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ABSTRACT

This paper leverages 3D Gaussian Splatting to tackle the challenging task of gen-
erating novel views of humans from given single-view images. Existing methods
typically adopt an indirect supervision manner, i.e., splat-based rasterization for
differentiable rendering. However, the intricate coupling of various 3D Gaussian
attributes complicates precise error backpropagation during optimization, often
resulting in convergence to local optima. In contrast, we propose a novel direct
paradigm to train a conditional diffusion model directly supervised by proxy-
ground-truth 3D Gaussian attributes. Specifically, we propose a two-stage con-
struction process to derive consistent and smoothly distributed proxy-ground-truth
3D Gaussian attributes. Subsequently, we train a point-based conditional diffu-
sion model customized to learn the data distribution of these proxy attributes. The
resulting diffusion model can generate the 3D Gaussian attributes for the input
single-view image, which are further rendered into novel views. Extensive exper-
imental results showcase the significant performance advancement of our method
over state-of-the-art approaches. Source code will be made publicly available.

1 INTRODUCTION

Image-driven 3D human digitization has gained significant attention due to its rich applications in
film-making, game production, AR/VR, immersive telepresence. In recent years, there has emerged
a series of works performing novel view synthesis (NVS) from observed images of human captures.

Image-based approaches (Saito et al., 2019; Zhang et al., 2023; Ho et al., 2024; Zhang et al., 2024)
infer the geometric surface of the human body and then perform texture estimation, which typically
suffers from relatively lower resolution. Video/multi-view-based approaches (Mildenhall et al.,
2020; Gao et al., 2022; Weng et al., 2022; Hu et al., 2024) can produce more fine-grained visual
appearance, but require multi-view images or monocular videos as inputs. SHERF (Hu et al., 2023)
makes the first attempt to build a single-view generalizable NeRF learning framework, but still lacks
the ability to restore accurate geometric details. More recently, 3DGS (Kerbl et al., 2023) rapidly
evolves, serving as a more powerful neural rendering pipeline, suggesting another promising way
(Zheng et al., 2024) of achieving real-time human NVS.

The most common way of building generalizable 3DGS (Zheng et al., 2024; Zou et al., 2024) is to
train a parameterized neural model for generating the desired Gaussian attribute set, and then im-
pose supervision by comparing pixel-level differences between the rendered and observed images
(see Fig. 1(a)). However, the supervision gap between the pixel and attribute domains, as well
as the many-to-one mapping relationship between the Gaussian attribute set and rendered
image cast doubt on the training effectiveness. To address these issues, we propose to directly
impose attribute-level supervision by pre-creating proxy-ground-truth Gaussian attribute sets by cus-
tomizing a two-stage workflow, including per-scene overfitting and distribution unification.

By leveraging proxy-ground-truth Gaussian attributes, we establish a direct paradigm utilizing an
attribute-wise loss function for supervision during training (see Fig. 1(b)). We adopt a diffusion-
based framework to tackle this challenge as a conditional generation task, focusing on modeling
the distribution of 3D Gaussian attributes conditioned on a monocular image. While existing point-
based diffusion models are tailored for tasks like point cloud generation, completion, or upsam-
pling (Luo & Hu, 2021; Zhou et al., 2021; Qu et al., 2024), they are not directly applicable to our
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Figure 1: HUMAN-DAD adopts a novel training paradigm. Distinct from the traditional paradigm,
which requires a splat-based rasterizer for indirect supervision, HUMAN-DAD directly utilizes
proxy-ground-truth 3D Gaussian attributes to learn a conditional 3D Gaussian attribute diffusion
model.

specific task of generating 3D Gaussian attributes. To overcome this hurdle, we devise a condi-
tional 3D Human Gaussian diffusion framework via Direct Gaussian Attribute Diffusion, named
HUMAN-DAD. Human-DAD comprises two core modules. The initial module leverages a human
reconstruction pipeline to generate point clouds, which are then initialized as 3D Gaussian posi-
tions. In the second module, we propose a conditional Gaussian attribute diffusion module to learn
the data distribution of 3D Gaussian attributes, enabling the generation of realistic and plausible
results. Moreover, we have thoughtfully crafted the input conditions, consisting of pixel-aligned
features and SMPL-semantic features.

In summary, the main contributions of this work are:

» we demonstrate the inefficacy of the traditional indirect paradigm and propose a two-stage
construction method to attain proxy ground truth 3D Gaussian attributes, thereby enabling
adirect paradigm for attribute-wise supervision. This ultimately enhances the effectiveness
of the training process.

» we design a novel generalizable 3DGS framework HUMAN-DAD and design a conditional
Gaussian diffusion module for learning the monocular image conditioned distribution of
3D Gaussian attributes, which also exhibits the potential of diffusion models for other ap-
plications in the field of 3DGS; and

* we have conducted extensive and comprehensive experiments to demonstrate the rationality
of our proxy-ground-truth attribute sets construction process and to validate the effective-
ness of HUMAN-DAD both quantitatively and qualitatively. Moreover, our HUMAN-DAD
achieves state-of-the-art performance.

2 RELEATED WORK

2.1 HUMAN RECONSTRUCTION

Geometry Reconstruction. There exist various 3D scene representations used in different appli-
cations, such as voxels, point clouds, meshes, and implicit functions. Currently, implicit functions
have been widely applied to recovering the geometric surfaces of the human body. Saito et al. (2019;
2020) pioneeringly employed implicit functions for monocular human body reconstruction by re-
gressing the occupancy value of each point in space and then using the marching cubes algorithm
to extract the human body surface. However, due to relying solely on image features and lacking
human body priors, they often struggled with occluded humans. To address this issue, PAMIR and
ICON (Zheng et al., 2021; Xiu et al., 2022) introduce the parametric human model SMPL to make
implicit functions aware of human body structure. SiFU (Zhang et al., 2024) employs a text-to-
image diffusion model to predict invisible information and generate realistic results. However, the
strong constraints of SMPL make implicit-based methods heavily reliant on the accuracy of SMPL
estimation, and they typically require numerous query points to extract 3D surfaces. In comparison,
HaP (Tang et al., 2023), a purely explicit-based method, offers greater flexibility in manipulating the
human body as a point cloud in 3D space, enabling unconstrained-topology modeling of arbitrarily-
clothed human body shapes. Owing to its efficiency and effectiveness, we utilize HaP to generate
the 3D Gaussian positions in this paper.

Novel View Synthesis. Recently, an implicit neural radiance representation (NeRF) (Mildenhall
et al., 2020) has achieved great success in synthesizing high-quality novel views. By equipping the
parametric human model SMPL, NeRF-based (Jiang et al., 2022; Xu et al., 2021) methods do not re-
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quire ground truth 3D geometry information and are capable of rendering such high-quality views of
humans. NeuralBody (Peng et al., 2021) innovatively adopts NeRF for human novel view synthesis
by learning the structured latent code of the canonical SMPL model among different frames. Hu-
manNerf (Weng et al., 2022) decomposes the rigid skeleton motion and non-rigid clothes motion in
monocular videos to learn a better NeRF representation in the canonical space. More recently, some
3DGS-based methods (Hu et al., 2024; Kocabas et al., 2024) have attempted to learn 3D Gaussian
attributes in the canonical space for fast rendering speed. However, these methods typically require
monocular or multi-view videos as input for per-scene optimization and cannot be generalized to
other scenes.

2.2 GENERALIZABLE NOVEL VIEW SYNTHESIS

Large language models have achieved remarkable success in text-to-image generation. While sev-
eral methods (Liu et al., 2023; Yang et al., 2024; Xue et al., 2024) attempted to exploit this strong
imaginative ability to generate novel views of a single image with text prompts, they face difficul-
ties in maintaining consistency among different views due to the absence of 3D information for
supervision. Zhao et al. (2022) and Gao et al. (2022) projected the SMPL models to multi-view
images and combine the image features with the canonical SMPL features to implement generaliz-
able human NeRFs. SHERF Hu et al. (2023) further proposed a hierarchical feature map to realize
a generalizable single-view human NeRF. More recently, several works attempt to train generaliz-
able 3DGS models (Liu et al., 2024; Tang et al., 2024; Zou et al., 2024; Zheng et al., 2024; Wang
et al., 2024). (Zou et al., 2024) combines the triplane representation and the 3DGS representation,
following PIFu to prepare the pixel-aligned feature for training a generalizable 3DGS model.
Zheng et al. (2024) designed a generalizable multi-view human novel view synthesis framework
by composing an iterative depth estimation module and a Gaussian parameter regression module.
These generalizable 3DGS methods follow the indirect paradigm. In contrast, we introduce a direct
paradigm that supervises the training process with ground truth 3D Gaussian attributes to provide
attribute-wise loss.

3 PROPOSED METHOD

3.1 PRELIMINARY OF 3DGS

Different from implicit neural representation approaches (Mildenhall et al., 2020; Park et al., 2019),
3DGS (Kerbl et al., 2023) explicitly encodes a radiance field as an unordered set of Gaussian primi-
tives denoted as A = {a(™ M. Each primitive is associated with the set of optimizable attributes:

a® = {p™ o™ M g ¢y, )

including position p(™ € R?, opacity value o™ € R, scaling factor s € R, rotation quaternion
q™) € R*, and spherical harmonics (SH) coefficients c(™) € R%. For an arbitrary viewpoint with
camera parameters V), a differentiable tile rasterizer R is applied to render the Gaussian attribute set
A into the corresponding view image I,., which can be formulated as:

L =R(AV). 2

For a set of observed K multi-view images {I(k)}f:1 depicting a specific scene, together with their
calibrated camera parameters {V(k) }fz 1> the optimization process iteratively updates the Gaussian
attributes by comparing the difference between rendered images and observed ground-truths, which
can be formulated as:

K
1) = R(A; VF), min Zk:l Cpmer (TP 1), 3)

where {pmet (-, -) computes the pixel-wise photometric error within the image domain. After train-
ing, the resulting optimized Gaussian attribute set .A serves as a high-accuracy neural representation
of the target scene for real-time NVS. However, despite the fast inference speed of 3DGS, scene-
specific overfitting still requires at least several minutes to complete.
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Figure 2: The two-stage workflow of creating proxy-ground-truth Gaussian attributes.
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3.2 TRAINING PARADIGM OF GENERALIZABLE FEED-FORWARD 3DGS

In contrast to the conventional working mode of per-scene overfitting, many recent studies are de-
voted to constructing generalizable 3DGS frameworks (Liu et al., 2024; Tang et al., 2024; Zou et al.,
2024; Zheng et al., 2024; Wang et al., 2024) via shifting the actual optimization target from the Gaus-
sian attribute set to a separately parameterized learning model M (x; ©), where * denotes network
inputs and © denotes network parameters. Generally, we can summarize that all such approaches
uniformly share the same training paradigm, where the learning model M-, -) consumes its input
to generate scene-specific Gaussian attributes at the output end. Through differentiable rendering
‘R, these approaches impose pixel-level supervision in the image domain, as formulated below:

K
mind - Lomer(R(M(x;0); V*), 1W), “)

Though such a training paradigm is reasonable and straightforward, the learning effectiveness can
be weakened due to the gap between the image domain where supervision is imposed and the actu-
ally desired Gaussian attribute domain. More importantly, different Gaussian attribute sets can
produce the same rendered image. Such a many-to-one mapping relationship can complicate
the solution space and cause certain degrees of confusion for model learning.

The above-analyzed drawbacks of the existing mainstream training paradigm naturally motivate us
to get rid of what we call the supervision gap. Accordingly, we propose a paradigm shift by directly
imposing attribute-level supervision. Under our targeted setting with single-view image I as input,
the proposed training paradigm can be formulated as:

A= M(1:0), minluerinr (A, A), (5)
where (sqtait (-, -) measures the primitive difference between the predicted Gaussian attribute set A
and the pre-created proxy-ground-truth attribute set A.
Overall, our proposed single-view generalizable human 3DGS learning framework consists of two
core processing phases: 1) creating proxy-ground-truth Gaussian attributes as supervision signals,

and 2) training a conditional diffusion model for Gaussian attribute generation, as introduced in the
following Sections 3.3 and 3.4.

3.3 CREATION OF PROXY-GROUND-TRUTH 3D GAUSSIAN ATTRIBUTE SETS

To facilitate direct attribute-level optimization, we need to pre-create a dataset of proxy-ground-truth
Gaussian attribute sets serving as the actual supervision signals for training M. Formally, suppose
that our raw training dataset is composed of totally J different human captures each associated with

multi-view image observations {I§k) }E_ | and camera parameters {VJ(-k) X, we aim to produce the

corresponding proxy-ground-truths {/1}3’:1 as:

Ay = a1 = (b, 6" 80" &V, &Y. (©6)
In fact, the most straightforward way of obtaining {/Alj } 3»]:1 is to separately overfit the vanilla 3DGS
over each of the J human captures and save the resulting Gaussian attributes. Unfortunately, owing
to the inevitable randomness of gradient-based optimization and primitive manipulation, the overall
distributions of the independently optimized Gaussian attribute sets are typically inconsistent. Even
for the exactly same scene, two different runs produce varying Gaussian attribute sets (e.g., primitive
density and orders, attribute values), which results in a chaotic and hard-to-learn solution space.
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Figure 3: The flowchart of our HUMAN-DAD. HUMAN-DAD predicts 3D Gaussian positions and
a back-view image using a position generator and a stable diffusion module. It assigns SMPL
semantic labels to points in 3D Gaussians, deducing an SMPL-semantic feature. The 3D Gaussians
are decomposed for front- and back-view projection, achieving a pixel-aligned feature. Both features
condition the 3DGS diffuser.

To obtain consistently-distributed Gaussian attribute sets for shrinking the solution space, we partic-
ularly develop a two-stage proxy-ground-truth creation workflow as depicted in Fig. 2. Considering
our task characteristics, we uniformly sample a dense 3D point cloud from the ground-truth human
body surface to serve as the desired Gaussian positions {p( )}N 1. The other four types of attributes
(i.e., opacities, scalings, rotations, SHs) are deduced from two sequential processing stages of what
we call per-scene overfitting and distribution unification, as introduced below.

Stage 1: Per-Scene Overfitting. This stage independently performs 3DGS overfitting over each of
the J human captures, but with one subtle difference from the vanilla optimization scheme. Specifi-
cally, instead of directly maintaining Gaussian attributes as learnable variables, we introduce a point

cloud learning network F7(+; ®1), which consumes {p J")} _, at the input end and outputs the rest
types of Gaussian attributes, as formulated below:

{ ("1)7 ( ),q(”) *(”) N_ :fl({pjn)}n " ) (7)

The purpose of moving the Gaussian attrlbutes to the output end of a neural network lies in exploiting
the inherent smoothness tendency (Rahaman et al., 2019) of neural network’s outputs. Accordingly,
for the j-th training sample, the per-scene optimization objective can be formulated as:

T ~(n) —(n n) —(n (n T k k
Aj = {P; )aag' )7 ( )}n 1 mln Z Comet ( (-Aj;V](‘ ))§I§ ))7 ®)

where {pmet involves both L; and SSIM measurements. Be51des, auxiliary constraints are imposed
over scaling and opacity attributes to suppress highly non-uniform distributions.

Stage 2: Distribution Unification. Though the preceding stage has preliminarily deduced a dataset
of Gaussian attribute sets {A;}7 5—1, the per-scene independent optimization can still lead to certain
degrees of randomness and distribution inconsistency. Therefore, in the second stage, we introduce
another deep set architecture Fo(+; ®2) to overfit the Whole J training samples:

(A} = ({4} @), min ZJ 12 Lpmet (R(A;; V), 1), )

Since it is impractical to feed the whole J tramlng samples all at once, we adopt a batch-wise scheme
with a certain number of training epochs, after which the resulting optimized {A} _1 serve as our
required proxy-ground-truths.

Due to space limitation, the detailed network structures of F; and F5 are presented in Appendix A.1.
The functionality and necessity of the two processing stages are evaluated in experiments.

3.4 DIRECT GAUSSIAN ATTRIBUTE DIFFUSION

Having created a collection of proxy-ground-truth Gaussian attributes {AJ } ]le as supervision sig-
nals, we shift attention to modeling the target distribution ¢(.4|1) conditioned on the input single-
view image I to predict the desired Gaussian attribute set 4. First, we tend to separately predict
Gaussian positions, which is essentially a 3D point cloud. Second, we treat the obtained point cloud
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as geometric priors and extract human-centered features, then feed them into a conditional diffusion
pipeline for diffusing the rest types of Gaussian attributes.

Generation of Gaussian Positions. In the training phase of the generalizable human 3DGS frame-

work, we directly use the Gaussian positions {f)g.") }N_| prepared in the proxy-ground-truth creation
process. In the inference phase, we need to specifically estimate the Gaussian positions from the in-
put image. In our implementation, we design a position generator with the rectification of the SMPL
parametric human model.

The position generator begins with monocular depth estimation (Patni et al., 2024) to generate from
I, the corresponding depth map, which is converted into a partial 3D point cloud. In parallel, we
also estimate from I the corresponding SMPL model, whose pose is further rectified by the partial
point cloud. Then, we feed the rectified SMPL model and the partial point cloud into a point cloud
generation network to output the desired set of 3D Gaussian positions. To promote the uniformity
of point density, we perform point cloud upsampling and then apply farthest point sampling. In this
way, we can stably obtain a set of accurate 3D Gaussian positions {p(”)}fyzl as geometric priors.

Extraction of Human-Centered Features. To supplement more informative conditioning signals
for the subsequent attribute diffusion, we further extract two aspects of human-centered features.

The first is pixel-aligned features for providing visual appearance information. To achieve this, we
project the 3D Gaussian positions onto the input image space. Then we utilize (Brooks et al., 2023)
to predict a back-view image I}, with respect to the view of I;. The visible and invisible partitions
of {p(”) LV_ | are respectively projected onto I, and Ij,cx, and the feature maps corresponding to I
and I,k are extracted via 2D CNNs. Finally, we concatenate the visible and invisible pixel-aligned
features to form the pixel-aligned feature 3().

The second is SMPL-semantic features for strengthening the awareness of human body structure.
To achieve this, we incorporate semantic labels defined on SMPL. We perform the nearest neighbor
searching to identify the nearest points of the 3D Gaussians on the SMPL surface. For each 3D
Gaussian, we retrieve the corresponding nearest SMPL point index, the distance, and the semantic
label, which are embedded into the latent space through MLPs. The resulting feature embeddings
are concatenated to assign each point the SMPL-semantic feature ~().

Conditional Diffusion. Having obtained Gaussian positions p(™, pixel-aligned features 3", and
SMPL-semantic features ("), we perform condition diffusion to generate the rest attributes in-
cluding a™ s(n) q(”), and ¢, Empirically, we observe that simultaneously diffusing all these
four types of attributes usually results in training collapse. Through our exploration, we choose to
separate the diffusion of SH coefficients and the other three types of attributes.

For training the generation of SH coefficients, we design an attribute diffuser GSDIFF,,, to predict
the noise at the given time step t and use an L4 loss for supervision:

¢(™ = GSDIFF,, @™ pm, g 4 ¢ Irllpin Eeon e — ™2, (10)
1

where ég") denote SH coefficients with noise added, and é™ is the ground-truth noise. For infer-

ence, we sample random SH coefficients c(T") from the Gaussian distribution and iteratively remove

noises to achieve c(()"). However, as demonstrated in PDR (Lyu et al., 2022), the inductive bias of the
evidence lower bound (ELBO) is unclear in the 3D domain, resulting in cg") still containing noise,
we further adopt an extra-step to remove the remained noises. Also, we predict the other attributes,

ie., al™ s q™ at this extra-step.

{e(n)’ al™ s q(n)} — GSDIFFy, (C(()”)7 p™, B, 7(n))’ c(™ — cén) — e
11
min ) — &+ ™) — 4 + 5 — 5™+ g — gy, D
2
Finally, we obtain a 3D Gaussian attribute set {p(”)7 a s g, c(")} of a scene when given a
single-view image I, which can be used to render novel views of the human body. The details of
the 3D Gaussian attribute diffusion model are in the Appendix A.2.
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Figure 4: (a) Visual comparison between the indirect and direct paradigms. (b) The large variation
of vanilla-3DGS spherical harmonic values after 200 attempts on a scene. (c) Spherical harmonic
values comparison of the local area (marked with ) between vanilla-3DGS and our proxy-
ground-truth 3D Gaussian attributes. (d) Visualization of spherical harmonic, opacity, and scale for
vanilla-3DGS and our proxy-ground-truth 3D Gaussian attributes. Q Zoom in for details.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

We employed 480 humans from Thuman2 (Yu et al., 2021) for the construction of proxy ground
truth 3D Gaussian attributes and the training of the attribute diffusion model. And we quantitatively
evaluated HUMAN-DAD on Thuman2 (20 humans), CityuHuman (20 humans) (Tang et al., 2023),
2K2K (25 humans) (Han et al., 2023) and CustomHuman (40 humans) (Ho et al., 2023). We adopted
the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and Learned Perceptual
Image Patch Similarity (LPIPS) as evaluation metrics.

When constructing the proxy ground truth 3D Gaussian attributes, we rendered 360 views for each
human, and we uniformly sampled 20000 points from each human surface, which was the initial
3D Gaussian position. In the first stage, we utilized a Point Transformer as the backbone to predict
the 3D Gaussian attributes. For each human subject, we overfitted the Point Transformer for 4000
epochs, using the Adam optimizer with a learning rate of 0.0002. In the second stage, we employed
another Point Transformer as the backbone. The batch size was set to 4, the number of epochs was set
to 1300, and we continued to use the Adam optimizer with a learning rate of 0.0002. Other settings
of 3DGS were following (Kerbl et al., 2023). To train HUMAN-DAD, we designed the attribute
diffusion model using PointNet++ as the backbone'. ResNet18 with the pre-trained weights was
used to extract the image feature when preparing the pixel-aligned feature. During training, the
batch size was set to 4, the number of epochs was set to 300, the optimizer was Adam, and the
learning rate was 0.0002.

4.2 ANALYSIS ON 3D GAUSSIAN ATTRIBUTE CONSTRUCTION

Weakness of Indirect Paradigm. We assert that

the traditional indirect paradigm of utilizing a splat-  Taple 1: The results of different settings on

based rasterizer for supervision is ineffective. To  Thuman. Results: Ground truth point clouds
validate this claim, we devised two experimental gare used. Resulis: generated point clouds are

settings. Specifically, we employed ground truth .,
human point clouds as the 3D Gassian positions

in order to eliminate any confounding impacts that — PSNR SSIM_ LPIPS _
. . . . . indirect 31.84(29.02)  0.963 (0.953)  0.056 (0.070)
might arise from an inaccurate 3D Gaussian posi- e | iependent | B | AL T FAIL T FAL
. . . . lirect neural 32.99(29.53) . (0.949) .052 (0.069)
tion. The two experimental settings are: 1). Train- \ Tornt T2 977 09710951 00a8 0055

ing a generalizable model that predicted all 3D

Gaussian attributes using the splat-based rasterizer for supervision (indirect in Tab. 1), 2). Training
a generalizable model that predicted all 3D Gaussian attributes, utilizing the proxy ground truth 3D
Gaussian attributes for L1 loss supervision. (joint in Table 1; note that we trained a regression model
instead of a diffusion model due to the limitations of the indirect paradigm for a fair comparison).
As illustrated in Tab. 1, relying solely on differentiable rendering to supervise the training process
results in the poorest performance. Furthermore, as presented in Fig. 4(a), the result of the indirect
paradigm was blurry and exhibited sharp, incorrect colors. We hypothesized that this was due to

"We found that the voxel size of the point transformer will seriously affect the performance. Hence, we did
not use it as the backbone of HUMAN-DAD.
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Table 2: Quantitative comparisons of different methods on Thuman, CityuHuman, 2K2K, and Cus-
tomHuman datasets. The best results are highlighted in bold.

Metric Thuman CityuHuman 2K2K CustomHuman
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

GTA (NeurlPS 2023) 25.78 0.919 0.085 27.41 0.923 0.075 24.15 0.921 0.080 28.86 0.920 0.088
SiTH (CVPR 2024) 25.36 0.919 0.083 29.21 0.934 0.067 24.30 0.920 0.076 26.47 0911 0.095
LGM (ECCV 2024) 25.13 0.915 0.096 29.78 0.941 0.074 27.99 0.938 0.071 31.91 0.944 0.077
SHERF (ICCV 2023) 26.57 0.927 0.081 30.13 0.942 0.067 27.29 0.931 0.072 27.88 0.916 0.096
HumAN-DAD 30.03 0.953 0.065 3247 0.954 0.062 30.64 0.949 0.060 34.82 0.958 0.055

the rendered images being generated by the strongly coupled attributes of 3DGS; only image loss
could not provide accurate attribute-wise gradients, which made the network lean to predict smooth
attributes. This hypothesis is supported by the results of Setting 2. Under the supervision of the
proxy ground truth 3D Gaussian attributes, we could decouple different attributes and provide an
attribute-wise gradient for backpropagation. The results show that using our pseudo dataset for su-
pervision is more effective than differentiable rendering, and the construction of the proxy ground
truth 3D Gaussian attributes is necessary.

Defect of Vanilla-3DGS. The solution space of vanilla-3DGS is expansive, primarily due to its
direct optimization of numerical values and the strong coupling among its various attributes. To
validate this, we designed three experiments. Firstly, we fixed all random seeds of python, numpy
and pytorch and optimized the 3DGS model on a specific scene 200 times. Subsequently, we
plotted the results of the 200 optimizations, which were obtained by summing the spherical harmonic
values from each optimization, as depicted in Fig. 4(b). The results exhibit significant variation.
Secondly, we selected a local area (marked in ) on a human body expected to have the same
color; however, as illustrated in Fig. 4(c), the spherical harmonic values ranged widely from -12.5 to
6. Lastly, we visualized the spherical harmonic, opacity, and scale attributes in Fig. 4(d) left column,
revealing that vanilla-3DGS produced highly chaotic results. Although vanilla-3DGS can achieve
better rendering results, it is impractical to learn from something that is filled with randomness and
lacks regularity (as illustrated in Tab. 1). Therefore, it is not suitable for constructing the proxy
ground truth 3D Gaussian attributes.

The Necessity of two-stage construction. We visualized the results of the per-scene overfitting
stage in Fig. 4 (c) and (d) right column. Our point transformer-based 3DGS significantly narrowed
the variation range of spherical harmonic values in the local area, and the visualizations of the
spherical harmonic, opacity, and scale attributes appeared cleaner and more uniform. However, as
depicted in Fig. 5, the obtained 3D Gaussian attributes from the first stage lead to a slow convergence
during training, primarily due to the inde-
pendent optimization of scenes, which re-
sults in distinct distributions across different
scenes. Moreover, the distribution among
various scenes had been further aligned af-
ter the second stage, with the variances of
the minimum and maximum values reduced S Ikl
from 0.0707 to 0.0329 and from 0.1114 to T T e
0.1094, respectively. As shown in Tab. 1, the
two-stage construction (joint) achieves better
performance than the single-stage construction
(neural). Hence, it is necessary to conduct a
two-stage construction process.

Figure 5: The visualization of distributions and
loss. Q Zoom in for details.

4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

We compared our HUMAN-DAD with four state-of-the-art methods: GTA (Zhang et al., 2023),
LGM (Tang et al., 2024), SiTH (Ho et al., 2024), and SHERF (Hu et al., 2023). The four used
datasets were collected from individuals of different ages, genders, and races. As reported in Tab. 2,
HUMAN-DAD achieves the best quantitative performance across all metrics on all datasets, under-
scoring the effectiveness and generalization capability of HUMAN-DAD.
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OURS

Figure 6: visual comparisons of our method with GTA, SiTH, LGM, and Sherf. Q, Zoom in for
details.

GTA and SiTH suffer from the grid resolution of the marching cube and produce broken recon-
structed human bodies, resulting in low-fidelity novel views. Moreover, their results are usually in
the wrong poses. However, as shown in Fig. 6, our HUMAN-DAD is capable of rendering fine-
grained input view images while maintaining texture consistency across different view directions
with correct poses.

LGM is a generalizable 3DGS model that predicts the 3D Gaussian attributes from the multi-view
generated images. However, it occasionally predicts incorrect backside images, and the rendered
images have low resolution due to consistency issues across different views. Our HUMAN-DAD
solves the consistency problem by generating the 3D Gaussian position first. Moreover, owing to
our diffusion-based framework, the rendered images are more realistic, compared to LGM.

SHERF frequently encounters challenges with
incorrect poses in SMPL models. While the es-
timated SMPL models often exhibit poses sim-
ilar to the given view on the 2D plane, their
poses are often incorrectly along the z-axis, and
SHERF lacks a module to rectify the SMPL
models in 3D space. Additionally, SHERF
heavily relies on the SMPL model and is unable
to render loose clothing, as illustrated in Figure
6, where it fails to render the hems of the jeans
for the first individual. Furthermore, SHERF
directly utilizes the input view to extract image
features, which leads to incorrect backside in-
formation prediction when the backside of the
human is not symmetrical with the frontal view.
Our designed 3D Gaussian position generator Figure 7: The visual comparison with SHERF and
and pixel-aligned feature can tackle these is- L-GM on the wild images. Q Zoom in for details.
sues.

We also compared HUMAN-DAD with SHERF and LGM on the wild images. As shown in Fig. 7,
SHEREF cannot correctly recover the colors, and the results were in the wrong poses. Moreover, it

Input SHERF LGM OURS
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SUltagiriigh

input di-regression diffusion input in-regression diffusion input wo back full model input wo SMPL full model

Figure 8: The visual results of ablation studies. (a) regresslon based model (both dlrect and indirect
paradigms) v.s. diffusion-based model. (b) without backside image v.s. with backside image. (c)
without SMPL semantic features v.s. with SMPL semantic features. Q, Zoom in for details.

cannot recover loose clothing. LGM is able to recover the correct colors; however, it cannot preserve
the face identity and the texture details. We also refer reviewers to the Supplementary Material for
the video demo and Appendix Fig. 14 for more visual results.

4.4  ABLATION STUDIES

Diffusion-based Model. Thanks to the novel direct paradigm we proposed, simply training a
regression-based model also exhibits good quantitative performance on the Thuman dataset, as
demonstrated in Tab. 3. However, the regression models (both direct and indirect paradigms) usually
overfit in local-optima and struggle to predict accurate texture in occluded areas, as illustrated in Fig.
8(a). Conversely, this issue can be addressed by the diffusion-based model. Hence, we consider the
direct paradigm to be better because it supports training diffusion models, which are more efficient
for learning the distribution of the 3D Gaussian attributes.

Backside Image. The predicted backside image provides coarse information about unseen areas
for HUMAN-DAD. When the backside image is deprecated, as illustrated in Fig. 8(b), we observed
that HUMAN-DAD failed to predict the correct face identity, and the quantitative performance also
decreased. These results demonstrate that the backside image actually contributes to improving the
quality of unseen areas.

SMPL Semantic Feature. As presented in Fig.

8(c), when the SMPL semantic feature is not Taple 3: The results of ablation studies on
adopted, we observed that the boundary of the neck Thuman.

area became unclear, and the left hand appeared

darker compared to the full model. This over- Back  Smpl | Lon oM LPIPS
smoothing effect impacts the quantitative perfor- Tndirect 03505
mance. We believe that the SMPL-semantic feature =~ | reeresion | & Yo 0% 00
enables HUMAN-DAD to learn the human body — “* | difiusion | + x 2963 0950  0.070

v v 30.03 0.953 0.065

structure and tackle the over-smoothing problem.

5 CONCLUSION

We have introduced a novel direct paradigm for training a generalizable 3DGS model of the hu-
man body. In crafting this direct paradigm, we implemented a two-stage process to acquire proxy
ground truth 3D Gaussian attributes. Furthermore, we devise a diffusion model to capture the global
distribution of 3D Gaussian. Extensive experimental results have demonstrated the significant supe-
riority of HUMAN-DAD over the current state-of-the-art methods. We will explore the potential of
HUMAN-DAD to support multi-view images (Kwon et al., 2021; Gao et al., 2023). At present, the
direct paradigm has only been applied to the monocular human rendering task. In future work, we
intend to explore and validate its effectiveness in a broader range of 3DGS application scenarios.

10
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We have read and adhere to the Code of Ethics of ICLR 2025. This study does not encounter
violations of the Code of Ethics.

REPRODUCIBILITY STATEMENT

we provide detailed information on the implementation and network architectures. We also thor-
oughly explain the datasets and evaluation metrics used in our study. To ensure accuracy and repro-
ducibility, we conduct extensive experiments on the Thuman?2 (Yu et al., 2021), CityuHuman (Tang
et al., 2023), 2K2K (Han et al., 2023), and CustomHuman (Ho et al., 2023) datasets. Additionally,
if our paper is accepted by ICLR 2025, we will release the source code on GitHub.
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A APPENDIX
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Figure 9: The architecture of point transformer ©.
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Figure 10: The architecture of point transformer ©,.
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Figure 11: The architecture of MLPs. (a). The architecture of Spherical Harmonics MLP. (b). The
architecture of Scale, Rotation and Opacity MLPs.
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A.1 ARCHITECTURE OF POINT TRANSFORMER

We present the architectures of the point transformers, denoted as ©; and ©,, in Fig. 9 and Fig.
10, respectively. The architecture of the MLPs is depicted in Fig. 11. Initially, the human point
cloud is fed into a position encoding module to enable the network to learn high-frequency features.
Subsequently, a point transformer is employed to extract point-wise features from the human point
cloud. These point-wise features are then concatenated with the human point cloud and input into
various MLPs to learn different 3D Gaussian attributes. In the second stage of overfitting, we also
incorporate spherical harmonics features into the point transformer to unify the distribution across
different scenes. For the MLPs responsible for Scale, Rotation, and Opacity, we further enhance
their geometric perception by inputting the KNN graph of the point cloud.

A.2 ARCHITECTURE OF 3DGS DIFFUSER

We present the process of preparing the condition features for the 3DGS diffuser in Fig. 12. Cur-
rently, most point cloud-based diffusion models are designed for point cloud generation, yet they

14
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Figure 12: The process of preparing the pixel-aligned feature and the smpl-semantic feature. (a).
The process of preparing the pixel-aligned feature. (b). The process of preparing the smpl-semantic
feature.
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Figure 13: (a). The architecture of the 3D Gaussian attribute diffusion model. (b). The architecture
of the 3D Gaussian attribute diffusion model to train the extra step.

Gaussian

lack the capability to directly apply diffusion on 3D Gaussian attributes. To address this, we adopt
PointNet++ as the backbone and introduce modifications to enable the training of a diffusion model.
The architecture of the diffuser is illustrated in Fig. 13.

A.3 SUBJECTIVE EVALUATION

We conducted a subjective evaluation to compare various methods quantitatively. Specifically, we
engaged 52 participants, including undergraduate students, postgraduate students with diverse re-
search backgrounds, and professionals from the industry, to assess 8 different human bodies. For
each human body, we presented three images generated by different methods and requested the par-
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Figure 14: More visual results.

ticipants to provide scores within the range of 1 to 5, reflecting the quality of the generated shapes,
with ratings as follows: 1: poor, 2: below average, 3: average, 4: good, 5: excellent. Fig. 15 shows
the results of the subjective evaluation, where we provided the overall scores, the mean value, and
the standard deviation (std) of the scores. It can be seen that our HUMAN-DAD obtains the highest
mean score.
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Figure 15: Overall and mean/std results of the subjective evaluation.
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REBUTTAL CONTENT

Results of Animation. We present several results of novel pose synthesis (animation) in Fig. 17.
By blending the 3D Gaussian positions with the SMPL vertices and modifying the SMPL pose,
we successfully achieve novel poses. Notably, the results are satisfactory despite the absence of a
specifically trained model for this task.

S KA

Input Novel Pose 1 Novel Pose 2 Novel Pose 3

Figure 17: Novel pose synthesis results of HUMAN-DAD. Zoom in for details.

Results of Image-conditioned Diffusion model. We explored the use of a diffusion model con-
ditioned solely on the input image to predict 3D Gaussian positions, SHs, rotations, scales, and
opacities. However, as shown in Fig. 18, we found that such a model failed to train effectively, in-
dicating that using only an image as a condition is insufficient for training a robust diffusion model.
This highlights the importance of designing HUMAN-DAD.

Input Predicted Rendered
Postions Image

Figure 18: The results of the image-conditioned diffusion model.

Appling the two-stage construction process on other datasets. We present two examples of fitting
results on the 2K2K and CustomHuman datasets in Fig. 19. These datasets, unlike Thuman, were
collected from different countries and feature individuals of varying ages and races. Despite these
differences, our two-stage construction method proves to be effective.

Vanilla-3DGS in the first stage. As shown in Fig. 20, using the vanilla-3DGS in the first stage
results in a final output that fails to preserve fine details. This is due to the high level of randomness
in the vanilla-3DGS, which the neural network in the second stage is insufficiently robust to fully
eliminate. However, using a neural network in the first stage will tackle the randomness problem.
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Figure 19: The fitting results of the two-stage construction process on 2K2K and CustomHuman
datasets.

LRI

PSNR 34.76 PSNR 40.83
First Stage: Vanilla 3DGS First Stage: Neural Network

Figure 20: Visual results of using vanilla-3DGS and neural network at the first stage, respectively.
Zoom in for details.

Evaluation with ground truth 3D shapes. We provided ground truth occupancy fields, SDF fields,
and point clouds for GTA, SiTH, and HUMAN-DAD, respectively. (LGM learns 3D Gaussian posi-
tions from predicted multi-view images, while SHERF requires SMPL.) As shown in Fig. 21, both
GTA and SiTH fail to capture fine details, whereas HUMAN-DAD demonstrates superior perfor-
mance in preserving intricate features.

Optimizing 3DGS with only two images. We optimized a 3DGS model with only the frontal and
back images, as shown in Fig. 22, the 3DGS model is too random, while our HUMAN-DAD can
reduce the randomness problem.

Comparison between Human3Diffusion and Human-DAD. We compared Human3Diffusion
with HUMAN-DAD, as illustrated in Fig. 23. The results show that our HUMAN-DAD effectively
preserves fine details, whereas Human3Diffusion falls short in this regard.
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Input GTA SiTH Ours

Figure 21: Visual comparison between GTA, SiTH and Human-DAD when using ground truth 3D
shapes. Zoom in for details.

R \
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Input  Predicted Back Vanilla-3DGS on two images PSNR 25.02
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Ours results PSNR 33.72

Figure 22: Visual results of only using frontal and back images to optimize a 3DGS model.

Input GT Human3Diffusion OURS Human3Diffusion OURS

Figure 23: Visual comparison between Human3Diffusion and Human-DAD. Zoom in for details.
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