Type-2 application of MULTIFILTER on a weight
β only takes place when, Varβ

(
ṽb
)
≥ c3 log2(2/α)θ2.

Since for a nice β, from Equation (10), U1 ≤ θ2, from
Equation (5), ‖CovG(∇f b(w, κ))‖ ≤ U1, and from the
definition of ṽb, VarG

(
ṽb
)
≤ ‖CovG(∇f b(w, κ))‖. There-

fore, θ2 ≥ VarG
(
ṽb
)
, and hence Type-2 application on a

nice weight β only takes place when,

Varβ
(
ṽb
)
≥ c3 log2(2/α)VarG

(
ṽb
)
. (11)

Theorem F.2 in Appendix F states that if Equation (9) holds
for all Type-1 uses and Equation (11) holds for all Type-2
uses when using subroutine MULTIFILTER on nice weight
vectors, then at least one of the triplets in the final list M
will include a nice weight vector. Since we have already

8

Efficient List-Decodable Regression using Batches

shown that these two equations hold, it follows that M will
contain a nice triplet. The theorem also shows that the size
of M is at most 4/α2 and the total number of iterations of
the while loop is at most O(|B|/α2), implying a small list
size and a polynomial runtime for the algorithm

7. Conclusion
In summary, this paper addresses the problem of linear
regression in the setting when data is presented in batches
and only a small fraction of the batches contain genuine
data. The paper presents a polynomial time algorithm to
identify a small list containing a good approximation of
the true regression parameter when genuine batches have at
least Ω̃(1/α) samples each. By utilizing the batch structure,
the paper introduces the first polynomial-time algorithm for
list decodable linear regression. Additionally, the algorithm
requires a number of genuine samples that increase nearly
linearly with the dimension of the covariates.

SQ lower bounds in (Diakonikolas et al., 2021b) for the
non-batch setting suggests that a polynomial time algorithm
is impossible with batch size 1, and the paper demonstrates
that a batch size of ≥ Ω̃(1/α) is sufficient to obtain a poly-
nomial time algorithm. This poses the question of what the
smallest batch size required is to obtain a polynomial time
algorithm, which is a promising direction for future work.

References
Acharya, J., Jain, A., Kamath, G., Suresh, A. T., and Zhang,

H. Robust estimation for random graphs. In Conference
on Learning Theory, pp. 130–166. PMLR, 2022.

Anscombe, F. J. Rejection of outliers. Technometrics, 2(2):
123–146, 1960.

Balakrishnan, S., Du, S. S., Li, J., and Singh, A. Com-
putationally efficient robust sparse estimation in high
dimensions. In Proceedings of the 30th Conference on
Learning Theory, COLT 2017, pp. 169–212, 2017.

Barreno, M., Nelson, B., Joseph, A. D., and Tygar, J. D.
The security of machine learning. Machine Learning, 81
(2):121–148, 2010.

Bhatia, K., Jain, P., and Kar, P. Robust regression via hard
thresholding. Advances in neural information processing
systems, 28, 2015.

Bhatia, K., Jain, P., Kamalaruban, P., and Kar, P. Consistent
robust regression. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, pp. 2107–2116,
2017a.

Bhatia, K., Jain, P., Kamalaruban, P., and Kar, P. Consis-
tent robust regression. Advances in Neural Information
Processing Systems, 30, 2017b.

Biggio, B., Nelson, B., and Laskov, P. Poisoning at-
tacks against support vector machines. arXiv preprint
arXiv:1206.6389, 2012.

Chaganty, A. T. and Liang, P. Spectral experts for estimat-
ing mixtures of linear regressions. In International Con-
ference on Machine Learning (ICML), pp. 1040–1048,
2013.

Charikar, M., Steinhardt, J., and Valiant, G. Learning from
untrusted data. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 47–60,
2017.

Chen, S., Li, J., and Moitra, A. Learning structured dis-
tributions from untrusted batches: Faster and simpler.
Advances in Neural Information Processing Systems, 33:
4512–4523, 2020a.

Chen, S., Li, J., and Song, Z. Learning mixtures of lin-
ear regressions in subexponential time via Fourier mo-
ments. In STOC. https://arxiv.org/pdf/1912.
07629.pdf, 2020b.

Chen, Y. and Poor, H. V. Learning mixtures of linear dy-
namical systems. In Chaudhuri, K., Jegelka, S., Song, L.,
Szepesvari, C., Niu, G., and Sabato, S. (eds.), Proceed-
ings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learn-
ing Research, pp. 3507–3557. PMLR, 17–23 Jul 2022.

Cheng, Y., Diakonikolas, I., Ge, R., and Woodruff, D. P.
Faster algorithms for high-dimensional robust covariance
estimation. In Conference on Learning Theory, pp. 727–
757. PMLR, 2019.

Cherapanamjeri, Y., Aras, E., Tripuraneni, N., Jordan, M. I.,
Flammarion, N., and Bartlett, P. L. Optimal robust
linear regression in nearly linear time. arXiv preprint
arXiv:2007.08137, 2020a.

Cherapanamjeri, Y., Aras, E., Tripuraneni, N., Jordan, M. I.,
Flammarion, N., and Bartlett, P. L. Optimal robust
linear regression in nearly linear time. arXiv preprint
arXiv:2007.08137, 2020b.

Cherapanamjeri, Y., Mohanty, S., and Yau, M. List decod-
able mean estimation in nearly linear time. arXiv preprint
arXiv:2005.09796, 2020c.

Dalalyan, A. and Thompson, P. Outlier-robust estimation
of a sparse linear model using `1 -penalized huber’s m-
estimator. Advances in neural information processing
systems, 32, 2019.

9

https://arxiv.org/pdf/1912.07629.pdf
https://arxiv.org/pdf/1912.07629.pdf

Efficient List-Decodable Regression using Batches

Diakonikolas, I. and Kane, D. M. Small covers for near-zero
sets of polynomials and learning latent variable models.
In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pp. 184–195. IEEE, 2020.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Being robust (in high dimensions)
can be practical. In International Conference on Machine
Learning, pp. 999–1008. PMLR, 2017.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Being Robust (in High Dimensions)
Can Be Practical. arXiv e-prints, art. arXiv:1703.00893,
March 2017.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Robustly learning a gaussian: Getting
optimal error, efficiently. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 2683–2702. SIAM, 2018a.

Diakonikolas, I., Kane, D. M., and Stewart, A. List-
decodable robust mean estimation and learning mixtures
of spherical gaussians. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
1047–1060, 2018b.

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Moitra, A.,
and Stewart, A. Robust estimators in high-dimensions
without the computational intractability. SIAM Journal
on Computing, 48(2):742–864, 2019a.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Stein-
hardt, J., and Stewart, A. Sever: A robust meta-algorithm
for stochastic optimization. In Proceedings of the 36th
International Conference on Machine Learning, ICML
’19, pp. 1596–1606. JMLR, Inc., 2019b.

Diakonikolas, I., Kong, W., and Stewart, A. Efficient al-
gorithms and lower bounds for robust linear regression.
In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 2745–2754. SIAM,
2019c.

Diakonikolas, I., Hopkins, S. B., Kane, D., and Karmalkar,
S. Robustly learning any clusterable mixture of gaussians.
arXiv preprint arXiv:2005.06417, 2020a.

Diakonikolas, I., Kane, D., and Kongsgaard, D. List-
decodable mean estimation via iterative multi-filtering.
Advances in Neural Information Processing Systems, 33:
9312–9323, 2020b.

Diakonikolas, I., Kane, D., Kongsgaard, D., Li, J., and Tian,
K. List-decodable mean estimation in nearly-pca time.
Advances in Neural Information Processing Systems, 34:
10195–10208, 2021a.

Diakonikolas, I., Kane, D., Pensia, A., Pittas, T., and Stew-
art, A. Statistical query lower bounds for list-decodable
linear regression. Advances in Neural Information Pro-
cessing Systems, 34:3191–3204, 2021b.

Dielman, T. E. Applied regression analysis for business and
economics. Duxbury/Thomson Learning Pacific Grove,
CA, 2001.

Dong, Y., Hopkins, S., and Li, J. Quantum entropy scor-
ing for fast robust mean estimation and improved outlier
detection. Advances in Neural Information Processing
Systems, 32, 2019.

Gao, C. Robust regression via mutivariate regression depth.
Bernoulli, 26(2):1139–1170, 2020.

Grottke, M., Knoll, J., and Groß, R. How the distribution of
the number of items rated per user influences the quality
of recommendations. In 2015 15th International Confer-
ence on Innovations for Community Services (I4CS), pp.
1–8. IEEE, 2015.

Hopkins, S., Li, J., and Zhang, F. Robust and heavy-tailed
mean estimation made simple, via regret minimization.
Advances in Neural Information Processing Systems, 33,
2020a.

Hopkins, S. B. and Li, J. Mixture models, robustness, and
sum of squares proofs. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
1021–1034, 2018.

Hopkins, S. B. et al. Mean estimation with sub-gaussian
rates in polynomial time. Annals of Statistics, 48(2):
1193–1213, 2020b.

Huber, P. J. Robust estimation of a location parameter.
Annals Mathematics Statistics, 35, 1964.

Huber, P. J. Robust statistics. In International encyclopedia
of statistical science, pp. 1248–1251. Springer, 2011.

Jain, A. and Orlitsky, A. Optimal robust learning of discrete
distributions from batches. In Proceedings of the 37th
International Conference on Machine Learning, ICML
’20, pp. 4651–4660. JMLR, Inc., 2020a.

Jain, A. and Orlitsky, A. A general method for robust
learning from batches. arXiv preprint arXiv:2002.11099,
2020b.

Jain, A. and Orlitsky, A. Robust density estimation from
batches: The best things in life are (nearly) free. In
International Conference on Machine Learning, pp. 4698–
4708. PMLR, 2021.

10

Efficient List-Decodable Regression using Batches

Jambulapati, A., Li, J., and Tian, K. Robust sub-gaussian
principal component analysis and width-independent
schatten packing. Advances in Neural Information Pro-
cessing Systems, 33, 2020.

Jambulapati, A., Li, J., Schramm, T., and Tian, K. Robust
regression revisited: Acceleration and improved estima-
tion rates. Advances in Neural Information Processing
Systems, 34:4475–4488, 2021.

Jia, H. and Vempala, S. Robustly clustering a mixture of
gaussians. arXiv preprint arXiv:1911.11838, 2019.

Jordan, M. I. and Jacobs, R. A. Hierarchical mixtures of
experts and the em algorithm. Neural computation, 6(2):
181–214, 1994.

Karmalkar, S. and Price, E. Compressed sensing with adver-
sarial sparse noise via l1 regression. In 2nd Symposium
on Simplicity in Algorithms, 2019.

Karmalkar, S., Klivans, A., and Kothari, P. List-decodable
linear regression. Advances in neural information pro-
cessing systems, 32, 2019.

Klivans, A., Kothari, P. K., and Meka, R. Efficient algo-
rithms for outlier-robust regression. In Conference On
Learning Theory, pp. 1420–1430. PMLR, 2018.

Kong, W., Somani, R., Kakade, S., and Oh, S. Robust meta-
learning for mixed linear regression with small batches.
Advances in Neural Information Processing Systems, 33,
2020a.

Kong, W., Somani, R., Song, Z., Kakade, S., and Oh, S.
Meta-learning for mixed linear regression. In Interna-
tional Conference on Machine Learning, pp. 5394–5404.
PMLR, 2020b.

Kong, W., Sen, R., Awasthi, P., and Das, A. Trimmed maxi-
mum likelihood estimation for robust learning in gener-
alized linear models. arXiv preprint arXiv:2206.04777,
2022.

Konstantinov, N., Frantar, E., Alistarh, D., and Lampert,
C. On the sample complexity of adversarial multi-source
pac learning. In International Conference on Machine
Learning, pp. 5416–5425. PMLR, 2020.

Kothari, P. K., Steinhardt, J., and Steurer, D. Robust moment
estimation and improved clustering via sum of squares. In
Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pp. 1035–1046, 2018.

Lai, K. A., Rao, A. B., and Vempala, S. Agnostic estimation
of mean and covariance. In Proceedings of the 57th
Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’16, pp. 665–674, Washington, DC, USA,
2016. IEEE Computer Society.

Lecué, G. and Mendelson, S. Performance of empirical risk
minimization in linear aggregation. 2016.

Li, J. and Ye, G. Robust gaussian covariance estimation in
nearly-matrix multiplication time. Advances in Neural
Information Processing Systems, 33, 2020.

Li, Y. and Liang, Y. Learning mixtures of linear regressions
with nearly optimal complexity. In COLT. arXiv preprint
arXiv:1802.07895, 2018.

Liu, L., Shen, Y., Li, T., and Caramanis, C. High di-
mensional robust sparse regression. arXiv preprint
arXiv:1805.11643, 2018.

McDonald, J. H. Handbook of biological statistics, vol-
ume 2. sparky house publishing Baltimore, MD, 2009.

Mukhoty, B., Gopakumar, G., Jain, P., and Kar, P. Globally-
convergent iteratively reweighted least squares for robust
regression problems. In The 22nd International Confer-
ence on Artificial Intelligence and Statistics, pp. 313–322,
2019.

Pal, S., Mazumdar, A., Sen, R., and Ghosh, A. On learning
mixture of linear regressions in the non-realizable setting.
In International Conference on Machine Learning, pp.
17202–17220. PMLR, 2022.

Park, Y.-J. and Tuzhilin, A. The long tail of recommender
systems and how to leverage it. In Proceedings of the
2008 ACM conference on Recommender systems, pp. 11–
18, 2008.

Paschou, P., Lewis, J., Javed, A., and Drineas, P. Ancestry
informative markers for fine-scale individual assignment
to worldwide populations. Journal of Medical Genetics,
47(12):835–847, 2010.

Pensia, A., Jog, V., and Loh, P.-L. Robust regression with
covariate filtering: Heavy tails and adversarial contami-
nation. arXiv preprint arXiv:2009.12976, 2020.

Philippe, R. 18.s997 high-dimensional statistics. Mas-
sachusetts Institute of Technology: MIT OpenCourse-
Ware, https://ocw.mit.edu. License: Creative Commons
BY-NC-SA, 2015.

Prasad, A., Suggala, A. S., Balakrishnan, S., and Ravikumar,
P. Robust estimation via robust gradient estimation. arXiv
preprint arXiv:1802.06485, 2018.

Qiao, M. and Valiant, G. Learning discrete distributions
from untrusted batches. In Proceedings of the 9th Con-
ference on Innovations in Theoretical Computer Science,
ITCS ’18, pp. 47:1–47:20, Dagstuhl, Germany, 2018.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

11

Efficient List-Decodable Regression using Batches

Raghavendra, P. and Yau, M. List decodable learning via
sum of squares. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 161–
180. SIAM, 2020.

Rosenberg, N. A., Pritchard, J. K., Weber, J. L., Cann, H. M.,
Kidd, K. K., Zhivotovsky, L. A., and Feldman, M. W.
Genetic structure of human populations. science, 298
(5602):2381–2385, 2002.

Rousseeuw, P. J. Tutorial to robust statistics. Journal of
chemometrics, 5(1):1–20, 1991.

Sedghi, H., Janzamin, M., and Anandkumar, A. Provable
tensor methods for learning mixtures of generalized linear
models. In Artificial Intelligence and Statistics (AISTATS),
pp. 1223–1231, 2016.

Steinhardt, J., Valiant, G., and Charikar, M. Avoiding im-
posters and delinquents: Adversarial crowdsourcing and
peer prediction. Advances in Neural Information Process-
ing Systems, 29, 2016.

Suggala, A. S., Bhatia, K., Ravikumar, P., and Jain, P. Adap-
tive hard thresholding for near-optimal consistent robust
regression. In Conference on Learning Theory, pp. 2892–
2897. PMLR, 2019.

Tukey, J. W. A survey of sampling from contaminated
distributions. Contributions to probability and statistics,
pp. 448–485, 1960.

Vershynin, R. Introduction to the non-asymptotic analysis of
random matrices. In Eldar, Y. C. and Kutyniok, G. (eds.),
Compressed Sensing, pp. 210–268. Cambridge University
Press, 2012.

Wang, J., Charles, Z., Xu, Z., Joshi, G., McMahan, H. B.,
Al-Shedivat, M., Andrew, G., Avestimehr, S., Daly, K.,
Data, D., et al. A field guide to federated optimization.
arXiv preprint arXiv:2107.06917, 2021.

Wax, M. and Ziskind, I. On unique localization of multiple
sources by passive sensor arrays. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 37(7):996–
1000, 1989.

Yi, X., Caramanis, C., and Sanghavi, S. Solving a mix-
ture of many random linear equations by tensor decom-
position and alternating minimization. arXiv preprint
arXiv:1608.05749, 2016.

Zhong, K., Jain, P., and Dhillon, I. S. Mixed linear regres-
sion with multiple components. In Advances in neural
information processing systems (NIPS), pp. 2190–2198,
2016.

12

Efficient List-Decodable Regression using Batches

A. Related Work
Robust Estimation and Regression. Designing estimators which are robust under the presence of outliers has been
broadly studied since 1960s (Tukey, 1960; Anscombe, 1960; Huber, 1964). However, most prior works either requires
exponential time or have a dimension dependency on the error rate, even for basic problems such as mean estimation.
Recently, (Diakonikolas et al., 2019a) proposed a filter-based algorithm for mean estimation which achieves polynomial
time and has no dependency on the dimensionality in the estimation error. There has been a flurry of research on robust
estimation problems, including mean estimation (Lai et al., 2016; Diakonikolas et al., 2017; Dong et al., 2019; Hopkins
et al., 2020a;b; Diakonikolas et al., 2018a), covariance estimation (Cheng et al., 2019; Li & Ye, 2020), linear regression and
sparse regression (Bhatia et al., 2015; 2017a; Balakrishnan et al., 2017; Gao, 2020; Prasad et al., 2018; Klivans et al., 2018;
Diakonikolas et al., 2019b; Liu et al., 2018; Karmalkar & Price, 2019; Dalalyan & Thompson, 2019; Mukhoty et al., 2019;
Diakonikolas et al., 2019c; Karmalkar et al., 2019; Pensia et al., 2020; Cherapanamjeri et al., 2020b), principal component
analysis (Kong et al., 2020a; Jambulapati et al., 2020), mixture models (Diakonikolas et al., 2020a; Jia & Vempala, 2019;
Kothari et al., 2018; Hopkins & Li, 2018). The results on robust linear regression are particularly related to the setting of
this work, though those papers considered non-batch settings and the fraction of good examples α > 1/2. (Prasad et al.,
2018; Diakonikolas et al., 2019b;c; Pensia et al., 2020; Cherapanamjeri et al., 2020b; Jambulapati et al., 2021) considered
the setting when both both covariate xi and label yi are corrupted. When there are only label corruptions, (Bhatia et al.,
2015; Dalalyan & Thompson, 2019; Kong et al., 2022) achieve nearly optimal rates with O(d) samples. Under the oblivious
label corruption model, i.e., the adversary only corrupts a fraction of labels in complete ignorance of the data, (Bhatia et al.,
2017b; Suggala et al., 2019) provide a consistent estimator whose approximate error goes to zero as the sample size goes to
infinity.

Robust Learning from Batches. (Qiao & Valiant, 2018) introduced the problem of learning discrete distribution from
untrusted batches and derived an exponential time algorithm. Subsequent works (Chen et al., 2020b) improved the run-time
to quasi-polynomial and (Jain & Orlitsky, 2020a) obtained polynomial time with an optimal sample complexity. (Jain &
Orlitsky, 2021; Chen et al., 2020a) extended these results to one-dimensional structured distributions. (Jain & Orlitsky,
2020b; Konstantinov et al., 2020) studied the problem of classification from untrusted batches. (Acharya et al., 2022)
studies a closely related problem of learning parameter of Erdős-Rényi random graph when a fraction of nodes are corrupt.
All these works focus on different problems than ours and only consider the case when a majority of the data is genuine.

List Decodable Mean Estimation and Regression. List decodable framework was first introduced in (Charikar et al.,
2017) to obtain learning guarantees when a majority of data is corrupt. They derived the first polynomial algorithm for list
decodable mean estimation under co-variance bound. Subsequent works (Diakonikolas et al., 2020b; Cherapanamjeri et al.,
2020c; Diakonikolas et al., 2021a) obtained a better run time. (Diakonikolas et al., 2018b; Kothari et al., 2018) improved the
error guarantees, however, under stronger distributional assumptions and has higher sample and time complexities.

(Karmalkar et al., 2019) studies the problem of list-decodable linear regression with batch-size n = 1 and derive an algorithm
with sample complexity (d/α)O(1/α4) and runtime (d/α)O(1/α8). (Raghavendra & Yau, 2020) show a sample complexity of
(d/α)O(1/α4) with runtime (d/α)O(1/α8)(1/α)log(1/α). Polynomial time might indeed be impossible for the single sample
setting owing to the statistical query lower bounds in (Diakonikolas et al., 2021b).

Mixed Linear Regression. When each batch has only one sample, (i.e. n = 1) and contains samples of one of the k regres-
sion components the problem becomes the classical mixed linear regression which has been widely studied (Diakonikolas
& Kane, 2020; Chen et al., 2020b; Li & Liang, 2018; Sedghi et al., 2016; Zhong et al., 2016; Yi et al., 2016; Chaganty &
Liang, 2013). It is worth noting that no algorithm is known to achieve polynomial sample complexity in this setting. The
problem is only studied very recently in the batched setting with n > 1 by (Kong et al., 2020b;a), where all the samples in
the batch are from the same component. (Kong et al., 2020b) proposed a polynomial time algorithm which requires O(d)
batches each with size O(

√
k). (Kong et al., 2020a) leveraged sum-of-squares hierarchy to introduce a class of algorithms

which is able to trade off the batch size n and the sample complexity. Both of these works assume that the distributions of
covariates for all components is identical and Gaussian. Since the above problem is a special case of the list-decodable
linear regression, our algorithm is able to recover the k regression components with batch size n = O(k) and O(d) number
of batches. Our algorithms allow more general distributions for the covariates than allowed by the Gaussian assumption
in the previous works. Further, our algorithms allow the distributions of covariates for the different components to differ.
It is worth noting that list-decodable linear regression is a strictly harder problem than mixed linear regression as shown
in (Diakonikolas et al., 2021b) and thus our result is incomparable to the ones in the mixed linear regression setting. Leaning
mixture of linear dynamical systems has been studied in (Chen & Poor, 2022).

13

Efficient List-Decodable Regression using Batches

B. Regularity conditions
In this section, we state regularity conditions for genuine data used in proving the guarantees of our algorithm. Before we
proceed we will define upper and lower bounds on the clipping parameter κ that are functions of w and other distribution
parameters,

Definition B.1. We define the following upper and lower bounds on the clipping parameter κ as a function of w and other
distribution parameters:

κmax =c7C
2
(√

ED[|xbi · (w − w∗)|2] + σ
)
,

κmin = max
{

8
√
C ED[|xbi · (w − w∗)|2], 8σ

}
.

κmax will be used in this section to define our first regularity condition, while κmin will be used in Section C for defining a
nice triplet.

Regularity Conditions.

1. For all κ ≤ κmax, all unit vectors u and all vectors w

EG

[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2] ≤ c4σ2 + C ED[((w − w∗) · xbi)2]

n
,

2. For all vectors w,

EG


 1

n

∑
i∈[n]

|w · xbi − ybi | − ED[|w · xbi − ybi |]

2
 ≤ c2(σ2 + C ED[|w · xbi − ybi |]2

n

)
.

The first regularity condition on the set of good batches G, bounds the mean squared deviation of projections of clipped
batch gradients from its true population mean. The regularity condition requires clipping parameter κ to be upper bounded,
with the upper bound depending on ‖w − w∗‖ and σ.

As discussed in Section 5, when κ→∞, the clipping has no effect, and establishing such regularity condition for unclipped
gradients would require Ω(d2) samples. By using clipping, and ensuring that clipping parameter κ is in the desired range we
are able to achieve Õn,α(d) sample complexity.

Theorem B.1 characterizes the number of good batches required for regularity condition 1 as a function of the upper bound
on κ.

Theorem B.1. There exist a universal constant c4 such that for µmax ∈ [1, d
4n2

C] and |G| = Ω(µ4
maxn

2d log(d)), with
probability ≥ 1− 4

d2 , for all unit vectors u, all vectors w and for all κ2 ≤ µmax(σ2 + C ED[((w − w∗) · xbi)2]),

EG

[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2] ≤ c4σ2 + C ED[((w − w∗) · xbi)2]

n
. (12)

We prove the above theorem in Section H.

The second regularity condition on the set of good batches G, bounds the mean squared deviation of average absolute error
for a batch from its true population mean. Theorem B.2 characterizes the number of good batches required for regularity
condition 2.

Theorem B.2. For |G| = Ω(n2d log(d)) and universal constant c2 > 0, with probability ≥ 1− 4
d2 , for all vectors w,

EG


 1

n

∑
i∈[n]

|w · xbi − ybi | − ED[|w · xbi − ybi |]

2
 ≤ c2(σ2 + C ED[|w · xbi − ybi |2]

n

)
.

14

Efficient List-Decodable Regression using Batches

Proof. Proof of the above theorem is similar to the proof of Theorem B.1, and for brevity, we skip it.

Combining the two theorems shows that the two regularity conditions hold with high probability with Õn,α(d) batches.
Corollary B.3. For |G| ≥ ΩC

(
dn2 log(d)

)
, both regularity conditions hold with probability ≥ 1− 8

d2 .

We conclude the sections with the following Lemma which lists some simple consequences of regularity conditions, that we
use in later sections.
Lemma B.4. If regularity conditions hold then

1. For all vectors w and for all κ ≤ κmax,

‖CovG(∇f b(w, κ))‖ ≤ c4
σ2 + C ED[((w − w∗) · xbi)2]

n
,

2. For all vectors w

VarG

 1

n

∑
i∈[n]

|w · xbi − ybi |

 ≤ c2(σ2 + C ED[|w · xbi − ybi |]2

n

)
.

3. For all G′ ⊆ G of size ≥ |G|/2,

‖EG′ [∇f b(w, κ)]− ED[∇f b(w, κ)]‖ ≤
√

2c4
σ +

√
C ED[((w − w∗) · xbi)2]√

n
.

Proof. The first item in the lemma follows as

‖CovG(∇f b(w, κ))‖ = max
u:‖u‖≤1

EG

[(
∇f b(w, κ) · u− EG[∇f b(w, κ) · u]

)2]
≤ max
u:‖u‖≤1

EG

[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2]
≤ c4

σ2 + C ED[((w − w∗) · xbi)2]

n
,

where the first inequality follows as the expected squared deviation along the mean is the smallest and the second inequality
follows from the first regularity condition.

Similarly, the second item follows from the second regularity condition.

Finally, we prove the last item using the first regularity condition. Let u be any unit vector and Zb(u) :=(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2
. Then

‖EG[Zb](u)‖ =

∥∥∥∥∥ 1

|G|
∑
b∈G

Zb(u)

∥∥∥∥∥ ≥
∥∥∥∥∥ 1

|G|
∑
b∈B′

Zb(u)

∥∥∥∥∥ =
|G′|
|G|
‖EG′ [Z

b(u)]‖ ≥ 1

2
‖EG′ [Z

b(u)]‖,

where the first inequality used the fact that Zb(u) is a positive and the second inequality used |G′| ≥ |G|/2. Then using the
bound on ‖EG[Zb(u)]‖ in in the first regularity condition, we get

‖EG′ [Z
b(u)]‖ ≤ 2c4

σ2 + C ED[((w − w∗) · xbi)2]

n
.

Using the Cauchy–Schwarz inequality and the above bound,

EG′ [
∣∣∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

∣∣] = EG′ [
√
Zb(u)] ≤

√
EG′ [Zb(u)] ≤

√
2c4

σ2 + C ED[((w − w∗) · xbi)2]

n
.

Since the above bound holds for each unit vector u, we have

EG′ [
∣∣∇f b(w, κ)− ED[∇f b(w, κ)]

∣∣] ≤√2c4
σ2 + C ED[((w − w∗) · xbi)2]

n
≤
√

2c4
σ +

√
C ED[((w − w∗) · xbi)2]√

n
.

15

Efficient List-Decodable Regression using Batches

C. Guarantees for nice triplet
For completeness, we first restate the conditions a nice triplet (β, κ, w) satisfy.

A triplet (β, κ, w) is nice if

(a) β is a nice weight vector, i.e. βG ≥ 3|G|/4.

(b) κmin ≤ κ ≤ κmax.

(c) w is any approximate stationary point w.r.t. β for clipped loss with clipping parameter κ, namely ‖Eβ [∇f b(w, κ)]‖ ≤
log(2/α)σ

8
√
nα

.

(d) ‖Covβ(∇f b(w, κ))‖ ≤ c5C
2 log2(2/α)(σ2+ED[|(w−w∗)·xbi |]

2)
n .

In this section, we establish the following guarantees for any nice triplets. In doing so we assume regularity conditions hold
for G.

Theorem C.1. Suppose (β, κ, w) is a nice triplet, n ≥ max{32c4CC3,
256
α c5C

2C3
2 log2(2/α)} and regularity conditions

holds, then ‖w − w∗‖ ≤ O(C3Cσ log(2/α)√
nα

).

In the remainder of this section, we prove the theorem. First, we provide an overview of the proof and state some auxiliary
lemma that we use to prove the theorem.

In this section, we show that for any nice triplet (β, κ, w) if ‖w − w∗‖ = Ω̃(σ/
√
nα) then the following lower bound on

clipped gradient co-variance, ‖Covβ(∇f b(w, κ))‖ ≥ Ω(α‖w − w∗‖2) holds. For n = Ω̃(1
α) and ‖w − w∗‖ = Ω̃(σ/

√
nα)

this lower bound contradicts the upper bound in condition (d). Hence, the theorem concludes that ‖w − w∗‖ = Õ(σ/
√
nα).

To show the lower bound ‖Covβ(∇f b(w, κ))‖ ≥ Ω(α‖w − w∗‖2), we first show ‖ED[∇f bi (w, κ)]‖ = Ω(‖w − w∗‖)−
Õ(σ/

√
nα) in Theorem C.2. Since ‖ED[∇f bi (w, κ)]‖ = ‖ED[∇f b(w, κ)]‖, the same bound will hold for the norm of

expectation of clipped batch gradients.

When clipping parameter κ→∞ then ∇f bi (w, κ) = ∇f bi (w) and for unclipped gradients, a straightforward calculation
shows the desired lower bound ‖ED[∇f bi (w, κ)]‖ = Ω(‖w−w∗‖). However, if κ is too small then clipping may introduce
a large bias in the gradients and such a lower bound may no longer hold.

Yet, the lower bound on κ in condition (b) ensures that κ is much larger than the typical error which is of the order
‖w − w∗‖ + σ. And when clipping parameter κ is much larger than the typical error, it can be shown that with high
probability clipped and unclipped gradients for a random sample from D would be the same. The next theorem uses this
observation and for the case when κ satisfies the lower bound in condition (b) it shows the desired lower bound on the norm
of expectation of clipped gradient.

Theorem C.2. If κ ≥ max{8
√
C ED[|xbi · (w − w∗)|2], 8σ}, then

∥∥ED[∇f bi (w, κ)]
∥∥ ≥ 3

4C3
‖w − w∗‖.

We prove the above theorem in subsection C.1

Since ED[∇f bi (w, κ)] = ED[∇f b(w, κ)], the same bound holds for the clipped batch gradients.

Next, in Lemma C.3 we show that for any sufficiently large collection G′ ⊆ G of the good batches ‖EG′ [∇f b(w, κ)]‖ ≈
‖ED[∇f b(w, κ)]‖.
Lemma C.3. Suppose κ and w are part of a nice triplet, n ≥ 32c4CC3 and regularity conditions holds, then for allG′ ⊆ G
of size ≥ |G|/2,

∥∥EG′ [∇f b(w, κ)]
∥∥ ≥ 1

2C3
‖w − w∗‖ −

√
2c4σ√
n

.

16

Efficient List-Decodable Regression using Batches

Proof. From item 3 in Lemma B.4,

‖EG′ [∇f b(w, κ)]− ED[∇f b(w, κ)]‖ ≤
√

2c4 ·
σ +

√
C ED[((w − w∗) · xbi)2]√

n

≤
√

2c4σ√
n

+

√
2c4C‖w − w∗‖2‖Σ‖√

n

≤
√

2c4σ√
n

+ ‖w − w∗‖ ·
√

2c4C√
n

.

Using n ≥ 32c4CC3
2,

‖EG′ [∇f b(w, κ)]− ED[∇f b(w, κ)]‖ ≤ 1

4C3
‖w − w∗‖+

√
2c4σ√
n

.

From Theorem C.2, and the observation ED[∇f bi (w, κ)] = ED[∇f b(w, κ)], we get∥∥ED[∇f b(w, κ)]
∥∥ ≥ 3

4C3
‖w − w∗‖.

The lemma follows by combining the above equation using triangle inequality.

Next, the general bound on the co-variance will be useful in proving Theorem C.1.
Lemma C.4. For any weight vector β, any set of vectors zb associated with batches, and any sub-collection of vectors
B′ ⊆ {b ∈ B : βb ≥ 1/2},

Covβ(zb) ≥ |B
′|

2|B|
‖E β [zb]− EB′ [z

b]‖2.

The proof of the lemma appears in Section C.2.

In Theorem C.1 we show that since βG ≥ 3/4|G|, we can find a sub-collection G′ of size |G|/2 such that for
each b ∈ G′, its weight βb ≥ 1/2. The we use the previous results for B′ = G′ and z = ∇f b(w, κ) to
get, Covβ(∇f b(w, κ)) ≥ |G′|

4|B|‖Eβ [∇f b(w, κ)] − EG′ [∇f b(w, κ)]‖ ≥ |G|
8|B|‖Eβ [∇f b(w, κ)] − EG′ [∇f b(w, κ)]‖ ≥

α
8 ‖Eβ [∇f b(w, κ)]− EG′ [∇f b(w, κ)]‖2.

From condition (c) of nice triplets we have Eβ [∇f b(w, κ)] ≈ 0 and from Lemma C.3 we have EG′ [∇f b(w, κ)] & ‖w−w∗‖.
Then from Lemma C.4, we get an upper bound Covβ(∇f b(w, κ)) & α · ‖w − w∗‖2.

As discussed before, combining this lower bound with the upper bound in condition (d), the theorem concludes ‖w−w∗‖ =
Õ(σ/

√
nα). Next, we formally prove Theorem C.1 using the above auxiliary lemmas and theorems.

Proof of Theorem C.1. Let G′ := {b ∈ G : βb ≥ 1/2}. Next, we show that |G′| ≥ |G|/2. To prove it by contradiction
assume the contrary that |G′| < |G|/2. Then

βG =
∑
b∈G

βb =
∑

b∈G\G′
βb +

∑
b∈G′

βb
(a)
≤

∑
b∈G\G′

1

2
+
∑
b∈G′

1 ≤ |G \G
′|

2
+ |G′| = |G| − |G

′|
2

+ |G′| < 3|G|/4,

here (a) follows as the definition of G′ implies that for any b /∈ G′, βb < 1/2 and for all batches βb ≤ 1. Above is a
contradiction, as we assumed in the Theorem that βG ≥ 3|G|/4.

Applying Lemma C.4 for B′ = G′ and zb = ∇f b(w, κ) we have

‖Covβ(∇f b(w, κ))‖ ≥ G′

2|B|
(
‖EG′ [∇f b(w, κ)]‖ − ‖E β [∇f b(w, κ)]‖

)2
≥ |G|

4|B|
(
‖EG′ [∇f b(w, κ)]‖ − ‖E β [∇f b(w, κ)]‖

)2
≥ α

4

(
‖EG′ [∇f b(w, κ)]‖ − ‖E β [∇f b(w, κ)]‖

)2
. (13)

17

Efficient List-Decodable Regression using Batches

In the above equation, using the bound in Lemma C.3 and bound on ‖E β [∇f b(w, κ)]‖ in condition (c) for nice triplet we
get,

‖Covβ(∇f b(w, κ))‖ ≥ α

4

(
max

{
0,

1

2C3
‖w − w∗‖ −

√
2c4σ√
n
− log(2/α)σ

8
√
nα

})2

.

We show that when ‖w − w∗‖ ≤ O(C3Cσ log(2/α)√
nα

), the above upper bound contradicts the following lower bound in
condition (d),

‖Covβ(∇f b(w, κ))‖ ≤ c5C
2 log2(2/α)(σ2 + ED[|(w − w∗) · xbi |]2)

n
≤ c5C

2 log2(2/α)(σ2 + ‖w − w∗‖2)

n
.

To prove the contradiction assume

‖w − w∗‖
8C3

> max

{
log(2/α)σ

8
√
nα

,

√
2c4σ√
n

,
2
√
c5Cσ log(2/α)√

nα

}
.

Using this lower bound on ‖w − w∗‖, we lower bound the co-variance. Combining the above lower bound on ‖w − w∗‖
and equation (13), we get,

‖Covβ(∇f b(w, κ))‖ ≥ α

4

(
1

4C3
‖w − w∗‖

)2

≥ α

4

(
2
√
c5Cσ log(2/α)√

nα
+

1

8C3
‖w − w∗‖

)2

≥ α

4

(
2
√
c5Cσ log(2/α)√

nα

)2

+
α

4

(
1

8C3
‖w − w∗‖

)2

≥ c5C
2 log2(2/α)σ2

n
+

α

256

‖w − w∗‖2

C3
2

≥ c5C
2 log2(2/α)σ2

n
+
c5C

2 log2(2/α)‖w − w∗‖2

n
,

here the last step used n ≥ 256
α c5C

2C3
2 log2(2/α).

This completes the proof of the contradiction. Hence,

‖w − w∗‖
8C3

≤ max

{
log(2/α)σ

8
√
nα

,

√
2c4σ√
n

,
2
√
c5Cσ log(2/α)√

nα

}
.

The above equation implies ‖w − w∗‖ ≤ O(C3Cσ log(2/α)√
nα

).

C.1. Proof of Theorem C.2

The following auxiliary lemma will be useful in the proof of the theorem.
Lemma C.5. For any z1 ∈ R, z2 > 0 and a symmetric random variable Z,∣∣∣∣E[(z1 + Z)− (z1 + Z)z2

max(|z1 + Z|, z2)

]∣∣∣∣ ≤ 2|z1|Pr(Z > z2 − |z1|)

Proof. We consider z1 ≥ 0 and prove the lemma for this case. The proof for z1 < 0 case then follows from the symmetry
of the distribution of Z around 0.

The term inside the expectation can be expressed in terms of indicator random variables as follows:

(z1 + Z)− (z1 + Z)z2

max(|z1 + Z|, z2)

= (z1 + Z − z2) · 1(Z > z2 − z1) + (z1 + Z + z2) · 1(Z < −z2 − z1)

= (z1 + Z − z2) · 1(z2 − z1 < Z ≤ z2 + z1) + (z1 + Z − z2) · 1(Z > z2 + z1) + (z1 + Z + z2) · 1(Z < −z2 − z1).

18

Efficient List-Decodable Regression using Batches

Next, taking the expectation on both sides in the above equation,

E
[
(z1 + Z)− (z1 + Z)z2

max(|z1 + Z|, z2)

]
= E[(z1 + Z − z2) · 1(z2 − z1 < Z ≤ z2 + z1)] + E[(z1 + Z − z2) · 1(Z > z2 + z1)]

+ E[(z1 + Z + z2) · 1(Z < −z2 − z1)]

= E[(z1 + Z − z2) · 1(z2 − z1 < Z ≤ z1 + z2)] + 2|z1|Pr(Z > z2 + z1),

where the last step follows because Z is symmetric and z1 = |z1| since we assumed z1 ≥ 0.

Then,∣∣∣∣E[(z1 + Z)− (z1 + Z)z2

max(|z1 + Z|, z2)

]∣∣∣∣ = E[|z1 + Z − z2| · 1(z2 − z1 < Z ≤ z2 + z1)] + 2|z1|Pr(Z > z2 + z1)

≤ 2|z1|Pr(z2 − z1 < Z ≤ z2 + z1) + 2|z1|Pr(Z > z2 + z1)

= 2|z1|Pr(Z > z2 − z1).

Next, using the above lemma we prove Theorem C.2.

Proof of Theorem C.2. Consider a random sample (xbi , y
b
i) from distribution D. Recall that nbi = ybi − w∗ · nbi denote the

random noise and is independent of xbi .

Consider (xbi · w − ybi)xbi −∇f bi (w, κ). the difference between the unclipped and the clipped gradient for the sample:

(xbi · w − ybi)xbi −∇f bi (w, κ) = (xbi · w − ybi)xbi −
(xbi · w − ybi)
|xbi · w − ybi | ∨ κ

κxbi

=

(
(xbi · (w − w∗)− nbi)xbi −

(xbi · (w − w∗)− nbi)
|xbi · (w − w∗)− nbi | ∨ κ

κ

)
xbi , (14)

where in the last equality we used the relation between xbi , y
b
i and nbi .

Next, by applying Lemma C.5, we get:

ED

[
(xbi · (w − w∗)− nbi)xbi −

(xbi · (w − w∗)− nbi)
|xbi · (w − w∗)− nbi | ∨ κ

κ

∣∣∣∣∣xbi
]
≤ 2|xbi · (w − w∗)| · Pr

(
nbi > κ− |xbi · (w − w∗)|

)
,

note that in the above expectation xbi is fixed and expectation is taken over nbi .

Let Z := 1
(
|xbi · (w − w∗)| ≥ κ/2

)
. Observe that Pr(nbi > κ− |(w − w∗) · xbi |) ≤ Z + Pr(nbi > κ/2). Combining this

observation with the above equation, we have:

ED

[
((w − w∗) · xbi − nbi)−

((w − w∗) · xbi − nbi)
|(w − w∗) · xbi − nbi | ∨ κ

κ

∣∣∣∣∣xbi
]
≤ 2|(w − w∗) · xbi | ·

(
Pr(nbi > κ/2) + Z

)
. (15)

When w 6= w∗ the bound holds trivially. Hence, in the remainder of the proof, we assume w 6= w∗. Let v := w−w∗
‖w−w∗‖ and

19

Efficient List-Decodable Regression using Batches

Zbi := 1
(
(|xbi · (w − w∗)| ≥ κ/2) ∪ (|nbi | ≥ κ/2)

)
. Then, for unit vector v ∈ Rd, we have

|ED[((w · xbi − ybi)xbi −∇f bi (w, κ)) · v]|
= |ED[ED[((w · xbi − ybi)xbi −∇f bi (w, κ)) · v|xbi]]|
≤ ED[|ED[((w · xbi − ybi)xbi −∇f bi (w, κ)) · v

∣∣xbi]]|]
(a)
≤ ED

[
2|(w − w∗) · xbi | · |xbi · v|

(
Z + Pr(nbi > κ/2)

)]
(b)
≤ ED

[
2|(w − w∗) · xbi |2

‖w − w∗‖
(
Z + Pr(nbi > κ/2)

)]
≤ 2

‖w − w∗‖
(
ED[Z · |(w − w∗) · xbi |2] + Pr(nbi > κ/2)ED[|(w − w∗) · xbi |2]

)
, (16)

here (a) follows from Equation (14) and Equation (15), and (b) follows from the definition of vector v. Next, we bound the
two terms on the right one by one. We start with the first term:

ED[Z · |(w − w∗) · xbi |2]
(a)
≤
(
E[(Z)2] · ED[(xbi · (w − w∗))4]

)1/2
(b)
≤
(
E[Z] · C ED[(xbi · (w − w∗))2]2

)1/2
(c)
≤
(
C Pr[|xbi · (w − w∗)| ≥ κ/2]

)1/2 · ED[(xbi · (w − w∗))2], (17)

where (a) used the Cauchy-Schwarz inequality, (b) used the fact that Z is an indicator random variable, hence, Z2 = Z and
L4− L2 hypercontractivity, and (c) follows from the definition of Z.

Applying the Markov inequality to (nbi)
2 we get:

Pr[|nbi | ≥ κ/2] ≤ ED[(nbi)
2]

(κ/2)2
≤ σ2

(κ/2)2
. (18)

Similarly, applying the Markov inequality to |xbi · (w − w∗)|4 yields:

Pr[|xbi · (w − w∗)| ≥ κ/2] ≤ ED[|xbi · (w − w∗)|4]

(κ/2)4
≤ C ED[|xbi · (w − w∗)|2]2

(κ/2)4
, (19)

where the last inequality uses L4− L2 hypercontractivity.

Combining Equations (16), (17), (18) and (19), we have

|ED[((w · xbi − ybi)xbi −∇f bi (w, κ)) · v]| ≤ 8ED[(xbi · (w − w∗))2]

κ2‖w − w∗‖
(
C ED[(xbi · (w − w∗))2] + σ2

)
.

Next,

ED[(w · xbi − ybi)xbi · v]
(a)
= ED[((w − w∗) · xbi − nbi)xbi · v]

(b)
= ED[((w − w∗) · xbi)xbi · v]− ED[nbi] · ED[xbi · v]

(c)
= ED[((w − w∗) · xbi)xbi · v]

(d)
=

ED
[
((w − w∗) · xbi)2

]
‖w − w∗‖

,

here (a) follows from the relationship between xbi , y
b
i and nbi , (b) follows from as xbi and nbi are independent, (c) uses

ED[nbi] = 0 and (d) follows from the definition of v.

20

Efficient List-Decodable Regression using Batches

Combining the previous two equations using the triangle inequality:

|ED[∇f bi (w, κ) · v]| ≥ |ED[(w · xbi − ybi)xbi · v]| − |ED[((w · xbi − ybi)xbi −∇f bi (w, κ)) · v]|

≥ ED
[

((w − w∗) · xbi)2

‖w − w∗‖

]
|
(

1− 8

κ2

(
C ED[(xbi · (w − w∗))2] + σ2

))
≥ ED

[
((w − w∗) · xbi)2

‖w − w∗‖

](
1− 1

4

)
≥ 3

4
‖w − w∗‖ · ‖Σ‖

C3
=

3

4C3
‖w − w∗‖,

here the second last inequality follows from lower bound on κ.

The theorem then follows by observing,

‖ED[∇f bi (w, κ)]‖ ≥ max
‖u‖=1

|ED[∇f bi (w, κ) · u]| ≥ |ED[∇f bi (w, κ) · v]| ≥ 3

4C3
‖w − w∗‖.

C.2. Proof of Lemma C.4

Proof. Note that

‖Covβ(zb)‖ =

∥∥∥∥∥∑
b∈B

βb

βB
(zb − E β [zb])(zb − E β [zb])ᵀ

∥∥∥∥∥
≥

∥∥∥∥∥∑
b∈B′

βb

βB
(zb − E β [zb])(zb − E β [zb])ᵀ

∥∥∥∥∥
(a)
≥

∥∥∥∥∥∑
b∈B′

1

2|B|
(zb − E β [zb])(zb − E β [zb])ᵀ

∥∥∥∥∥
(b)
≥ 1

2|B|
∥∥|B′|(EB′ [z

b]− E β [zb])(EB′ []z
b]− E β [zb])ᵀ

∥∥
=
|B′|
2|B|
‖E β [zb]− EB′ [z

b]‖2,

where (a) used βb ≥ 1/2 for b ∈ B′ and the trivial bound βB ≤ |B| and (b) follows from the fact that any Z,∥∥∥∥∥∑
b∈B′

(zb − Z)(zb − Z)ᵀ

∥∥∥∥∥ ≥ |B′| · ∥∥∥(EB′ [z
b]− Z

)(
EB′ [z

b]− Z
)ᵀ∥∥∥.

We complete the proof of the lemma by proving the above fact.∥∥∥∥∥∑
b∈B′

(zb − Z)(zb − Z)ᵀ

∥∥∥∥∥ =

∥∥∥∥∥∑
b∈B′

(zb − EB′ [z
b] + EB′ [z

b]− Z)(zb − EB′ [z
b] + EB′ [z

b]− Z)ᵀ

∥∥∥∥∥
(a)
=

∥∥∥∥∥∑
b∈B′

(
(zb − EB′ [z

b])(zb − EB′ [z
b])ᵀ + (EB′ [z

b]− Z)(EB′ [z
b]− Z)ᵀ

)∥∥∥∥∥
(b)
≥ |B′| ·

∥∥(EB′ [z
b]− Z)(EB′ [z

b]− Z)ᵀ
∥∥,

here (a) follows as
∑
b∈B′ z

b = |B′|EB′ [z
b] and hence,

∑
b∈B′(z

b − EB′ [z
b])(EB′ [z

b] − Z)ᵀ =
∑
b∈B′(EB′ [z

b] −
Z)(zb − EB′ [z

b])ᵀ = 0, and (b) follows as (zb − EB′ [z
b])(zb − EB′ [z

b])ᵀ are positive semi-definite matrices.

21

Efficient List-Decodable Regression using Batches

Algorithm 2 FINDCLIPPINGPPARAMETER

1: Input: Set B, β, σ, a1 ≥ 1, a2 data {{(xbi , ybi }i∈[n]}b∈B .
2: κ←∞
3: while True do
4: wκ ← any approximate stationary point of clipped losses {f b(· , κ)} w.r.t. weight vector β such that

‖Eβ [f b(wκ, κ)]‖ ≤ log(2/α)σ
8
√
nα

5: κnew ← max
{
a1

√
E β [f b(wκ, κ)], a2σ

}
.

6: if κnew ≥ κ/2 then
7: Break
8: end if
9: κ← κnew

10: end while
11: Return(κ,wκ)

D. Subroutine FINDCLIPPINGPARAMETER and its analysis
Theorem D.1. For any weight vector β, a1 ≥ 1, and a2 > 0, Algorithm FINDCLIPPINGPARAMETER runs at most
log
(
O
(

maxi,b |ybi |
σ

))
iterations of the while loop and returns κ and wκ such that

1. wκ is a (approximate) stationary point for {f b(·, κ)} w.r.t. weight vector β such that

‖E β [f b(wκ, κ)]‖ ≤ log(2/α)σ
8
√
nα

.

2. max
{
a1

√
Eβ [f b(wκ, κ)], a2σ

}
≤ κ ≤ 2 max

{
a1

√
Eβ [f b(wκ, κ)], a2σ

}
.

3. max
{
a1
2 Eβ

[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
, a2σ

}
≤ κ ≤ max

{
4a2

1 Eβ
[

1
n

∑
i∈[n] |wκ · xbi − ybi |

]
, a2σ

}
.

Proof. First, we bound the number of iterations of the while loop. Since wκ is a stationary point for f b(., κ), hence its
will achieve a smaller loss than w = 0, hence Eβ [f b(wκ, κ)] ≤ Eβ [f b(0, κ)]. And, since the clipped loss is smaller
than unclipped loss, Eβ [f b(0, κ)] ≤ Eβ [f b(0)] = Eβ [1

n

∑
i∈[n](y

b
i)

2] ≤ maxi,b(y
b
i)

2. Therefore after the first iteration
κ ≤ max

{
a1 maxi,b |ybi |, a2σ

}
. Also in each iteration apart from the last one κ decreases by a factor 2 and κ can’t be

smaller than a2σ. Hence, the number of iterations between the first one and the last one are at most log(
a1 maxi,b |ybi |

a2σ
)).

Therefore the total number of iterations are at most log(
a1 maxi,b |ybi |

a2σ
)) + 2.

The first item follows from the definition of wκ in the subroutine FINDCLIPPINGPPARAMETER.

Next to prove the lower bound in item 2 we prove the claim that if in an iteration κ ≥ max
{
a1

√
E β [f b(wκ, κ)], a2σ

}
then

the same condition will hold in the next iteration.

The condition κ ≥ max
{
a1

√
E β [f b(wκ, κ)], a2σ

}
in the claim implies that κ ≥ κnew. Then from the defini-

tion of clipped loss, for each w and each b we have f b(w, κ) ≥ f b(w, κnew). It follows that Eβ [f b(wκ, κ)] ≥
Eβ [f b(wκ, κnew)]. And further wκnew is stationary point for f b(., κnew), hence it will achieve a smaller loss,
Eβ [f b(wκnew , κnew)] ≤ Eβ [f b(wκ, κnew)]. Therefore, Eβ [f b(wκnew , κnew)] ≤ Eβ [f b(wκ, κ)]. Hence, κnew =

max
{
a1

√
E β [f b(wκ, κ)], a2σ

}
≥ max

{
a1

√
Eβ [f b(wκnew , κnew)], a2σ

}
. This completes the proof of the claim.

Since the initial value of κ is infinite the claim must hold in the first iteration, and therefore in each iteration thereafter.
Therefore it must hold in the iteration when the algorithm terminates. This completes the proof of the lower bound in item 2.

The upper bound in the second item follows by observing that when the algorithm ends κ ≤ 2κnew and κnew =
a1

√
Eβ [f b(wκ, κ)] + a2σ.

22

Efficient List-Decodable Regression using Batches

Finally, we prove item 3 using item 2. We start by proving the lower bound in item 3. From the lower bound in item 2, we have,
κ ≥ a2σ. Then to complete the proof of the lower bound in item 3, it suffices to prove κ > a1

2 Eβ
[

1
n

∑
i∈[n] |wκ · xbi − ybi |

]
.

To prove this by contradiction suppose κ < a1
2 Eβ

[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
. Then

E β [f b(wκ, κ)]

= E β

 1

n

∑
i∈[n]

f bi (wκ, κ)


=

1

n

∑
i∈[n]

E β

[
1(|wκ · xbi − ybi | ≤ κ) · (wκ · xbi − ybi)2

2
+ 1(|wκ · xbi − ybi | > κ) ·

(
κ|wκ · xbi − ybi | −

κ2

2

)]

≥ 1

n

∑
i∈[n]

(
E β

[(
1(|wκ · xbi − ybi | ≤ κ) · (wκ · xbi − ybi)2

2

]
+ E β

[
1(|wκ · xbi − ybi | > κ) ·

(
κ|wκ · xbi − ybi |

2

))])
(a)
≥ 1

2n

∑
i∈[n]

E β

[
1(|wκ · xbi − ybi | ≤ κ) · |wκ · xbi − ybi |

]2
+

κ

2n

∑
i∈[n]

E β

[
1(|wκ · xbi − ybi | > κ) · |wκ · xbi − ybi |

]
(b)
≥ 1

2

 1

n

∑
i∈[n]

E β

[
1(|wκ · xbi − ybi | ≤ κ) · |wκ · xbi − ybi |

]2

+
κ

2n

∑
i∈[n]

E β

[
1(|wκ · xbi − ybi | > κ) · |wκ · xbi − ybi |

]
(c)
≥ κ

a1

 1

n

∑
i∈[n]

E β

[
1(|wκ · xbi − ybi | ≤ κ) · |wκ · xbi − ybi |

]+
κ

2n

∑
i∈[n]

E β

[
1(|wκ · xbi − ybi | > κ) · |wκ · xbi − ybi |

]
(d)
≥ κ

2a1n

∑
i∈[n]

(
E β

[
1(|wκ · xbi − ybi | ≤ κ) · |wκ · xbi − ybi |

]
+ E β

[
1(|wκ · xbi − ybi | > κ) · |wκ · xbi − ybi |

])

=
κ

2a1
E β

 1

n

∑
i∈[n]

|wκ · xbi − ybi |


(e)
≥ κ2

a2
1

, (20)

here (a) and (b) follows the Cauchy-Schwarz inequality, (c) and (e) follows from our assumption κ <
a1
2 Eβ

[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
and (d) follows since a1 ≥ 1.

This contradicts the lower bound κ ≥ a1

√
E β [f b(wκ, κ)] in item 2. Hence we conclude, κ ≥

a1
2 Eβ

[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
. This completes the proof of the lower bound in item 3.

Next, we prove the upper bound in item 3. We consider two cases. For the case when a1

√
E β [f b(wκ, κ)] ≤ a2σ then upper

bound in item 3 follows from the upper bound in item 2. Next we prove for the other case, when a1

√
E β [f b(wκ, κ)] > a2σ.

For this case item 2 implies E β [f b(wκ, κ)] ≥ κ2

4a21
.

Next, from the definition of f b(w, κ),

E β [f b(wκ, κ)] = E β

 1

n

∑
i∈[n]

f bi (wκ, κ)

 ≤ E β

 1

n

∑
i∈[n]

κ|wκ · xbi − ybi |

 ≤ κE β

 1

n

∑
i∈[n]

|wκ · xbi − ybi |

. (21)

Combining the above equation and E β [f b(wκ, κ)] ≥ κ2

4a21
, we get,

κ2

4a2
1

≤ κE β

 1

n

∑
i∈[n]

|wκ · xbi − ybi |

.
23

Efficient List-Decodable Regression using Batches

The upper bound in item 3 then follows from the above equation.

E. Correctness of estimated parameters for nice weight vectors
For batch b ∈ B, let vb(w) := 1

n

∑
i∈[n] |w · xbi − ybi |. Since w will be fixed in the proofs, we will often denote vb(w) as vb.

In this section, we state and prove Theorems E.1, E.2 and E.4. For any triplet with a nice weight vector, Theorem E.1
ensures the correctness of parameters calculated for Type-1 use of MULTIFILTER. For any triplet with a nice weight vector,
Theorem E.4 ensures the correctness of parameters calculated for the case when it gets added to M or goes through Type-2
use of MULTIFILTER. Theorem E.2 serves as an intermediate step in proving Theorem E.4.

Theorem E.1. In Algorithm 1 if the weight vector β is such that βG ≥ 3|G|/4, n ≥ (16)2c2C, and Theorem B.2’s
conclusion holds, then for any w, the parameter θ1 computed in the subroutine satisfies

θ1 ≥ c2
(
σ2 + C ED[|w · xbi − ybi |]2

n

)
,

where c2 is the same universal positive constant as item 2 in Lemma B.4.

Proof. To prove the theorem we first show that θ0 calculated in the algorithm is ≥ 7ED[|w·xbi−y
b
i |]

8 − σ
8
√
C

.

Let MED denote median of the set {vb : b ∈ G}. From Theorem B.2 and Markov’s inequality, it follows that

∣∣MED− ED[|w · xbi − ybi |]
∣∣ ≤ 2

√
c2

(
σ2 + C ED[|w · xbi − ybi |]2

n

)
≤ ED[|w · xbi − ybi |]

8
+

σ

8
√
C
. (22)

where the last inequality uses n ≥ (16)2c2C. It follows that

MED ≥ 7ED[|w · xbi − ybi |]
8

− σ

8
√
C
.

Then to complete the proof we show that MED ≤ θ0. Note that∑
b∈G:vb<MED

βb ≤ |{b ∈ G : vb < MED}| < |G|
2
.

Then, ∑
b∈B:vb≥MED

βb ≥
∑

b∈G:vb≥MED

βb =
∑
b∈G

βb −
∑

b∈G:vb<MED

βb > βG − |G|
2
≥ 3|G|

4
− |G|

2
≥ |G|

4
. (23)

And since from the definition of θ0, we have
∑
b:vb>θ0

βb ≤ α|B|/4 ≤ |G|4 , it follows that MED ≤ θ0.

Therefore, θ0 ≥ 7ED[|w·xbi−y
b
i |]

8 − σ
8
√
C

. The lower bound in the theorem on θ1 then follows from the relation between θ0

and θ1.

Theorem E.2. Suppose regularity conditions holds, and β, w and n satisfy n ≥ max{ (32)2c3c2C log2(2/α)
α , (16)2c2C},

βG ≥ 3|G|/4, and

Varβ
(
vb(w)

)
≤ c3 log2(2/α)θ1,

then

3ED[|(w − w∗) · xbi |]
4

− σ ≤ E β

[
vb(w)

]
≤ 4ED[|(w − w∗) · xbi |]

3
+ 2σ.

24

Efficient List-Decodable Regression using Batches

In proving Theorem E.2 the following auxiliary lemma will be useful. We prove this lemma in Subsection E.1.

Lemma E.3. Let Z be any random variable over the reals. For any z ∈ R, such that Pr[Z > z] ≤ 1/2, we have

z −

√
Var(Z)

Pr[Z ≥ z]
≤ E[Z] ≤ z +

√
2 Var(Z).

and for all z ∈ Z,

|E[Z]− z| ≤

√
Var(Z)

min{Pr[Z ≤ z],Pr[Z ≥ z], 0.5}
.

Now we prove Theorem E.2 using the above Lemma.

Proof of Theorem E.2. Let MED denote median of the set {vb : b ∈ G}. In Equation (23) we showed,∑
b∈B:vb≥MED

βb ≥ |G|
4
.

Hence, ∑
b∈B:vb≥MED β

b

βB
≥ |G|

4|B|
≥ α

4
.

Similarly, by symmetry, one can show ∑
b∈B:vb≤MED β

b

βB
≥ α

4
.

Then from the second bound in Lemma E.3,

|E β [vb]−MED| ≤
√

4 Varβ [vb]

α
. (24)

From Equation (22), the above equation, and the triangle inequality,

|E β [vb]− ED[|w · xbi − ybi |]| ≤
√

4 Varβ [vb]

α
+

ED[|w · xbi − ybi |]
8

+
σ

8
√
C
. (25)

Next, from the definition of θ0, we have
∑
b:vb≥θ0 β

b ≥ α|B|/4 and
∑
b:vb>θ0

βb < α|B|/4. Then∑
b:vb≥θ0 β

b

βB
≥ α|B|

4βB
≥ α|B|

4|B|
≥ α

4
,

and ∑
b:vb>θ0

βb

βB
<
α|B|
4βB

≤ α|B|
4βG

≤ α|B|
4(3|G|/4)

≤ 1

3
.

Then from the first bound in Lemma E.3,

θ0 −
√

4 Varβ [vb]

α
≤ E β [vb]. (26)

In this lemma, we had assumed the following bound on the variance of vb,

Varβ [vb] ≤ c3 log2(2/α)θ1.

25

Efficient List-Decodable Regression using Batches

Next,

Varβ [vb]

α
≤ c3 log2(2/α)θ1

α
=
c3 log2(2/α)c2(σ2 + (2

√
Cθ0 + σ)2)

nα
≤ (σ2 + 4Cθ2

0 + 2σ2)

322C
≤ σ2

256C
+

θ2
0

256
,

here the equality follows from the relation between θ0 and θ1 and the first inequality follows as n ≥ (32)2Cc3c2 log2(2/α)
α .

Then √
Varβ [vb]

α
≤
√

σ2

256C
+

θ2
0

256
≤ σ

16
√
C

+
θ0

16
≤ σ

16
√
C

+
1

16

(
E β [vb] + 2

√
Varβ [vb]

α

)
,

here the second inequality used
√
a2 + b2 ≤ |a|+ |b| and the last inequality used (26). From the above equation, it follows

that √
Varβ [vb]

α
≤ σ

14
√
C

+
1

14
E β [vb].

Combining the above bound and Equation (25)

|E β [vb]− ED[|w · xbi − ybi |]| ≤
σ

7
√
C

+
1

7
E β [vb] +

ED[|w · xbi − ybi |]
8

+
σ

8
√
C
.

From the above equation it follows that

49ED[|w · xbi − ybi |]
64

− 15σ

64
√
C
≤ E β [vb] ≤ 21ED[|w · xbi − ybi |]

16
+

5σ

16
√
C
. (27)

Finally, we upper bound and lower bound ED[|w · xbi − ybi |] to complete the proof. To prove the upper bound, note that,

ED[|w · xbi − ybi |] = ED[|(w − w∗) · xbi − nbi |] ≤ ED[|(w − w∗) · xbi |] + ED[|nbi |] ≤ ED[|(w − w∗) · xbi |] + σ,

here the last inequality used ED[|nbi |] ≤
√

ED[|nbi |2]. Combining the above upper bound with the upper bound in (27) and
using C ≥ 1 proves the upper bound in the lemma. Similarly, we can show

ED[|w · xbi − ybi |] ≥ ED[|(w − w∗) · xbi |]− σ,

Combining the above lower bound with the lower bounds in (27) and using C ≥ 1 proves the lower bound in the lemma.

Theorem E.4. Suppose regularity conditions holds, and β, w and n satisfy n ≥ max{ (32)2c3c2C log2(2/α)
α , (16)2c2C},

βG ≥ 3|G|/4, and

Varβ

 1

n

∑
i∈[n]

|w · xbi − ybi |

 ≤ c3 log2(2/α)θ1,

then for κ, w returned by subroutine FINDCLIPPINGPARAMETER and θ2 calculated by MAINALGORITHM, we have

1. c4
σ2+C ED[((w−w∗)·xbi)

2]
n ≤ θ2 ≤ c6C

2(σ2+ED[|(w−w∗)·xbi |]
2)

n , where c4 is the same positive constant as in item 1 of
Lemma B.4 and c6 is some other positive universal constant.

2. max{8
√
C ED[|xbi · (w − w∗)|2], 8σ} ≤ κ and κ ≤ c7C

2
(√

ED[|xbi · (w − w∗)|2] + σ
)

, where c7 is some other
positive universal constant.

Note that the range of κ in item 2 of the above Theorem is the same as that in (b).

In proving the theorem the following lemma will be useful.

26

Efficient List-Decodable Regression using Batches

Lemma E.5. For any vectors u, we have√
ED[|u · xbi |2]

8C
≤ ED[|u · xbi |] ≤

√
ED[|u · xbi |2]

We prove the above auxiliary lemma in Section E.2 using the Cauchy-Schwarz inequality for the upper bound and L4− L2
hypercontractivity for the lower bound.

Next, we prove Theorem E.4 using the above lemma and Theorem E.2.

Proof of Theorem E.4. We start by proving the first item. For convenience, we recall the definition of θ2 in (8),

θ2 = c4
n

(
σ2 + 16C2

(
E β [vb] + σ

)2)
.

The upper bound in the item follows from this definition of θ2 and the upper bound on E β [vb] in Lemma E.2.

Using the lower bound bound on E β [vb] in Lemma E.2 and definition of θ2,

θ2 ≥ c4
n

(
σ2 + 9C2 ED[|(w − w∗) · xbi |]2

)
≥ c4

n

(
σ2 + 9

8C
2 ED[|(w − w∗) · xbi |2]

)
,

where the last step used Lemma E.5. This completes the proof of lower bound item 1.

Next, we prove item 2. From Theorem D.1,

max
{
a1
2 Eβ

[
1
n

∑
i∈[n] |w · xbi − ybi |

]
, a2σ

}
≤ κ ≤ max

{
4a2

1 Eβ
[

1
n

∑
i∈[n] |w · xbi − ybi |

]
, a2σ

}
.

Since for any a, b > 0, (a+ b)/2 ≤ max(a, b) ≤ a+ b. Then from the above bound,

a1
4 Eβ

[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
+ a2σ

2 ≤ κ ≤ 4a2
1 Eβ

[
1
n

∑
i∈[n] |wκ · xbi − ybi |

]
+ a2σ.

Using the bound on E β [vb] in Lemma E.2 in the above equation

a1
4

(
3ED[|(w−w∗)·xbi |]

4 − σ
2

)
+ a2σ

2 ≤ κ ≤ 4a2
1

(
4ED[|(w−w∗)·xbi |]

3 + 2σ
)

+ a2σ.

Using Lemma E.5, and the above equation,

3a1
32
√

2C

√
ED[|(w − w∗) · xbi |2] + (4a2−a1)σ

8 ≤ κ ≤ 16a21
3

√
ED[|(w − w∗) · xbi |2] + (8a2

1 + a2)σ.

The upper bound and lower bound in item 2 then follow by using the values a1 = 256C
√

2
3 and a2 = a1

4 + 64.

E.1. Proof of Lemma E.3

Proof of Lemma E.3. We only prove the first statement as the second statement and then follow from the symmetry.

We start by proving the upper bound in the first statement. We consider two cases, E[Z] ≤ z and E[Z] > z. For the first
case, the upper bound automatically follows. Next, we prove the second case. In this case,

Var(Z) = E[(Z − E[Z])2] ≥ E[1(Z ≤ z)(Z − E[Z])2] ≥ E[1(Z ≤ z)(z − E[Z])2] = Pr[Z ≤ z](z − E[Z])2.

Then using Pr[Z ≤ z] = 1− Pr[Z > z] ≥ 1/2, we get

Var(Z) ≥ (z − E[Z])2

2
.

The upper bound from the above equation.

Next, we prove the lower bound. Again, we consider two cases, E[Z] ≥ z and E[Z] < z. For the first case, the lower bound
automatically follows. Next, we prove the second case. In this case,

Var(Z) = E[(Z − E[Z])2] ≥ E[1(Z ≥ z)(Z − E[Z])2] ≥ E[1(Z ≥ z)(z − E[Z])2] = Pr[Z ≥ z](z − E[Z])2,

27

Efficient List-Decodable Regression using Batches

from which the lower bound follows.

By symmetry, for any z ∈ R, such that Pr[Z < z] ≤ 1/2, one can show that

z −
√

2 Var(Z) ≤ E[Z] ≤ z +

√
Var(Z)

Pr[Z ≤ z]
.

Since for any z, either Pr[Z > z] ≤ 1/2 or Pr[Z < z] ≤ 1/2, Hence, either the first bound in the Lemma or the above
bound holds for each z, therefore for any z ∈ R,

z −max

{√
Var(Z)

Pr[Z ≥ z]
,
√

2 Var(Z)

}
≤ E[Z] ≤ z + max

{√
Var(Z)

Pr[Z ≤ z]
,
√

2 Var(Z)

}
.

The second bound in the lemma is implied by the above bound.

E.2. Proof of Lemma E.5

Proof of Lemma E.5. The upper bound on ED[|u · xbi |] follows from the Cauchy-Schwarz inequality,

ED[|u · xbi |] ≤
√

ED[|u · xbi |2] ≤ ‖Σ‖ ≤ 1.

Next, we prove the lower bound. From Markov’s inequality

PrD[‖xbi · u‖2 ≥ 2C ED[‖xbi · u‖2]] = PrD[‖xbi · u‖4 ≥ 4C2(ED[‖xbi · u‖2])2] =
ED[‖xbi · u‖4]

4C2(ED[‖xbi · u‖2])2
≤ 1

4C
,

where the last step uses L4− L2 hypercontractivity.

Then, from the Cauchy-Schwarz inequality,

ED[‖xbi · u‖2 · 1(‖xbi · u‖2 ≥ 2C ED[‖xbi · u‖2])] ≤
√

ED
[
1
(
‖xbi · u‖2 ≥ 2C ED[‖xbi · u‖2]

)]
· ED[‖xbi · u‖4]

≤
√

PrD
[
‖xbi · u‖2 ≥ 2C ED[‖xbi · u‖2]

]
· C ED[‖xbi · u‖2]2

≤ 1

2
ED[‖xbi · u‖2].

Then,

ED[‖xbi · u‖2 · 1(‖xbi · u‖2 < 2C ED[‖xbi · u‖2])] = ED[‖xbi · u‖2]− ED[‖xbi · u‖2 · 1(‖xbi · u‖2 ≥ 2C ED[‖xbi · u‖2])]

≥ 1

2
ED[‖xbi · u‖2]

Next,

ED
[
‖xbi · u‖2 · 1

(
‖xbi · u‖2 < 2C ED[‖xbi · u‖2]

)]
≤ ED

[
‖xbi · u‖ ·

√
2C ED[‖xbi · u‖2] · 1

(
‖xbi · u‖2 < 2C ED[‖xbi · u‖2]

)]
≤
√

2C ED[‖xbi · u‖2] · ED[‖xbi · u‖].

Combining the above two equations we get

ED[‖xbi · u‖] ≥
ED[‖xbi · u‖2]

2
√

2C ED[‖xbi · u‖2]
=

√
ED[‖xbi · u‖2]

2
√

2C
.

28

Efficient List-Decodable Regression using Batches

F. Multi-filtering
In this section, we state the subroutine MULTIFILTER, a simple modification of BASICMULTIFILTER algorithm in (Di-
akonikolas et al., 2020b).

The subroutine takes a weight vector β, a real function zb on batches, and a parameter θ as input and produces new weight
vectors.

This subroutine is used only when:

VarB,β(zb) > c3 log2(2/α)θ, (28)

where c3 is an universal constant (Same as 2∗C, where C is the constant in BASICMULTIFILTER algorithm in (Diakonikolas
et al., 2020b)).

When the variance of zb for good batches is smaller than θ and the weight vector β is nice that is βG ≥ 3/4|G|, then at least
one of the new weight vectors produced by this subroutine has a higher fraction of weights in good vector than the original
weight vector β.

Algorithm 3 MULTIFILTER

Input: Set B, α, β, {zb}b∈B , θ. {Input must satisfy Condition (28)}
Let a = inf{z :

∑
b:zb<z β

b ≤ αβB/8} and b = sup{z :
∑
b:zb>z β

b ≤ αβB/8}
Let B′ = {b ∈ B : zb ∈ [a, b]}
if VarB′,β(zb) ≤ c3 log2(2/α)θ

2 then
Let f b = minz∈[a,b] |zb − z|2, and the new weight of each batch b ∈ B be

βbnew =
(

1− fb

max
b∈B:βb>0

fb

)
βb (29)

NEWWEIGHTS ← {βnew}
else

Find z ∈ R and R > 0 such that sets B′ = {b ∈ B : zb ≥ z −R} and B′′ = {b ∈ B : zb < z +R} satisfy

(βB
′
)2 + (βB

′′
)2 ≤ (βB)2, (30)

and

min
(

1− βB
′

βB
, 1− βB

′′

βB

)
≥ 48 log(2

α)

R2 . (31)

{Existence of such z and R is guaranteed as shown in Lemma 3.6 of (Diakonikolas et al., 2020b).}
For each b ∈ B, let βb1 = βb · 1(b ∈ B′) and βb2 = βb · 1(b ∈ B′′). Let β1 = {βb1}b∈B and β2 = {βb2}b∈B .
NEWWEIGHTS ← {β1, β2}

end if
Return(NEWWEIGHTS)

In BASICMULTIFILTER subroutine of (Diakonikolas et al., 2020b) input is not restricted by the condition in Equation (28).
However, when input meets this condition BASICMULTIFILTER and its modification MULTIFILTER behaves the same.

Therefore, the guarantees for weight vectors returned by MULTIFILTER follows from the guarantees of BASICMULTIFILTER
in (Diakonikolas et al., 2020b). We characterize these guarantees in Theorem F.1.
Theorem F.1. Let {zb}b∈B be collection of real numbers associated with batches, β be a weight vector, and threshold
θ > 0 be such that condition in (28) holds. Then MULTIFILTER(B, β, {zb}b∈B , θ1) returns a list NEWWEIGHTS containing
either one or two new weight vectors such that,

1. Sum of square of the total weight of new weight vectors is bounded by the square of the total weight of β, namely∑
β̃∈NEWWEIGHTS

(β̃B)2 ≤ (βB)2. (32)

29

Efficient List-Decodable Regression using Batches

2. In the new weight vectors returned the weight of at least one of the weight vectors has been set to zero, that is for each
weight vector β̃ ∈ NEWWEIGHTS,

{b : β̃b > 0} ⊂ {b : βb > 0}, (33)

3. If weight vector β is such that βG ≥ 3|G|/4 and for good batches the variance VarG(zb) ≤ θ is bounded, then for at
least one of the weight vector β̃ ∈ NEWWEIGHTS,

βG − β̃G

βG
≤ βB − β̃B

βB
· 1

24 log(2/α)
. (34)

Proof. When the list NEWWEIGHTS contains one weight vector it is generated using Equation (29), and when the list
NEWWEIGHTS contains one weight vector it is generated using Equations (30) and (31). In both cases, item 1 and item 2 of
the Theorem follow immediately from these equations. The last item follows from Corollary 3.8 in (Diakonikolas et al.,
2020b).

F.1. Guarantees for the use of MULTIFILTER in Algorithm 1

The following Theorem characterizes the use MULTIFILTER by our algorithm. The proof of the theorem is similar to the
proofs for the main algorithm in (Diakonikolas et al., 2020b).

Theorem F.2. At the end of Algorithm 1 the size of M is at most 4/α2 and the algorithm makes at most O(|B|/α2) calls to
MULTIFILTER. And, if for every use of subroutine MULTIFILTER by the algorithm we have VarG(zb) ≤ θ then there is at
least one triplet (β,w, κ) in M such that βG ≥ 3|G|/4.

Proof. First note that the if blocks in Algorithm 1 ensures that for every use of subroutine MULTIFILTER Equation (28) is
satisfied, therefore we can use the guarantees in Theorem F.1.

First we upper bound the size of M .

The progress of Algorithm 1 may be described using a tree. The internal nodes of this tree are the weight vectors that
have gone through subroutine MULTIFILTER at some point of the algorithm, and children of these internal nodes are new
weight vectors returned by MULTIFILTER. Observe that any weight vector β encountered in Algorithm 1 is ignored iff
βB < α|B|/2. If it is not ignored then either it is added to M (in form of a triplet), or else it goes through subroutine
MULTIFILTER.

It follows that, if a node β is an internal node or a leaf in M then

βB ≥ α|B|/2. (35)

From Equation (32), it follows that the total weight squared for each node is greater than equal to that of its children. It
follows that the total weight squared of the root, βinit is greater than equal to the sum of the square of weights of all the
leaves. And since all weight vectors in M are among the leaves of the tree, and have total weight at least α|B|/2,

(βBinit)
2 ≥

∑
β∈M

(βB)2 ≥
∑
β∈M

(
α|B|

2
)2,

here the last step follows from Equation (35). Using βBinit = |B|, in the above equation we get |M | ≤ 4/α2.

Similarly, it can be shown that the number of branches in the tree is at most O(1/α2). Item 2 in Theorem F.1 implies that
each iteration of MULTIFILTER zeroes out the weight of one of the batches. Hence for any weight β at depth d, we have
βB ≤ |B| − d. Therefore, the depth of the tree can’t be more than |B|. Hence, the number of nodes in the tree is upper
bounded by O(|B|/α2). And since each call to MULTIFILTER corresponds to a non-leaf node in the tree, the total calls to
MULTIFILTER by Algorithm 1 are upper bounded by O(|B|/α2).

Next, we show that if for each use of MULTIFILTER we have VarG(zb) ≤ θ then one of the weight vector β ∈ M must
satisfy βG ≥ 3|G|/4.

30

Efficient List-Decodable Regression using Batches

Let β0 = βinit and suppose for each i, weight vectors βi and βi+1 are related as follows:

βGi − βGi+1

βGi
≤
βBi − βBi+1

βBi
· 1

24 log(2/α)
. (36)

Then Lemma 3.12 in (Diakonikolas et al., 2020b) showed that under the above relation, for each i, we have βGi ≥ 3|G|/4.

We show that there is a branch of the tree such that βi and βi+1 are related using the above equation, where for each i, βi
denote the weight vector corresponding to the node at ith level in this branch. From the preceding discussion, this would
imply that for each i, βGi ≥ 3|G|/4.

We prove it by induction. For i = 0, we select βi = βinit. Note that βGinit = |G|, hence βGi ≥ 3|G|/4.

If βi is a leaf then the branch is complete. Else, since βGi ≥ 3|G|/4, item 3 in Theorem F.1 implies that we can select one of
the child of βi as βi+1 so that (36) holds. Then from the preceding discussion, we have βGi+1 ≥ 3|G|/4. By repeating this
argument, we keep finding the next node in the branch, until we reach the leaf. Next, we argue that the leaf at the end of this
branch must be in M .

Let β denote the weight vector for the leaf. From the above discussion, it follows that βG ≥ 3|G|/4. Hence, βB ≥ βG ≥
3|G|/4 ≥ 3α|B|/4 > α|B|/2.

As discussed earlier any leaf β is not part of M iff βB ≤ α|B|/2. Hence, the leaf at the end of the above branch must be in
M . This concludes the proof of the Theorem.

G. Eliminating Additional Distributional Assumptions
In this section, we discuss how we can remove assumptions 2 and 5 regarding the distribution of data in Section 2 of the
main paper. We demonstrate that our results can still be achieved without these assumptions.

Assumption 2 states that there exists a constant C1 > 0 such that for random samples (xbi , y
b
i) ∼ D, we have ‖xbi‖ ≤ C1

√
d

almost surely. In the non-batch setting, Cherapanamjeri et al. (2020) (Cherapanamjeri et al., 2020b) have shown that this
assumption is not limiting. They have proven that if other assumptions are met, then there exists a constant C1 such that
the probability of ‖xbi‖ ≤ C1

√
d exceeds 0.99. Thus, discarding the samples where ‖xbi‖ > C1

√
d does not significantly

reduce the dataset’s size. Additionally, it has minimal impact on the covariance matrix and hypercontractivity constants of
the distribution This reasoning can be easily extended to the batch setting. In the batch setting, we first exclude samples
from batches where ‖xbi‖ > C1

√
d. We then remove batches that have been reduced by more than 10% of their original

size. Since, on average, this operation would remove ≤ 1% of samples from genuine batches, a simple argument using the
Markov inequality shows that the probability of removing a genuine batch is at most 10%. It can be demonstrated that with
high probability, the fraction of genuine batches that are removed for any component is . 10%. Therefore, assumption 2
regarding data distribution is not required, and this simple procedure can be used to enforce assumption 2, resulting in a
decrease in batch size and α by at most 10%. Consequently, the guarantees in our theorem are altered by only a small factor.

Assumption 5 states that the noise distribution is symmetric. We can address this by employing a simple technique. Let’s
consider two independent samples (xbi , y

b
i) and (xbi+1, y

b
i+1), where ybj = w∗ · xbj + nbj for j ∈ {i, i + 1}. We define

x̃bi = (xbi − xbi+1)/
√

2, ỹbi = (ybi − ybi+1)/
√

2, and ñbi = (nbi − nbi+1)/
√

2. Since nbi and nbi+1 are i.i.d., the distribution of
ñbi is symmetric around 0 and the variance of ñbi matches that of nbi . Moreover, the covariance of x̃bi is the same as that of
xbi , and we have ỹbi = w∗ · x̃bi + ñbi . Therefore, the new sample (x̃bi , ỹ

b
i) obtained by combining two i.i.d. samples (xbi , y

b
i)

and (xbi+1, y
b
i+1) in a batch satisfies the same distributional assumptions as before, and in addition, ensures a symmetric

noise distribution. We can apply this approach to combine every two samples in a batch, which only reduces the batch size
by a constant factor of 1/2. Thus, the assumption of symmetric noise can be eliminated by increasing the required batch
sizes in our theorems by a factor of 2.

H. Proof of Theorem B.1
In Section H.1, we state and prove two auxiliary lemmas that will be used in proving Theorem B.1, and in Section H.2, we
prove Theorem B.1.

We will use the following notation in describing the auxiliary lemmas and in the proofs.

31

Efficient List-Decodable Regression using Batches

Let S := {(xbi , ybi) : b ∈ G, i ∈ [n]} denote the collection of all good samples. Note that |S| = |G|n.

For any function h over (x, y), we denote the expectation of h w.r.t. uniform distribution on subset S′ ⊆ S by

ES′ [h(xbi , y
b
i)] :=

∑
(xbi ,y

b
i)∈S′

h(xbi ,y
b
i)

|S′| .

H.1. Auxiliary lemmas

In this subsection, we state and prove Lemmas H.1 and H.2. We will use these lemmas in proof of Theorem B.1 in the
following subsection.

In the next lemma, for any unit vectors u, we bound the expected second moment of the tails of |xbi · u|, for covariate xbi of a
random sample from the distribution D.

Lemma H.1. For all θ > 1, and all unit vectors u ∈ Rd,

PrD[‖xbi · u‖2 ≥
√
Cθ] ≤ 1

θ2
and ED[1(‖xbi · u‖2 ≥

√
Cθ) · ‖xbi · u‖2] ≤

√
C

θ

Proof. The first part of the lemma follows from Markov’s inequality,

PrD[‖xbi · u‖2 ≥
√
Cθ] = PrD[‖xbi · u‖4 ≥ Cθ2] =

ED[‖xbi · u‖4]

Cθ2
≤ 1

θ2
,

where the last step uses L4− L2 hypercontractivity. This proves the first bound in the lemma.

For the second bound, note that

ED[1(‖xbi · u‖2 ≥
√
Cθ) · ‖xbi · u‖2]

(a)
≤
√

ED[1(‖xbi · u‖2 ≥
√
Cθ)] · ED[‖xbi · u‖4]

(b)
≤
√

PrD[‖xbi · u‖2 ≥
√
Cθ] · C ED[‖xbi · u‖2]2

(c)
≤
√
C

θ
ED[‖xbi · u‖2],

here (s) follows from the Cauchy-Schwarz inequality, (b) uses L4− L2 hypercontractivity, and (c) follows from the first
bound in the lemma.

In the next lemma, for any unit vectors u, we provide a high probability bound on the expected second moment of the tails
of |xbi · u|, wheres xbi are covariates of samples in good batches G.

Lemma H.2. For any given θ > 1, and |G|n = Ω(dθ2 log(C1dθ
C)), with probability at least 1− 2/d2, for all unit vectors u,

E S

[
1

(
‖xbi · u‖2 ≥ 3

√
Cθ
)
· ‖xbi · u‖2

]
≤ O

(√
C

θ

)
.

The following lemma restates Lemma 5.1 of (Cherapanamjeri et al., 2020a). The lemma shows that for any large subset of
S, the covariance of covariates xbi in S is close to the true covariance for distribution D of samples. We will use this result
in proving Lemma H.2.

Lemma H.3. For any fix θ > 1, and |G|n = Ω(dθ2 log(dθ)), with probability at least 1− 1/d2 for all subsets of S′ ⊆ S
of size ≥ (1− 1

θ2)|S|, we have

Σ−O

(√
C

θ

)
· I � E S′ [x

b
i (x

b
i)

ᵀ] � Σ +O

(√
C

θ

)
· I.

Remark H.1. Lemma 5.1 of (Cherapanamjeri et al., 2020a) assumes that hypercontractive parameter C is a constant and its
dependence doesn’t appear in their lemma but is implicit in their proof. hides/ignores its dependence.

The following corollary is a simple consequence. We will use this corollary in proving Lemma H.2.

32

Efficient List-Decodable Regression using Batches

Corollary H.4. For any fix θ > 1, and |G|n = Ω(dθ2 log(dθ)), with probability at least 1− 1/d2 for all subsets S′ ⊆ S of
size ≤ |S|θ2 and all unit vectors u, we have

|S′|
|S|
· E S′ [(x

b
i · u)2] � O

(√
C

θ

)
.

Proof. Consider any set S′ of size ≤ |S|θ2 . Since |S \ S′| ≥ (1− 1
θ2)|S|, applying Lemma H.3 for S \ S′ and S,

Σ−O

(√
C

θ

)
· I � E S\S′ [x

b
i (x

b
i)

ᵀ],

and

E S [xbi (x
b
i)

ᵀ] � Σ +O

(√
C

θ

)
· I.

Next,

E S [xbi (x
b
i)

ᵀ] =
|S′|
|S|

E S′ [x
b
i (x

b
i)

ᵀ] +
|S \ S′|
|S|

E S\S′ [x
b
i (x

b
i)

ᵀ]

=⇒ |S′|E S′ [x
b
i (x

b
i)

ᵀ] = |S|E S [xbi (x
b
i)

ᵀ]− |S \ S′|E S\S′ [x
b
i (x

b
i)

ᵀ]).

Combining the previous three equations,

|S′|E S′ [x
b
i (x

b
i)

ᵀ] � |S|

(
Σ +O

(√
C

θ

)
· I

)
− |S \ S′|

(
Σ−O

(√
C

θ

)
· I

)

� |S′|Σ + (|S|+ |S \ S′|)O

(√
C

θ

)
· I � 1

θ2
|S|Σ + 2|S|O

(√
C

θ

)
· I � 3|S|O

(√
C

θ

)
· I,

where the last line used Σ � I , |S′| ≤ |S|/θ2, C ≥ 1, and 1/θ2 ≤ 1/θ for θ ≥ 1.

Finally, observing that for any unit vector uᵀ E S′ [x
b
i (x

b
i)

ᵀ]u = E S′ [(x
b
i · u)2] completes the proof.

Now we complete the proof of the Lemma H.2 with help of the above corollary.

Proof of Lemma H.2. From Lemma H.1 we have ED[1(‖xbi · u‖2 ≥
√
Cθ)] = Pr[‖xbi · u‖2 ≥

√
Cθ] ≤ 1

θ2 Applying
Chernoff bound for random variable 1(‖xbi · u‖2 ≥

√
Cθ),

Pr

[
E S [1(‖xbi · u‖2 ≥

√
Cθ)] ≤ 2

θ2

]
= Pr

 1

|S|
∑

(i,b)∈S

1(‖xbi · u‖2 ≥
√
Cθ) ≤ 2

θ2

 ≤ exp

(
− |S|

3θ2

)
.

Hence, for a fix unit vector u, with probability ≥ 1− exp
(
− |S|3θ2

)
E S [1(‖xbi · u‖2 ≤

√
Cθ)] ≤ |S| 2

θ2
.

Next, we show that this bound holds uniformly over all unit vectors u.

Consider an
√√

Cθ
2C1d
− net of unit sphere {u ∈ Rd : ‖u‖ ≤ 1} such that for any vector u in this ball there exist a u′ in the net

such that ‖u− u′‖ ≤
√√

Cθ
2C1d

. The standard covering argument (Vershynin, 2012) shows the existence of such a net of size

eO(d log(
C1d
Cθ)). Then from the union bound, for all vectors u in this net with probability at least 1− eO(d log(

C1d
Cθ))e−

|S|
3θ2 ,

E S [1(‖xbi · u‖2 ≤
√
Cθ)] ≤ |S| 2

θ2
.

33

Efficient List-Decodable Regression using Batches

Since |S|3θ2 = |G|n
3θ2 � d log(C1dθ

C) ≥ d log(C1d
Cθ)), therefore, eO(d log(

C1d
Cθ))e−

|S|
3θ2 � e−

|S|
6θ2 � 1/d2.

Now consider any vector u in unit ball and u′ in the net such that ‖u− u′‖ ≤
√√

Cθ
2C1d

. Then

(xbi · u)2 = (xbi · (u′ + (u− u′)))2 = 2(xbi · u′)2 + (xbi · (u− u′))2

≤ 2(xbi · u′)2 + 2‖u− u′‖2‖xbi‖2

≤ 2(xbi · u′)2 + 2

√
Cθ

2C1d
C1d ≤ 2(xbi · u′)2 +

√
Cθ,

where in the last line we used the assumption that ‖xbi‖ ≤ C1

√
d. When (xbi · u′)2 ≤

√
Cθ, then above sum is bounded by

2
√
Cθ. It follows that with probability ≥ 1− 1/d2, for all unit vectors u,

E S [1(‖xbi · u‖2 ≤ 3
√
Cθ)] ≤ |S| 2

θ2
.

Applying Corollary H.4 for S′ = {‖xbi · u‖2 ≤ 3
√
Cθ}, proves the lemma

E S [1(‖xbi · u‖2 ≥ 3
√
Cθ) · ‖xbi · u‖2] =

|S′|
|S|

E S′ [‖xbi · u‖2] ≤ O

(√
C

θ

)
.

H.2. Proof of Theorem B.1

Proof of Theorem B.1. Note that

EG

[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2]
=

1

|G|
∑
b∈G

(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2
=

1

|G|
∑
b∈G

(
1

n

∑
i∈n
∇f bi (w, κ) · u− ED[∇f b(w, κ) · u]

)2

=
1

|G|
∑
b∈G

(
1

n

∑
i∈n

(
∇f bi (w, κ) · u− ED[∇f bi (w, κ) · u]

))2

,

where in the last step we used the expectation of batch and sample gradients are the same, namely ED[∇f bi (w, κ) · u] =
ED[∇f b(w, κ) · u].

For any positive ρ > 0 and unit vector u, define

gbi (w, κ, u, ρ) :=
∇f bi (w, κ) · u
‖xbi · u‖ ∨ ρ

ρ.

Recall that for a good batch b ∈ G, ybi = w∗ · xbi + nbi . Using this in equation (3), for any good batch b ∈ G, we have

∇f bi (w, κ) =
(xbi · (w − w∗)− nbi)
|xbi · (w − w∗)− nbi | ∨ κ

κxbi . (37)

Combining the above two equations,

gbi (w, κ, u, ρ) = κρ

(
(xbi · (w − w∗)− nbi)
‖xbi · (w − w∗)− nbi‖ ∨ κ

)(
xbi · u

‖xbi · u‖ ∨ ρ

)
. (38)

From the above expression it follows that |gbi (w, κ, u, ρ)| ≤ κρ a.s.

34

Efficient List-Decodable Regression using Batches

We will choose ρ later in the proof. Let

Zbi (w, κ, u, ρ) := gbi (w, κ, u, ρ)− ED
[
gbi (w, κ, u, ρ)

]
.

and

Z̃bi (w, κ, u, ρ) := ∇f bi (w, κ) · u− ED
[
∇f bi (w, κ) · u

]
− Zbi (w, κ, u, ρ)

= ∇f bi (w, κ) · u− gbi (w, κ, u, ρ)− ED
[
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

]
.

When w, u, κ, and ρ are fixed or clear from the context, we will omit them from the notation of Zbi and Z̃bi . Then,

EG

[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2]
=

1

|G|
∑
b∈G

(
1

n

∑
i∈n

(Zbi + Z̃bi)

)2

≤ 2

|G|
∑
b∈G

(
1

n

∑
i∈n

Zbi

)2

+
2

|G|
∑
b∈G

(
1

n

∑
i∈n

Z̃bi

)2

≤ 2

|G|
∑
b∈G

(
1

n

∑
i∈n

Zbi

)2

+
2

|G|
∑
b∈G

1

n

∑
i∈n

(Z̃bi)
2, (39)

here in the last step we used Jensen’s inequality (E[Z])2 ≤ E[Z2].

We bound the two summations separately. To bound the first summation we first show that Zbi are bounded, and then use
Bernstein’s inequality. We bound the second term using Lemma H.2 and Lemma H.1.

From (38), it follows that |gbi (w, κ, u, ρ)| ≤ κρ a.s., and therefore, |Zbi | ≤ 2κρ.

Since |Zbi | is bounded by 2κρ, it is a (2κρ)2 sub-gaussian random variable. Using the fact that the sum of sub-gaussian
random variables is sub-gaussian, the sum

∑n
i=1 Z

b
i is n(2κρ)2 sub-gaussian random variable. Since square of a sub-

gaussian is sub-exponential (Philippe, 2015) (Lemma 1.12), hence (
∑n
i=1 Z

b
i)

2 − ED(
∑n
i=1 Z

b
i)

2 is sub-exponential with
parameter 16n(2κρ)2.

Bernstein’s inequality (Philippe, 2015) (Theorem 1.12) for sub-Gaussian random variables implies that with probability
≥ 1− δ,

1

|G|
∑
b∈G

(n∑
i=1

Zbi

)2

− ED

(n∑
i=1

Zbi

)2
 ≤ 16n(2κρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
.

Since Zbi are zero mean independent random variables,

ED

(n∑
i=1

(Zbi)

)2
 = nED

[
(Zbi)

2
]
.

35

Efficient List-Decodable Regression using Batches

We bound the expectation on the right,

ED
[
(Zbi)

2
]

= ED
[(
gbi (w, κ, u, ρ)− ED

[
gbi (w, κ, u, ρ)

])2]
(a)
≤ ED

[(
gbi (w, κ, u, ρ)

)2]
(b)
≤ ED[(nbi + (w − w∗) · xbi)2(xbi · u)2]

(c)
= ED[(nbi)

2(xbi · u)2] + ED[((w − w∗) · xbi)2(xbi · u)2]

(d)
≤ ED[(nbi)

2]ED[(xbi · u)2] +
√

ED[((w − w∗) · xbi)4]ED[(u · xbi)4]

(e)
≤ σ2 ED[(xbi · u)2] +

√
C2 ED[((w − w∗) · xbi)2]2 ED[(u · xbi)2]2

(f)
≤ σ2 + C ED[((w − w∗) · xbi)2],

here inequality (a) uses that squared deviation is smaller than mean squared deviation, inequality (b) follows from the
definition of gbi in (38), inequality (c) follows from the independence of nbi and xbi , inequality (d) follows the Cauchy–Schwarz
inequality, (e) uses the L-4 to L-2 hypercontractivity assumption ED[(u · (xbi))4] ≤ C, and (f) follows as for any unit vector
ED[(xbi · u)2] ≤ ‖Σ‖ ≤ 1.

Combining the last three equations, we get that with probability ≥ 1− δ,

1

|G|
∑
b∈G

(
n∑
i=1

Zbi

)2

≤ n(σ2 + C ED[((w − w∗) · xbi)2]) + 64n(κρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
. (40)

The above bound holds for given fixed values of parameters κ, w, and u. To extend the bound for all values of these
parameters (for appropriate ranges of interest), we will use the covering argument.

With the help of the covering argument, we show that with probability ≥ 1− δeO(d log(C1dn) − 1
d2 , for all unit vectors u, all

vectors w and κ ≤ (σ + ‖w − w∗‖)d2n,

1

|G|
∑
b∈G

(
n∑
i=1

Zbi (w, κ, u, ρ)

)2

≤ 5

2
σ2n+ 13CnED[((w − w∗) · xbi)2] + 384n(κρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
.

(41)

We delegate the proof of Equation (41) using Equation (40) and the covering argument to the very end. The use of covering
argument is rather standard. The main subtlety is that the above bound holds for all vectors w. The cover size of all
d dimensional vectors is infinite. To overcome this difficulty we first take union bound for vectors for all w such that
‖w − w∗‖ ≤ R for an appropriate choice of R. To extend it to any w for which ‖w − w∗‖ > R is large we show that the
behavior of the above quantity on the left for such a w can be approximated by its behavior for w′ = w∗+ (w−w∗) R

‖w−w∗‖ .

Note that dividing Equation (41) by n2 bounds the first term in Equation (39). Next, we bound the second term in
Equation(39). Note that

1

n|G|
∑
b∈G

∑
i∈n

(Z̃bi)
2 ≤ 1

n|G|
∑
b∈G

∑
i∈n

(
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)− ED

[
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

])2
≤ 2

n|G|
∑
b∈G

∑
i∈n

((
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

)2
+
(
ED
[
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

])2)
≤ 2

n|G|
∑
b∈G

∑
i∈n

((
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

)2
+ ED

[(
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

)2])
.

36

Efficient List-Decodable Regression using Batches

From the definitions of gbi (w, κ, u, ρ) and ∇f bi (w, κ),

|∇f bi (w, κ) · u− gbi (w, κ, u, ρ)| = 1(‖xbi · u‖ ≥ ρ)

∣∣∣∣∇f bi (w, κ) · u− ρ

‖xbi · u‖
∇f bi (w, κ) · u

∣∣∣∣
≤ 1(‖xbi · u‖ ≥ ρ)

∣∣∇f bi (w, κ) · u
∣∣

≤ κ
∣∣xbi · u∣∣ · 1(‖xbi · u‖ ≥ ρ).

From the above equation, it follows that

ED
[(
∇f bi (w, κ) · u− gbi (w, κ, u, ρ)

)2] ≤ κ2 ED
[
1(‖xbi · u‖ ≥ ρ)

∣∣xbi · u∣∣2].
Combining the above three bounds,

1

n|G|
∑
b∈G

∑
i∈n

(Z̃bi)
2 ≤ 2κ2

n|G|
∑
b∈G

∑
i∈n

(
1(‖xbi · u‖ ≥ ρ)

∣∣xbi · u∣∣2 + ED
[
1(‖xbi · u‖ ≥ ρ)

∣∣xbi · u∣∣2])
= 2κ2

(
E S

[
1(‖xbi · u‖ ≥ ρ)

∣∣xbi · u∣∣2]+ ED
[
1(‖xbi · u‖ ≥ ρ)

∣∣xbi · u∣∣2]),
here the last line uses the fact that S is the collection of all good samples.

For ρ2 ≥ 3
√
C, and |G|n = Ω(dρ4 log(C1dρ

C)), Lemma H.2 implies that with probability at least 1 − 2/d2, for all unit
vectors u, we have

E S

[
1(‖xbi · u‖ ≥ ρ)

∣∣xbi · u∣∣2] = E S

[
1(‖xbi · u‖2 ≥ ρ2)

∣∣xbi · u∣∣2] ≤ O(
√
C/ρ2).

And from Lemma H.1, for ρ2 ≥
√
C and any unit vectors u,

ED
[
1(‖xbi · u‖ ≥ ρ)

∣∣xbi · u∣∣2] ≤ O(
√
C/ρ2).

By combining the above three bounds it follows that, if ρ2 ≥
√
C, and |G|n = Ω(dρ4 log(C1dρ

C)), with probability at least
1− 2/d2, for all unit vectors u,

1

n|G|
∑
b∈G

∑
i∈n

(Z̃bi (w, κ, u, β))2 ≤ O

(√
Cκ2

ρ2

)
.

Combining the above bound, Equation (41) and (39) we get that if ρ2 = Ω(
√
C), and |G| = Ω(dρ

4

n log(C1dρ
C)) then with

probability ≥ 1− δeO(d log(C1dn) − 3
d2 , for all unit vectors u, all vectors w and κ ≤ (σ + ‖w − w∗‖)d2n,

EG

[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2]
≤ 2

n2

(
5

2
σ2n+ 13CnED[((w − w∗) · xbi)2] + 384n(κρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

})
+O

(√
Cκ2

ρ2

)
.

Recall that 1 ≤ µmax ≤ d4n2

C . Choose ρ2 = µmax

√
Cn. Note that

√
µmax(σ2 + C ED[((w − w∗) · xbi)2]) ≤

(σ + ‖w − w∗‖)d2n. Then from the above equation choosing ρ2 = µmax

√
Cn, for all

κ ≤
√
µmax(σ2 + C ED[((w − w∗) · xbi)2]),

with probability ≥ 1− δeO(d log(C1dn) − 3
d2 , for all unit vectors u, all vectors w ,

EG

[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2]
≤ O

(
σ2 + C ED[((w − w∗) · xbi)2]

n

)(
1 + nµ2

max

√
C max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

})
.

37

Efficient List-Decodable Regression using Batches

Choose δ = e−Θ(d log(C1dn), and |G| = Ω(dρ
4

n log(C1dρ
C) + Cµ4

maxdn
2 log(C1dn)) = Ω(ρ4

maxn
2d log(d)). Then with

probability ≥ 1− 4
d2 , for all unit vectors u, all vectors w and for all κ2 ≤ µmax(σ2 + C ED[((w − w∗) · xbi)2]),

EG

[(
∇f b(w, κ) · u− ED[∇f b(w, κ) · u]

)2] ≤ O(σ2 + C ED[((w − w∗) · xbi)2]

n

)
,

which is the desired bound.

We complete the proof by proving Equation (41).

Proof of Equation (41) To complete the proof of the theorem next we prove Equation (41) with the help of Equation (40)
and covering argument. To use the covering argument, we first show that gbi (w, κ, u, ρ) do not change by much by slight
deviation of these parameters. From the definition of Zbi (w, κ, u, ρ), the same conclusion would then hold for it.

By the triangle inequality,

|gbi (w, κ, u, ρ)− gbi (w′, κ′, u′, ρ)|
≤ |gbi (w′, κ′, u, ρ)− gbi (w′, κ′, u′, ρ)|+ |gbi (w, κ′, u, ρ)− gbi (w′, κ′, u, ρ)|+ |gbi (w, κ, u, ρ)− gbi (w, κ′, u, ρ)|.

We bound each term on the right one by one. To bound these terms we use Equation (38), the assumption that ‖xbi‖ ≤ C1

√
d

and the definition of the function g(). For the first term,

|gbi (w′, κ′, u, ρ)− gbi (w′, κ′, u′, ρ)| ≤ ‖(u− u′)xbi‖κ′ ≤ C1‖u− u′‖
√
dκ′,

for the second term,

|gbi (w, κ′, u, ρ)− gbi (w′, κ′, u, ρ)| ≤ |u · xbi | · |(w − w′) · xbi | ≤ ‖xbi‖2 · ‖w − w′‖ ≤ C2
1d‖w − w′‖,

and for the last term

|gbi (w, κ, u, ρ)− gbi (w, κ′, u, ρ)| ≤ |κ− κ′| · |u · xbi | ≤ C1

√
d|κ− κ′|.

Combining the three bounds,

|gbi (w, κ, u, ρ)− gbi (w′, κ′, u′, ρ)| ≤ C1‖u− u′‖
√
dκ′ + C2

1d‖w − w′‖+ C1

√
d|κ− κ′|.

For ‖u− u′‖ ≤ 1/(24C1d
5n3), κ′ ≤ 2d4σn2, ‖w − w′‖ ≤ σ/(12dC2

1n) and |κ− κ′| ≤ σ/(12C1dn),

|gbi (w, κ, u, ρ)− gbi (w′, κ′, u′, ρ)| ≤ σ/4n a.s.

This would imply,

|Zbi (w, κ, u, ρ)− Zbi (w′, κ′, u′, ρ)| ≤ σ/2n a.s.

Using this bound,

1

|G|
∑
b∈G

(
n∑
i=1

Zbi (w, κ, u, ρ)

)2

≤ 1

|G|
∑
b∈G

(
n∑
i=1

(
Zbi (w

′, κ′, u′, ρ′) +
σ

2n

))2

≤ 2

|G|
∑
b∈G

(
n∑
i=1

Zbi (w
′, κ′, u′, ρ′)

)2

+
2

|G|
∑
b∈G

(
n∑
i=1

σ

2n

)2

≤ 2

|G|
∑
b∈G

(
n∑
i=1

Zbi (w
′, κ′, u′, ρ′)

)2

+
σ2

2
. (42)

Let U := {u ∈ Rd : ‖u‖ = 1},W := {w ∈ Rd : ‖w − w∗‖ ≤ d2σn)}, and K :=
[
0, 2d4σn2

]
.

38

Efficient List-Decodable Regression using Batches

Standard covering argument shows that there exist covers such that

U ′ ⊆ U : ∀u ∈ U , min
u′∈U ′

‖u− u′‖ ≤ 1

(24C1d5n3)
, (43)

W ′ ⊆ W : ∀w ∈ W, min
w′∈W′

‖w − w′‖ ≤ σ

12C2
1dn

, (44)

and

K′ ⊆ K : ∀κ ∈ K, min
κ′∈K′,κ′≥κ

|κ− κ′| ≤ σ

12C1dn
, (45)

and the size of each is |U ′|, |W ′|, |K′| ≤ eO(d log(C1dn).

In equation (40), taking the union bound over all elements in U ′, W ′ and K′, it follows that with probability ≥ 1 −
δeO(d log(C1dn), for all u′ ∈ U ′, w′ ∈ W ′ and κ′ ∈ K′

1

|G|
∑
b∈G

(
n∑
i=1

Zbi (w
′, κ′, u′, ρ)

)2

≤ n(σ2 + C ED[((w′ − w∗) · xbi)2]) + 64n(κ′ρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
.

Combining the above bound with Equation (42), it follows that with probability ≥ 1 − δeO(d log(C1dn), for all u ∈ U ,
w ∈ W and κ ∈ K and elements u′, w′ and κ′ in the respective nets satisfying equations (43),(44), and (45),

1

|G|
∑
b∈G

(
n∑
i=1

Zbi (w, κ, u, ρ)

)2

≤ 2n(σ2 + C ED[((w′ − w∗) · xbi)2]) + 128n(κ′ρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
+
σ2

2

≤ 2n(σ2(1 +
1

4n
) + C ED[((w′ − w∗) · xbi)2]) + 128n(κρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}

≤ 2n(
5

4
σ2 + 2C ED[((w − w∗) · xbi)2]) + 128n(κρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
. (46)

here (a) follows from the bound κ ≥ κ′ in Equation (45), and (b) follows by first writing w′ − w∗ = (w − w∗) + (w′ − w)
and then using the bound ‖w′ − w‖ ≤ σ

12C2
1dn

in Equation (44).

Next, we further remove the restriction w ∈ W and extend the above bound to all vectors w.

Consider a w /∈ W and κ ∈
[
0, (σ + ‖w − w∗‖)d2n

]
. From the definition of W , we have ‖w − w∗‖ > d2σn. Let

w′ = w∗ + w−w∗
‖w−w∗‖d

2σn and κ′ = d2σn
‖w−w∗‖κ. Observe that ‖w′ − w‖ = d2σn and

κ′ ≤ (σ + ‖w − w∗‖)d2n
d2σn

‖w − w∗‖
≤ d2σn

d2σn

‖w − w∗‖
+ d4σn2 ≤ d2σn+ d4σn2 ≤ 2d4σn2,

39

Efficient List-Decodable Regression using Batches

hence, w′ ∈ W and κ′ ∈ K. From Equation (38),

∣∣∣∣‖w − w∗‖d2σn
gbi (w

′, κ′, u, ρ)− gbi (w, κ, u, ρ)

∣∣∣∣
(a)
=

ρ‖xbi · u‖
‖xbi · u‖ ∨ ρ

·
∣∣∣∣‖w − w∗‖d2σn

κ′
(

(xbi · (w′ − w∗)− nbi)
‖xbi · (w′ − w∗)− nbi‖ ∨ κ′

)
− κ
(

(xbi · (w − w∗)− nbi)
‖xbi · (w − w∗)− nbi‖ ∨ κ

)∣∣∣∣
(b)
≤ ‖xbi · u‖ ·

∣∣∣∣∣κ
(

(xbi · w−w∗
‖w−w∗‖d

2σn− nbi)

‖xbi · w−w∗
‖w−w∗‖d

2σn− nbi‖ ∨ d2σn
‖w−w∗‖κ

)
− κ
(

(xbi · (w − w∗)− nbi)
‖xbi · (w − w∗)− nbi‖ ∨ κ

)∣∣∣∣∣
= ‖xbi · u‖ ·

∣∣∣∣∣∣κ
 (xbi · (w − w∗)− d2σn

‖w−w∗‖n
b
i)

‖xbi · (w − w∗)− d2σn
‖w−w∗‖n

b
i‖ ∨ κ

− κ((xbi · (w − w∗)− nbi)
‖xbi · (w − w∗)− nbi‖ ∨ κ

)∣∣∣∣∣∣
(c)
≤ ‖xbi · u‖ ·

∣∣∣∣ d2σn

‖w − w∗‖
nbi − nbi

∣∣∣∣
(d)
≤ C1

√
d|nbi |

d2σn

‖w − w∗‖
(e)
≤ C1

√
d|nbi |,

here (a) follows from the definition of gbi , inequality (b) follows as ρ ≤ ‖xbi · u‖ ∨ ρ, inequality (c) uses the fact that for
any a,∆ and b ≥ 0, we have |b a+∆

(a+∆)∨b − b
a
a∨b | ≤ |∆|, inequality (c) uses ‖xbi‖ ≤ C1

√
d and the last inequality (e) uses

‖w − w∗‖ > d2σn.

Therefore,

∣∣∣∣‖w − w∗‖d2σn
Zbi (w

′, κ′, u, ρ)− Zbi (w, κ, u, ρ)

∣∣∣∣ ≤ C1

√
d
(
|nbi |+ E[|nbi |]

)
≤ C1

√
d
(
|nbi |+ σ

)
.

From the above equation,

1

|G|
∑
b∈G

(
n∑
i=1

Zbi (w, κ, u, ρ)

)2

≤ 1

|G|
∑
b∈G

(
n∑
i=1

(
‖w − w∗‖
d2σn

Zbi (w
′, κ′, u, ρ) + C1

√
d|nbi |+ C1

√
dσ

))2

(a)
≤ 1

|G|
∑
b∈G

3

(
n∑
i=1

‖w − w∗‖
d2σn

Zbi (w
′, κ′, u, ρ)

)2

+ 3

(
n∑
i=1

C1

√
d|nbi |

)2

+ 3

(
n∑
i=1

C1

√
dσ

)2


(b)
≤ 3‖w − w∗‖2

d4σ2n2

1

|G|
∑
b∈G

(
n∑
i=1

Zbi (w
′, κ′, u, ρ)

)2

+
3dC2

1

|G|
∑
b∈G

(
n

n∑
i=1

|nbi |2
)

+ 3dC2
1n

2σ2

(c)
≤ 3‖w − w∗‖2

d4σ2n2

1

|G|
∑
b∈G

(
n∑
i=1

Zbi (w
′, κ′, u, ρ)

)2

+ 3dC2
1n

2σ2(d2 + 1),

here (a) and (b) uses (
∑t
i=1 zi) ≤ t

∑t
i=1 z

2
i and inequality (c) holds with with probability ≥ 1− 1

d2 by Markov inequality,
as Pr[1

n|G|
∑
b∈G

∑n
i=1 |nbi |2 > d2 ED[(nbi)

2)] ≤ 1
d2 .

Recall that ‖w′ − w‖ ≤ d2σn and κ ≤ 2d4σn2, therefore in the above equation, we can bound the first term on the right by

40

Efficient List-Decodable Regression using Batches

using high probability bound in Equation (46). Then, with probability ≥ 1− δeO(d log(C1dn) − 1
d2 ,

1

|G|
∑
b∈G

(
n∑
i=1

Zbi (w, κ, u, ρ)

)2

≤ 3‖w − w∗‖2

d4σ2n2

(
2n(

5

4
σ2 + 2C ED[((w′ − w∗) · xbi)2]) + 128n(κ′ρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

})
+ 3dC2

1n
2σ2(d2 + 1)

(a)
= 12CnED[((w − w∗) · xbi)2] +

15‖w − w∗‖2

2d4σ2n2
nσ2 + 384n(κρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
+ 3dC2

1n
2σ2(d2 + 1)

(b)
≤ 13CnED[((w − w∗) · xbi)2] + 384n(κρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
,

here equality (a) uses the relation w′ − w∗ = w−w∗
‖w−w∗‖d

2σn and κ′ = d2σn
‖w−w∗‖κ, and (b) follows as C ED[((w − w∗) ·

xbi)
2] ≥ C ‖w−w

∗‖2‖Σ‖
C3

= C ‖w−w
∗‖2

C3
≥ Cd4σ2n2/C3, where C3 is condition number of Σ, hence C ED[((w − w∗) ·

xbi)
2] � 15‖w−w∗‖2

2d4σ2n2 nσ2 and C ED[((w − w∗) · xbi)2] ≥ C ‖w−w
∗‖2

C3
� 15‖w−w∗‖2

2d4σ2n2 nσ2 and C ED[((w − w∗) · xbi)2] �
3dC2

1n
2σ2(d2 + 1).

The above bound holds for all unit vectors u, w /∈ W and κ ≤ (σ + ‖w − w∗‖)d2n,

1

|G|
∑
b∈G

(
n∑
i=1

Zbi (w, κ, u, ρ)

)2

≤ 13CnED[((w − w∗) · xbi)2] + 450n(κρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
.

Recall that bound in Equation (46) holds for all unit vectors u, w ∈ W and κ ≤ K′ with probability ≥ 1− δeO(d log(C1dn).
Note that for w ∈ W , (σ + ‖w − w∗‖)d2n ≤ 2d4σn2, hence [0, (σ + ‖w − w∗‖)d2n] ⊆ K′. Hence the above bound
holds for all unit vectors u, w ∈ W and κ ≤ (σ + ‖w − w∗‖)d2n. Combining the two bounds, with probability ≥
1− δeO(d log(C1dn) − 1

d2 , for all unit vectors u, all vectors w and κ ≤ (σ + ‖w − w∗‖)d2n,

1

|G|
∑
b∈G

(
n∑
i=1

Zbi (w, κ, u, ρ)

)2

≤ 5

2
σ2n+ 13CnED[((w − w∗) · xbi)2] + 384n(κρ)2 max

{
2 ln(1/δ)

|G|
,

√
2 ln(1/δ)

|G|

}
.

This completes the proof of Equation (41).

41

