

Fig. 1. Network structure of the proposed interpolation module. We concatenate two adjacent images I_{i-1} and I_{i+1} as inputs. The outputs of network are two pairs of 1D kernels, which process inputs in a convolutional manner to generate the interpolated result I_i^* . \circledast denotes convolution. The numbers below each convolution layer denote the channel number.

Our interpolation module is built upon the kernel prediction network (KPN) [1], as shown in Fig. 1. Features from the network are adopted to generate four 1D kernels, *i.e.*, Separable-Conv. We adopt ReLU as the activation function after each convolution layer (Conv). In addition, we use skip connections (Skip-merge) to incorporate features from different layers. Average Pooling (AvePooling) is used to perform downsampling for feature compression and the bilinear interpolation is used for upsampling to recover feature resolution. More details can be found in Table 1.

1.2 Unfolding Module

⁰⁴³ The structure of unfolding module is listed in Table 2, where a residual variant ⁰⁴³ of U-Net [2] is adopted to implement the optical flow estimation. Each residual ⁰⁴⁴

Blocks	Components	Size of feature maps
input	_	$256\times 256\times 6$
down1	3*Conv + AvePooling	$128\times128\times32$
down2	3*Conv + AvePooling	$64 \times 64 \times 64$
down3	3*Conv + AvePooling	$32 \times 32 \times 128$
down4	3*Conv + AvePooling	$16\times16\times256$
down5	3(Conv + AvePooling)	$8 \times 8 \times 512$
upscaling5	3*Conv + Bilinear + Conv + Skip-merge	$16\times 16\times 512$
upscaling4	3*Conv + Bilinear + Conv + Skip-merge	$32 \times 32 \times 256$
upscaling3	3*Conv + Bilinear + Conv + Skip-merge	$64 \times 64 \times 128$
upscaling2	3*Conv + Bilinear + Conv + Skip-merge	$128\times128\times64$
sub-structure	3*Conv + Bilinear + Conv + Skip-merge	$256\times256\times51$
output	Separable-Conv	$256\times 256\times 1$

 Table 1. Structure of interpolation module.

Table 2. Structure of unfolding module.

060			
061	Blocks	Components	Size of feature maps
062	input	-	$256 \times 256 \times 6$
063	down1 C	Conv + Res + Conv + Maxpooling	$128\times128\times32$
064	down2 C	Conv + Res + Conv + Maxpooling	$64 \times 64 \times 64$
065	down3 C	Conv + Res + Conv + Maxpooling	$32 \times 32 \times 128$
000	down4 C	Conv + Res + Conv + Maxpooling	$16\times16\times256$
066	bridge	Conv + Res + Conv	$16 \times 16 \times 512$
067	upscaling4 Decon	v + Skip-merge + Conv + Res + Conv	$32 \times 32 \times 256$
068	upscaling3 Decon	v + Skip-merge + Conv + Res + Conv	$64 \times 64 \times 128$
069	upscaling2 Decon	v + Skip-merge + Conv + Res + Conv	$128\times 128\times 64$
070	upscaling1 Decon	v + Skip-merge + Conv + Res + Conv	$256\times256\times32$
070	last-layer	Conv	$256 \times 256 \times 2$
071	output	Warping	$256 \times 256 \times 1$

block (Res) contains three stacked convolution layers and a residual skip connection. Maxpooling layer is used to perform downsampling and deconvolution layer (Deconv) is used to upsample feature maps.

1.3 Fusion Module

As listed in Table 3, our proposed fusion module is implemented by a simplified version of U-Net structure [2]. The skip connection is used to concatenate features from different layers, termed as Skip-concat.

2 Restoration Results

To evaluate the superiority and the generalization capability of our proposed method, we provide supplementary restoration results on *synthetic* (as shown in Figs. 2 and 3) and *realistic* samples (as shown in Figs. 4 and 5).

Fig. 3. Visual comparison of restoration results on *synthetic* samples.

Fig. 4. Visual comparison of restoration results on *realistic* samples.

Fig. 5. Visual comparison of restoration results on *realistic* samples.

References

- 174
 175
 1. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution. In: Proceedings of the IEEE International Conference on Computer Vision.
 176
 177
 177
 177
 178
 179
 170
 170
 170
 171
 171
 171
 172
 173
 174
 174
 174
 175
 175
 175
 176
 176
 177
 177
 178
 178
 178
 179
 179
 170
 170
 170
 170
 171
 171
 171
 172
 173
 174
 174
 175
 175
 175
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
 176
- Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. pp. 234–241. Springer (2015)