
Under review as a conference paper at ICLR 2024

A PROOF OF LEMMA 3.1

Lemma 4.1. We first assume that the learnt functions k
r

: R2d ! Rd, k
a

: Rd ! Rd have
bounded gradients. In other words, there exists A, R > 0, such that the following Jacobian matrices
have bounded matrix norm:

J k
r
(x,y) =

0

BBB@

@
k
r,1

@x1
· · · @

k
r,1

@xd

@
k
r,1

@y1
· · · @

k
r,1

@yd

...
. . .

...
...

. . .
...

@
k
r,d

@x1
· · · @

k
r,d

@xd

@
k
r,d

@y1
· · · @

k
r,d

@yd

1

CCCA
, kJ k

r
(x,y)k R, (17)

J k
a
(x) =

0

BB@

@
k
a,1

@x1
· · · @

k
a,1

@xd
,

...
. . .

...
@

k
a,d

@x1
· · · @

k
a,d

@xd

1

CCA , kJ k
a
(x)k A. (18)

Then, given the initial state (t0, z
t0
1 , · · · , zt0

N
,w1, · · · ,wN), we claim that there exists " > 0, such

that the ODE system Eqn. 10 has a unique solution in the interval [t0 � ", t0 + "].

We first introduce the Picard–Lindelöf Theorem as below.
Theorem A.1. (Picard–Lindelöf Theorem) Let D ✓ R⇥Rn

be a closed rectangle with (t0, y0) 2 D.

Let f : D ! Rn
be a function that is continuous in t and Lipschitz continuous in y. Then, there

exists some " > 0 such that the initial value problem:

y0(t) = f(t, y(t)), y (t0) = y0. (19)

has a unique solution y(t) on the interval [t0 � ", t0 + "] .

Then, we prove the following lemma.
Lemma A.1. Suppose we have a series of L-Lipschitz continuous functions {fi : Rm ! Rn}N

i=1,

and then their linear combination is also L-Lipschitz continuous, i.e., 8{a1, · · · aN} 2 [0, 1]N ,

satisfying
P

N

i=1 ai = 1, we have
P

N

i=1 aifi is also L-Lipschitz continuous.

Proof. 8x,y 2 Rm, we have:

k
NX

i=1

aifi(x) �
NX

i=1

aifi(y)k
NX

i=1

aikfi(x) � fi(y)k (20)

NX

i=1

aiLkx � yk (21)

= Lkx � yk. (22)

Next, we show the proof of Lemma 3.1.

Proof. First, we can rewrite the ODE system Eqn. 10 as:

dZt

dt
=

KX

k=1

W kfk(Zt) � Zt, (23)

where W k 2 RNd⇥Nd is a diagonal matrix. It is evident that the right hand side is continuous with
respect to t since it does not depend on t directly.

Then, for any continuous function f : Rn ! Rm, with the Mean Value Theorem, we have 8x,y 2
Rn, kf(x) � f(y)k = kJf (p)k ⇤ kx � yk, where p is a point in the segment connecting x and y.

15

Under review as a conference paper at ICLR 2024

Now, denote A(i, j) 2 R2⇥dN with the first row has elements with index from idN+1 to (i+1)dN be
1, the others 0; the second row has elements with index from jdN+1 to (j+1)dN be 1, the others 0.

By introducing A(i, j), for all X =

0

B@
x1
...

xN

1

CA ,Y =

0

B@
y1
...

yN

1

CA 2 RdN , we have:

k k

r
(A(i, j)X) � k

r
(A(i, j)Y)k k k

r
(xi,xj) � k

r
(yi,xj)k + k k

r
(yi,xj) � k

r
(yi,yj)k

(24)
= kJ k

r
(pi)k ⇤ kxi � yik + kJ k

r
(pj)k ⇤ kxj � yjk (25)

 Rkxi � yik + Rkxj � yjk (26)
 RkX � Y k, (27)

where pi is a point in the segment connecting xi and yi, and a similar definition is for pj . Note that
we have k

r
is R-Lipschitz continuous. Therefore, by Lemma A.1, the following linear combination

is also R-Lipschitz continuous:

lk(Zt) =
X

jt2S(it)

 k

r
([A(it, jt)Zt]). (28)

Thus, for all X,Y 2 RdN , we have:

kfk(X) � fk(Y)k = k k

a
(lk(X)) � k

a
(lk(Y))k (29)

 Aklk(X) � lk(Y)k (30)
 ARkX � Y k. (31)

Again, we have each fk is AR-Lipschitz continuous, so their linear combination
P

K

k=1 W
kfk will

also be AR-Lipschitz continuous. Finally, we have

k[
KX

k=1

W kfk(X) � X] � [
KX

k=1

W kfk(Y) � Y]k k
KX

k=1

W kfk(X) �
KX

k=1

W kfk(Y)k (32)

+ kX � Y k (33)
 (AR + 1)kX � Y k. (34)

Thus, the right hand side will be (AR+1)-Lipschitz continuous. According to the Theorem A.1, we
prove the uniqueness of the solution to Eqn. 10.

B RELATED WORK

B.1 INTERACTING DYNAMICS MODELING

Recent years have witnessed a surge of interest in modeling interacting dynamical systems across
a variety of fields including molecular biology and computational physics (Shao et al., 2022; Lan
et al., 2022; Li et al., 2022b; Bishnoi et al., 2022). While convolutional neural networks (CNNs)
have been successfully employed to learn from regular data such as grids and frames (Peng et al.,
2020), emerging research is increasingly utilizing geometric graphs to represent more complex sys-
tems (Wu et al., 2023; Deng et al., 2023). Graph neural networks (GNNs) have thus become increas-
ingly prevailing for modeling these intricate dynamics (Pfaff et al., 2021; Shao et al., 2022; Sanchez-
Gonzalez et al., 2020; Allen et al., 2022; Look et al., 2023; Yıldız et al., 2022). AgentFormer (Yuan
et al., 2021) jointly models both time and social dimensions with semantic information preserved.
NRI (Kipf et al., 2018) models interactions along with node states from observations using GNNs.
R-SSM (Yang et al., 2020) models the dynamics of interacting objects using GNNs and includes
auxiliary contrastive prediction tasks to enhance discriminative learning. Despite their popularity,
current methods often fall short in modeling challenging scenarios such as out-of-distribution shift
and long-term dynamics (Yu et al., 2021). To address these limitations, our work leverages contex-
tual knowledge to incorporate prototype decomposition into a graph ODE framework.

16

Under review as a conference paper at ICLR 2024

B.2 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

Motivated by the approximation of residual networks (Chen et al., 2018), neural ordinary differential
equations (ODEs) have been introduced to model continuous-time dynamics using parameterized
derivatives in hidden spaces. These neural ODEs have found widespread use in time-series forecast-
ing due to their effectiveness (Dupont et al., 2019; Xia et al., 2021; Jin et al., 2022; Schirmer et al.,
2022). Incorporated with the message passing mechanism, they have been integrated with GNNs,
which can mitigate the issue of oversmoothing and enhance model interpretability (Xhonneux et al.,
2020; Zhang et al., 2022; Poli et al., 2019). I-GPODE (Yıldız et al., 2022) estimates the uncertainty
of trajectory predictions using the Gaussian process, which facilitates effective long-term predic-
tions. HOPE (Luo et al., 2023) focuses on incorporating second-order graph ODE in evolution
modeling. In contrast, our method introduces hierarchical context discovery with disentanglement
to guide the prototype decomposition of individual nodes in modeling interacting dynamics.

B.3 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Xu et al., 2019a; Veličković et al., 2018)
have shown remarkable efficacy in handling a range of graph-based machine learning tasks such as
node classification (Yang et al., 2021) and graph classification (Liu et al., 2022). Typically, they
adopt the message passing mechanism, where each node aggregates messages from its adjacent
nodes for updated node representations. Recently, researchers have started to focus more on real-
istic graphs that do not obey the homophily assumption and developed several GNN approaches to
tackle heterophily (Zhu et al., 2021; Li et al., 2022a; Zhu et al., 2020). These approaches typically
leverage new graph structures (Zhu et al., 2020; Suresh et al., 2021) and modify the message passing
procedures (Chien et al., 2021; Yan et al., 2022) to mitigate the influence of potential heterophily.
In our PGODE, we focus on interacting dynamics systems instead. In particular, due to the lo-
cal heterophily, different objects should have different interacting patterns, and therefore we infer
object-level contexts from historical data.

C MORE DISCUSSION ABOUT EXPRESSIVITY

We provide more discussion about the expressivity of the proposed PGODE. Piecewise continuous
neural networks have been proven asymptotically more expressive than classical feed forward net-
works (Kratsios & Zamanlooy, 2022). Our prototype decomposition adopts a soft form of piecewise
functions to enhance the expressivity, which can also help capture the influence of seasonality and
events in real-world dynamics systems. Our empirical results in ID settings also validate the strong
expressivity when handling complicated dynamics.

D ALGORITHM

We summarize the learning algorithm of our PGODE in Algorithm 1.

E DETAIL OF BASELINES

Our approach is compared with various baselines for dynamics systems modeling, i.e.,
LSTM (Hochreiter & Schmidhuber, 1997), GRU (Weerakody et al., 2021), NODE (Chen et al.,
2018), LG-ODE (Huang et al., 2020), MPNODE (Chen et al., 2022), SocialODE (Wen et al., 2022)
and HOPE (Luo et al., 2023).

The proposed method is compared with seven competing baselines as follows:

• LSTM (Hochreiter & Schmidhuber, 1997) has been broadly utilized for sequence prediction tasks.
Compared with classic RNNs, LSTM incorporates three critical gates, i.e., the forget gate, the
input gate, and the output gate, which can effectively understand and retain important long-term
dependencies within the data sequences.

17

Under review as a conference paper at ICLR 2024

Algorithm 1 Training Algorithm of PGODE
Input: The observations G1:T = {G1, · · · , GT }.
Output: The parameters in our model.

1: Initialize model parameters;
2: while not convergence do

3: for each training sequence do

4: Partition the sequence into two segments;
5: Construct the temporal graph using Eqn. 2;
6: Generate object-level contexts using Eqn. 5;
7: Generate system-level contexts with summarization;
8: Solve our prototypical graph ODE in Eqn. 10;
9: Output the trajectories using the decoder;

10: Calculate the final loss in Eqn. 16;
11: Update ⌧ 0 in our PGODE using gradient ascent;
12: Update other parameters in our PGODE using gradient descent;
13: end for

14: end while

• GRU (Cho et al., 2014) is another popular RNN architecture, which employs the gating mecha-
nism to control the information flow during propagation. GRU has an improved computational
efficiency compared LSTM.

• NODE (Chen et al., 2018) is the first method to introduce a continuous neural network based on
the residual connection. It has been shown effective in time-series forecasting.

• LG-ODE (Huang et al., 2020) incorporates graph neural networks with neural ODE, which can
capture continuous interacting dynamics in irregularly-sampled partial observations.

• MP-NODE (Gupta et al., 2022) combines the message passing mechanism and neural ODEs,
which can capture sub-system relationships during the evolution of homogeneous systems.

• SocialODE (Wen et al., 2022) simulates the evolution of agent states and their interactions us-
ing a neural ODE architecture, which shows remarkable performance in multi-agent trajectory
forecasting.

• HOPE (Luo et al., 2023) is a recently proposed graph ODE method, which adopts a twin encoder
to learn latent state representations. These representations are fed into a high-order graph ODE to
learn long-term correlations from complicated dynamical systems.

F DATASET DETAILS

We use four simulation datasets to evaluate our proposed GOAT, including physical and molecular
dynamic systems. We will introduce the details of these four datasets in this part.

• Springs & Charged. The two physical dynamic simulation datasets Springs and Charged are com-
monly used in the field of machine learning for simulating physical systems. The Springs dataset
simulates a system of interconnected springs governed by Hooke’s law. Each spring has inherent
properties such as elasticity coefficients and initial positions, representing a dynamic mechanical
system. Each sample in the Springs dataset contains 10 interacting springs with information about
the current state, i.e., velocity and acceleration, and additional properties, i.e., mass and damping
coefficients. Similar to the Springs dataset, Charged is another popular physical dynamic sim-
ulation dataset that simulates electromagnetic phenomena. The objects in Charged are replaced
by the electronics. We use the box size ↵, the initial velocity �, the interaction strength �, and
springcharged probability � as the system parameters in the experiments. It is noteworthy that the
objects attract or repel with equal probability in the Charged system but unequal probability in the
spring system. Both systems have a given graph indicating fixed interactions from real springs or
electric charge effects.

18

Under review as a conference paper at ICLR 2024

• 5AWL & 2N5C. To evaluate our approach on modeling molecular dynamic systems, we construct
two datasets from two proteins, 5AWL and 2N5C, which can be accessed from the RCSB1. First,
we repair missing residues, non-standard residues, missing atoms, and hydrogen atoms in the se-
lected protein. Additionally, we adjust the size of the periodic boundary box to ensure that it is
sufficiently large, thus avoiding truncation effects and abnormal behavior of the simulation sys-
tem during the data simulation process. Then, we perform simulations on the irregular molecular
motions within the protein using Langevin Dynamics (Garcı́a-Palacios & Lázaro, 1998) under
the NPT (isothermal-isobaric ensemble) conditions, with parameters sampled from the specified
range, and we extract a frame every 0.2 ps to record the protein structure, which constitutes the
dataset used for supervised learning. In the two constructed datasets, we use the temperature t,
pressure value p, and frictional coefficient µ as the dynamic system parameters. Langevin Dy-
namics is a mathematical model used to simulate the flow dynamics of molecular systems (Bussi
& Parrinello, 2007). It can simplify complex systems by replacing some degrees of freedom of
the molecules with stochastic differential equations. For a dynamic system containing N particles
of mass m, with coordinates given by X = X(t), the Langevin equation of it can be formulated
as follows:

m
d2X

dt2
= ��U(X) � µ

dX

dt
+

p
2µkbTR(t), (35)

where µ represents the frictional coefficient, �U(X) is the interaction potential between particles,
� is the gradient operator, T is the temperature, kb is Boltzmann constant and R(t) is delta-
correlated stationary Gaussian process.

G IMPLEMENTATION DETAILS

Table 4: Datasets and distributions of system parameters. For the OOD test set, there is at least
one of the system parameters outside the range utilized for training. ↵: box size, �: initial velocity
norm,�: interaction strength, �: spring/charged probability. t: temperature, p: pressure, µ: frictional
coefficient.

Springs Charged 5AWL/2N5C

Parameters ↵,�, �, � ↵,�, �, � t, p, µ

Train/Val/Test

A = {↵ 2 [4.9, 5.1]}
B = {� 2 [0.49, 0.51]}
C = {� 2 [0.09, 0.11]}
D = {� 2 [0.49, 0.51]}

⌦train = (A ⇥ B ⇥ C ⇥ D)

A = {↵ 2 [4.9, 5.1]}
B = {� 2 [0.49, 0.51]}
C = {� 2 [0.9, 1.1]}

D = {� 2 [0.49, 0.51]}
⌦train = (A ⇥ B ⇥ C ⇥ D)

T = {t 2 [290, 310]}
P = {p 2 [0.9, 1.1]}
M = {µ 2 [0.9, 1.1]}
⌦train = (T ⇥ P ⇥ M)

OOD Test Set

A = {↵ 2 [4.8, 5.2]}
B = {� 2 [0.48, 0.52]}
C = {� 2 [0.08, 0.12]}
D = {� 2 [0.48, 0.52]}

⌦OOD =
(A ⇥ B ⇥ C ⇥ D) \ ⌦train

.

A = {↵ 2 [4.8, 5.2]}
B = {� 2 [0.48, 0.52]}
C = {� 2 [0.8, 1.2]}

D = {� 2 [0.48, 0.52]}
⌦OOD =

(A ⇥ B ⇥ C ⇥ D) \ ⌦train
.

T = {t 2 [280, 320]}
P = {p 2 [0.8, 1.2]}
M = {µ 2 [0.8, 1.2]}

⌦OOD =
(T ⇥ P ⇥ M) \ ⌦train

.

Number of samples
Train/Val/Test 1000/200/200 200/50/50
OOD Test Set 200 50

In our experiments, we employ a rigorous data split strategy to ensure the accuracy of our results.
Specifically, we split the whole datasets into four different parts, including the normal three sets, i.e.,
training, validating and in-distribution (ID) test sets and an out-of-distribution (OOD) test set. For
the physical dynamic datasets, we generate 1200 samples for training and validating, 200 samples
for ID testing and 200 samples for OOD testing. For the molecular dynamic datasets, we construct
200 samples for training, 50 samples for validating, 50 samples for ID testing and 50 samples for
testing in OOD settings.

Each sample in the datasets has a group of distinct system parameters as shown in Table 4. For
training, validation and ID test samples, we randomly sample system parameters in the space of

1https://www.rcsb.org

19

Under review as a conference paper at ICLR 2024

⌦train. For OOD samples, the system parameters come from ⌦OOD randomly, which indicates
distribution shift compared with the training domain. During the training process, each trajectory
sample is further split into two parts, i.e., a conditional part for initializing object-level contexts
representation and global-level contexts representation, and a prediction part for supervising the
model. The size of the two parts is denoted as conditional length and prediction length, respectively.
In our experiments, we set the conditional length to 12, and we used three different prediction
lengths, i.e., 12, 24, and 36.

We adopt PyTorch (Paszke et al., 2017) and torchdiffeq package (Kidger et al., 2021) to implement
all the compared approaches and our PGODE. All these experiments in this work are performed on
a single NVIDIA A40 GPU. The fourth-order Runge-Kutta method from torchdiffeq is adopted as
the ODE solver. We employ a set of one-layer GNN prototypes with a hidden dimension of 128 for
graph ODE. The number of prototypes is set to 5 as default. For optimization, we utilize an Adam
optimizer (Kingma & Ba, 2015) with an initial learning rate of 0.0005. The batch size is set to 256
for the physical dynamic simulation datasets and 64 for the molecular dynamic simulation datasets.

H MORE EXPERIMENT RESULTS

H.1 PERFORMANCE COMPARISON

To begin, we compare with our PGODE with more baselines, i.e., AgentFormer (Yuan et al., 2021),
NRI (Kipf et al., 2018) and I-GPODE (Yıldız et al., 2022) in our performance comparison. The
results of these comparisons are presented in Table 5 and our method outperforms the compared
methods. In addition, we show the performance of the compared methods in two different coor-
dinates of positions and velocities, i.e., qx, qy , vx and vy . The compared results on Springs and
Charged are shown in Table 6 and Table 7, respectively. From the results, we can observe the su-
periority of the proposed PGODE in capturing complicated interacting patterns under both ID and
OOD settings.

Table 5: Performance comparison with NRI, AgentFormer, and I-GPODE on physical dynamics
simulations (MSE ⇥10�2). NRI, AgentFormer, and I-GPODE are out of memory on molecular
dynamics simulations.

Prediction Length 12 (ID) 24 (ID) 36 (ID) 12 (OOD) 24 (OOD) 36 (OOD)

Variable q v q v q v q v q v q v

Springs

NRI 0.103 0.425 0.210 0.681 0.693 2.263 0.119 0.472 0.246 0.770 0.807 2.406
AgentFormer 0.115 0.163 0.202 0.517 1.656 1.691 0.157 0.195 0.243 0.505 1.875 1.913
I-GPODE 0.159 0.479 0.746 3.002 1.701 7.433 0.173 0.498 0.796 3.193 1.818 7.322
PGODE (Ours) 0.035 0.124 0.070 0.262 0.296 1.326 0.047 0.138 0.088 0.291 0.309 1.337

Charged

NRI 0.901 2.702 3.225 3.346 7.770 4.543 1.303 2.726 3.678 3.548 8.055 4.752
AgentFormer 1.076 2.476 3.631 3.044 7.513 3.944 1.384 2.514 4.224 3.199 8.985 4.002
I-GPODE 1.044 2.818 3.407 3.751 7.292 4.570 1.322 2.715 3.805 3.521 8.011 4.056
PGODE (Ours) 0.578 2.196 2.037 2.648 4.804 3.551 0.802 2.135 2.584 2.663 5.703 3.703

H.2 ABLATION STUDY

We show more ablation studies on Charged and 2N5C to make our analysis complete. In particular,
the compared performance of different model variants are shown in Table 8. From the results, we can
observe that our full model can outperform all the model variance in all cases, which validates the
effectiveness of each component in our PGODE again. In addition, we introduce two model variants:
(1) PGODE w. MLP, which combines a GNN with an MLP to learn the individualized dynamics; (2)
PGODE w. Single, which takes the node representation and the global representation as input with a
single message passing function. The compared performance of different model variants is shown in
Table 9. From the results, we can observe that our full model can outperform all the model variance
in all cases. Compared with these variants, our prototype decomposition can involve different GNN
bases, which model diverse evolving patterns to jointly determine the individualized dynamics. This
strategy can enhance the model expressivity, allowing for more accurate representation learning of
hierarchical structures from a mixture-of-experts perspective.

20

Under review as a conference paper at ICLR 2024

Table 6: Mean Squared Error (MSE) ⇥10�2 on Springs.
Prediction Length 12 24 36

Variable qx qy vx vy qx qy vx vy qx qy vx vy

ID

LSTM 0.324 0.250 0.909 0.931 0.679 0.638 2.695 2.623 1.253 1.304 5.023 6.434
GRU 0.496 0.291 0.565 0.628 0.873 0.623 1.711 2.001 1.368 1.128 2.980 3.912
NODE 0.165 0.148 0.649 0.479 0.722 0.621 2.534 2.293 1.683 1.534 6.323 6.142
LG-ODE 0.077 0.077 0.264 0.272 0.174 0.135 0.449 0.576 0.613 0.441 1.757 2.528
MPNODE 0.080 0.072 0.222 0.263 0.237 0.105 0.407 0.506 0.866 0.335 1.469 2.006
SocialODE 0.069 0.068 0.205 0.315 0.138 0.120 0.391 0.630 0.429 0.400 1.751 2.624
HOPE 0.087 0.053 0.152 0.200 0.571 0.342 0.707 1.206 2.775 2.175 4.412 6.405
PGODE (Ours) 0.033 0.037 0.122 0.127 0.074 0.066 0.239 0.286 0.318 0.273 1.186 1.466

OOD

LSTM 0.499 0.449 1.086 1.227 1.019 0.857 2.847 2.466 1.768 1.415 5.154 5.293
GRU 0.714 0.469 0.713 0.703 1.280 0.905 1.795 2.096 1.844 1.497 2.852 3.994
NODE 0.246 0.209 0.997 0.585 0.876 0.687 2.790 2.269 2.002 1.663 6.349 5.670
LG-ODE 0.093 0.083 0.272 0.327 0.185 0.172 0.463 0.661 0.684 0.545 1.767 2.645
MPNODE 0.107 0.081 0.230 0.268 0.299 0.126 0.420 0.528 0.967 0.386 1.464 1.969
SocialODE 0.082 0.076 0.221 0.350 0.151 0.156 0.414 0.726 0.488 0.495 1.793 2.826
HOPE 0.094 0.058 0.178 0.264 0.506 0.523 1.031 1.603 2.369 2.251 3.701 8.291
PGODE (Ours) 0.046 0.048 0.133 0.144 0.094 0.081 0.286 0.297 0.336 0.281 1.360 1.313

Table 7: Mean Squared Error (MSE) ⇥10�2 on Charged.
Prediction Length 12 24 36

Variable qx qy vx vy qx qy vx vy qx qy vx vy

ID

LSTM 0.743 0.846 2.913 3.145 2.797 3.052 3.605 3.863 6.477 6.660 4.240 4.423
GRU 0.764 0.799 2.931 3.063 2.709 2.901 3.572 3.709 5.657 6.281 4.068 4.227
NODE 0.743 0.808 2.764 2.777 2.913 3.114 3.432 3.451 6.468 6.868 3.997 4.089
LG-ODE 0.736 0.783 2.322 2.414 2.320 2.731 3.361 3.268 5.188 6.782 6.194 5.043
MPNODE 0.720 0.759 2.414 2.496 2.379 2.536 3.589 3.738 5.636 5.614 5.472 7.046
SocialODE 0.630 0.695 2.311 2.358 2.252 2.631 3.509 2.995 5.743 7.076 5.701 4.122
HOPE 0.593 0.635 2.295 2.337 3.214 2.938 3.279 3.482 9.289 7.845 8.406 8.511
PGODE (Ours) 0.555 0.600 2.164 2.228 1.940 2.134 2.624 2.673 4.449 5.159 3.778 3.324

OOD

LSTM 1.130 1.123 3.062 2.992 4.026 3.950 3.768 3.512 7.934 8.435 4.517 3.925
GRU 1.072 1.012 3.108 2.948 3.893 3.602 3.844 3.428 6.970 8.061 4.485 3.718
NODE 1.185 1.062 2.956 2.732 4.057 3.804 3.645 3.480 8.622 8.372 5.097 4.376
LG-ODE 0.999 0.866 2.581 2.521 2.797 3.239 4.200 2.978 5.996 7.593 8.422 4.309
MPNODE 1.092 0.897 2.487 2.623 2.967 2.828 3.670 4.001 6.051 6.118 6.029 7.566
SocialODE 0.865 0.924 2.481 2.359 2.610 3.177 3.968 2.836 5.482 7.102 8.530 4.150
HOPE 0.839 0.918 2.466 2.484 3.586 3.783 3.417 3.442 11.254 10.652 10.133 8.107
PGODE (Ours) 0.739 0.865 2.159 2.110 2.524 2.643 2.704 2.623 5.748 5.659 4.017 3.389

Table 8: Ablation study on Charged (MSE ⇥10�2) and 2N5C (MSE ⇥10�3) with a prediction
length of 24.

Dataset Charged (ID) Charged (OOD) 2N5C (ID) 2N5C (OOD)

Variable q v q v qx qy qz qx qy qz

PGODE w/o O 2.282 3.013 2.590 2.943 2.076 2.130 2.215 2.582 2.800 2.833
PGODE w/o S 2.308 2.994 2.990 2.911 2.040 2.046 2.227 2.559 2.791 2.854
PGODE w/o F 2.497 3.298 2.882 3.197 2.424 2.208 2.465 2.970 2.868 3.118
PGODE w/o D 2.179 2.842 2.616 3.076 2.119 2.083 2.171 2.785 2.759 2.829
PGODE (Full Model) 2.037 2.648 2.584 2.663 1.960 2.029 2.119 2.464 2.734 2.727

21

Under review as a conference paper at ICLR 2024

Table 9: Further ablation study on Springs (MSE ⇥10�2) and 5AWL (MSE ⇥10�3) with a prediction
length of 24.

Dataset Springs (ID) Springs (OOD) 5AWL (ID) 5AWL (OOD)

Variable q v q v qx qy qz qx qy qz

PGODE w. Single 0.208 0.434 0.248 0.481 3.010 3.741 3.143 3.523 4.691 3.839
PGODE w. MLP 0.152 0.454 0.179 0.514 2.997 3.638 3.240 3.605 4.492 3.908
PGODE (Full Model) 0.070 0.262 0.088 0.291 2.910 3.384 2.904 3.374 4.334 3.615

H.3 PERFORMANCE WITH DIFFERENT NUMBER OF PROTOTYPES

Figure 5 (a) (b) (c) and (d) record the performance with respect to different numbers of prototypes
on different datasets. From the results, we can find that more prototypes would bring in better results
before saturation.

3 6 9 12 15
Co ditio Le gth

4

5

6

7

8

9
M
SE

 (�
��

�
�)

HOPE(+36)
GOAT(+36)

(d) (e)

(c)(a)

3 6 9 12 15
C nditi n Length

0

1

2

3

4

5

6

M
SE

 (�
��

�
�)

HOPE(+36)
GOAT(+36)

2 3 4 5 6

N mber of Prototypes

0

1

2

3

4

M
S
E
 (
�
��

�
�)

GOAT(+24)

GOAT(+12)

� � 	
 �

��������������������

�

�

	

�

�
�

��
�
��

�
� �

���������

�������	�

2 3 4 5 6

Number of Pro o ypes

2.5

3.0

3.5

4.0

4.5

M
S
E
 (
�
��

�
�)

GOAT(+24)

GOAT(+12)

(b)

� � 	
 �

��������������������

�

�

	

�
�

��
�
��

�
� �

���������

�������	�

(f)

Figure 5: (a),(b),(c),(d) Performance on the OOD test set of Springs, Charged, 5AWL, and 2N5C

with respect to four different numbers of prototypes. (e),(f) Performance with respect to different
condition lengths on the ID test set of Springs and 5AWL.

H.4 PERFORMANCE WITH DIFFERENT CONDITION LENGTHS

We analyze the influence of different conditional lengths by varying them in {3, 6, 9, 12, 15}, respec-
tively. As shown in Figure 5 (e) and (f), we can observe that our PGODE can always outperform the
latest baseline HOPE, which validates the superiority of the proposed PGODE.

H.5 EFFICIENCY COMPARISON

We have conducted a comparison of computation cost. The results are shown in Table 10 and we
can observe that our method has a competitive computation cost. In particular, the performance of
HOPE is much worse than ours (the increasement of ours is over 47% compared with HOPE), while
our computational burden only increases a little. Moreover, both the performance and efficiency of
I-GPODE are worse than ours.

22

Under review as a conference paper at ICLR 2024

Table 10: Comparison of training cost per epoch (s).
Method LSTM GRU NODE LG-ODE MPNODE SocialODE I-GPODE HOPE PGODE (Ours)

Springs 1.53 1.04 2.21 17.39 23.33 21.02 267.08 23.86 37.03
Charged 1.33 1.02 2.06 16.59 22.26 19.93 250.23 20.43 33.88

H.6 VISUALIZATION

In addition, we present more visualization of the proposed PGODE and two baselines, i.e., So-
cialODE and HOPE. We have offered visualization of the predicted trajectory of a sample in Figure
2 and now we visualize four extra test instances (two ID samples and two OOD samples) in Figure
6. From the results, we can observe that the proposed PGODE is capable of generating more reli-
able trajectories in comparison to the baselines. For instance, our PGODE can discover the correct
direction of the orange particle while the others fail in the second OOD instance.

Ground TruthGOATHOPESocialODE

ID Sample 1

ID Sample 2

OOD Sample 1

OOD Sample 2

Figure 6: Visualization of different methods on Springs. Semi-transparent paths denote observed
trajectories, from which the latent initial states are estimated. Solid paths denote model predictions.

23

	1 Introduction
	2 Background
	3 The Proposed Approach
	3.1 Hierarchical Context Discovery with Disentanglement
	3.2 bluePrototypical Graph ODE
	3.3 Decoder and Optimization

	4 Experiment
	4.1 Performance on Physical Dynamics Simulations
	4.2 Performance on Molecular Dynamics Simulations
	4.3 Further Analysis

	5 Conclusion
	A Proof of Lemma 3.1
	B Related Work
	B.1 Interacting Dynamics Modeling
	B.2 Neural Ordinary Differential Equations
	B.3 Graph Neural Networks

	C More Discussion About Expressivity
	D Algorithm
	E Detail of Baselines
	F Dataset Details
	G Implementation Details
	H More Experiment Results
	H.1 Performance Comparison
	H.2 Ablation Study
	H.3 Performance with Different Number of Prototypes
	H.4 Performance with Different Condition Lengths
	H.5 Efficiency Comparison
	H.6 Visualization

